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Abstract—A communication protocol is a set of rules defined

formally that describes the format of digital messages and the

rules for exchanging those messages in or between comput-

ing systems. The Internet Protocol Suite used for commu-

nications throughout the Internet uses encapsulation to pro-

vide a way of abstracting protocols and services. This ab-

straction is grouped into layers of general functionality. For

protocols on the transmission layer, many choices exist. But

while popular protocols such as TCP, UDP and SCTP do pro-

vide connection oriented communication offering reliability,

ordering and data integrity, solutions that offer such con-

nections from one point to multiple endpoints are still lim-

ited. TCP only supports point-to-point communication and

SCTP offers multi-homing functionality, but the transmis-

sion is still limited to two logical endpoints. In this paper

we use the simple, stateless, transmission model of UDP in

order to provide TCP-like services for one-to-many commu-

nication that is not limited to just multi-homing or other

particular solutions. The protocol supports reliable commu-

nication from one endpoint to multiple endpoints in different

transmission modes. In order to make it easier for devel-

opers to customize the protocol to their needs and possibly

extend/modify it in order to create new variants from it, the

protocol is developed in user space. Because of this design re-

striction performance wasn’t the main objective of our work,

but rather the ease of customization and experimentation with

new protocol variants. The protocol was implemented in the

C++ programming language using classes with virtual mem-

bers. New variants of components, such as packet retransmis-

sion, can easily be implemented without changing the whole

code base.

Keywords—communication protocol, connection oriented, mul-

tiple streams, one-to-many.

1. Introduction

The work presented in this paper consists of the design and

development of a network protocol for reliable communica-

tion from one point to multiple points, on possible multiple

machines.

The main motivation behind this work is to provide en-

hanced communication functionality from one endpoint to

multiple endpoints. It should be noted that similar transport

layer protocols such as TCP and SCTP don’t provide the

kind of functionality that this protocol provides. SCTP’s

multi homing support only deals with communication be-

tween two endpoints which are assigned multiple IP ad-

dresses on possibly multiple network interfaces; it does not

deal with configurations that contain multiple endpoints (for

example, clustered endpoints). Our work allows an appli-

cation running on a machine to connect to a collection of

machines as if they were a single one. It practically vir-

tualizes a set of machines under the same endpoint, each

machine being accessible under many streams. Using this

approach, one can implement features such as load balanc-

ing, which is absent in SCTP.

Similar to SCTP, our protocol supports multiple streams

inside each connection. This is an improvement to TCP’s

single-stream connections, as using multiple streams has

the advantage of better parallelization that leads to better

performance in the context of today’s multi-core proces-

sors.

Using the one-to-many facilities and the support for multi-

ple streams, new programing models for network connec-

tions and new design patterns can be created. This allows

for easier application implementations and shorter develop-

ment times for advanced functionality.

The common way of developing a networking protocol is

to implement parts of it in kernel space. This not only

splits the implementation into two parts (kernel space and

user space), but also makes its configuration, tweaking

and portability to multiple operating systems more difficult.

To alleviate such problems, we decided to implement the

protocol only in user space. Even if performance may

be affected because of this decision, it is beyond the

scope of this paper to provide fast absolute performance.

The protocol uses the UDP transport protocol, on top of

which it implements the desired connection-oriented func-

tionality.

The rest of this paper is organized as follows. In Section 2

we discuss related work. In Section 3 we present the de-

sign of our one-to-many communication protocol and in

Section 4 we provide implementation details. In Section 5

we present experimental results. Finally, in Section 6 we

conclude and discuss future work.
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2. Related Work

2.1. Transmission Control Protocol (TCP)

One of the core protocols of the Internet Protocol Suite

is the transport layer protocol name Transmission Control

Protocol (TCP) [1]. Complementing the Internet Protocol

(IP), it is one of the two original components of the Internet

Protocol Suite, and the reason the entire suite is commonly

referred to as TCP/IP. TCP’s design is for use as a highly

reliable host-to-host protocol between hosts in computer

communication networks.

TCP provides reliable inter-process communication be-

tween pairs of processes in host computers attached to

distinct but interconnected computer communication net-

works. Very few assumptions are made as to the reliability

of the communication protocols below the TCP layer.

Because of the wide spread adoption of TCP and because

the facilities offered by it are well known and have been

tested thoroughly over the years, a comparison with TCP

is inevitable. Our protocol implements the features offered

by TCP and extends them to one-to-many connections.

2.2. User Datagram Protocol (UDP)

User Datagram Protocol (UDP) [2] is one of the most com-

monly used protocols of the Internet Protocol Suite. UDP’s

simple transmission model without implicit connectivity

provides a fast way to transmit data. One of the features of

UDP is multicast addressing. Multicast is the delivery of

a message or information to a group of destination comput-

ers simultaneously, in a single transmission from the source.

The problem is that this form of communication is not re-

liable and messages may be lost or delivered out of order.

Moreover, the multicast facility requires support from the

underlying network devices, which is rarely available.

Our protocol is built over UDP because of its simple,

performance-oriented design and offers the functionality

of multicast with the reliability of TCP, as well as other

forms of one-to-many addressing. It is worth mentioning,

though, that in UDP’s multicast model, the sender does

need to know all the receivers (but only a group identifier),

while our multicast model requires explicit knowledge of

each receiver’s network address.

2.3. Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol (SCTP) [3] is

a new protocol existing at an equivalent level with UDP

and TCP on the protocol stack and provides transport layer

functions to many Internet applications. SCTP has been

approved by the IETF as a proposed standard in 2000 and

updated over the years. SCTP is a reliable transport pro-

tocol operating on top of a connectionless packet network

such as IP. It offers the following services to its users:

– acknowledged error-free non-duplicated transfer of

user data,

– data fragmentation to conform to discovered path

MTU size,

– sequenced delivery of user messages within multiple

streams,

– an option for order-of-arrival delivery of individual

user messages,

– optional bundling of multiple user messages into

a single SCTP packet,

– network-level fault tolerance through supporting of

multi-homing at either or both ends of an association.

Similar to TCP, SCTP offers a reliable transport service.

SCTP makes sure that data is transported across the net-

work without errors even if packet loss is possible and that

the data arrives in the correct sequence. Similar still to

TCP, SCTP creates a relationship between endpoints prior

to data being transferred. This relationship denotes what

is called a “session-oriented” mechanism for transmitting

data. In SCTP terminology, such a relationship is called

an association and is maintained until all data has been

successfully transmitted.

SCTP improves upon the TCP design by adding support

for message-based, multi-streaming, multi-homing delivery

of chunks without head-of-line blocking, path selection and

monitoring, validation and acknowledgment with protection

against flooding and improved error detection.

Unlike TCP which is byte-oriented, SCTP is message ori-

ented and supports framing of individual message bound-

aries. Data is sent as being part of a message and sent

on a stream in the form of a packet. Error detection and

correction is also resolved at the message level.

2.4. Other Communication Protocols and Techniques

Some of the underlying principles used in the design of our

protocol were first mentioned (as concepts) in [4]. In [5]

a (multi)point-to-(multi)point communication protocol was

proposed which uses delay for congestion control, rather

than a congestion window (like TCP, SCTP and our proto-

col). In [6] a one-to-many communication method based

on constructing an application-aware overlay was proposed.

This differs from our approach, in the sense that an over-

lay needs to be constructed and maintained. In [7] the

authors maintain the idea of constructing an overlay for

multicast communication, but this overlay is hidden “un-

der” an “overlay socket”. In the sense of introducing new

types of sockets, this approach is similar to ours.

In regard to the user space implementation of our commu-

nication protocol, many previously proposed protocols were

also implemented in user space [5] [6], [7]. Recently, an

Internet draft proposal [8] was published for encapsulating

SCTP packets in UDP packets (i.e., implementing SCTP in

user space over UDP), in order to address SCTP’s lack of

kernel-level implementation availability and NAT traversal

issues.
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3. Protocol Design

There are many design paths to take when developing a user

space networking protocol. The first option considered was

implementing the protocol via overloading existing func-

tions and using callback mechanisms. However, this makes

the code hard to follow and even harder to extend or tweak

particular functionalities.

To make the implementation of a communication proto-

col easier and to have better defined functions for certain

tasks, the protocol needs an entity that would always run

and send/receive messages. This can be either a separate

process or a separate thread. A separate process would

require intensive IPC (Inter-Process Communication) and

synchronization, while a separate thread would mean every

application that uses the protocol will each have its own

thread that performs communication.

Because of the separate logic for sending and receiving

data, it was decided that there would be 2 execution units

for communication. Only one unit would mean that certain

bottlenecks may occur when both receiving and transmit-

ting large chunks of data. This case also increases in fre-

quency since for every packet sent, an ACK packet may be

required to be received.

Furthermore, because of the nature of networking proto-

cols, some packets will be lost and a good protocol needs

a way to handle such cases. In order to provide this func-

tionality, a timeout mechanism is required. The mechanism

needs to be as fine grained as the operating system permits

and not block the client application that uses the protocol

or one of the transmission execution units. Thus, another

execution unit is needed with the sole purpose of providing

timeout functionality.

In Linux, a socket descriptor is just a number that has

meaning only to the process who owns it. The user space

side has just a number and the kernel maps the pair (num-

ber, process) to a particular kernel socket. If a process

transfers the socket number to another process, the socket

descriptor becomes invalid as the kernel doesn’t know the

socket descriptor got copied to the new process. To copy

a socket descriptor between processes, Unix sockets have

to be used and the descriptor copied through them. How-

ever, this form of socket management quickly proves to

be overly complicated to synchronize. When one process

modifies the socket attributes, it has to announce the other

processes that have a copy of the same socket in other to

maintain consistency.

Because implementing the separate execution units as pro-

cesses requires more advanced and tangled synchronization

and communication, the execution units were implemented

as threads. The total memory usage of the applications us-

ing the protocol will increase as each one will have a copy

of the 3 execution units used for transmission, but network-

ing speeds will not necessarily be impacted. The kernel

resolves the problem of multiplexing different communica-

tions and N processes transmitting data may be even faster

than just one process transmitting data.

The only downside of this decision is the inability to im-

plement QoS (Quality of Service) – like functionality in

the protocol. These services require knowledge of all (or

as much as possible) data transmitted from a machine so

even if every application using our protocol used a common

engine for transmission, applications using other protocols

like TCP would interfere with QoS.

3.1. Protocol Operation

The primary purpose of the protocol is to provide a reli-

able logical circuit or connection service between one to

many endpoints. To provide this service on top of a less

reliable communication system the following facilities are

required:

Basic data transfer

The protocol packs some number of octets into packets

for transmission through the networking system. This way,

the protocol is able to transfer a stream of octets in each

direction grouped into messages.

Reliability

In case data is damaged, lost, duplicated or delivered out

of order, the protocol must recover and never enter an un-

known state. This is achieved by assigning a sequence

number to each packet transmitted and requiring an ac-

knowledgment (ACK) from the receiving end. If the ACK

is not received within a timeout interval, the data is re-

transmitted. The sequence numbers are also used by the

receiver to correctly order packets that may be received out

of order or to eliminate duplicates. Damage is handled by

having a checksum the end of the packet header, calculated

by the sender and checked by the receiver, who discards

damaged packets.

Multiplexing

To allow for many execution units within a single host to

use the communication facilities simultaneously, the proto-

col provides a set of streams within each process, further

developing on the address and port identification elements.

The protocol must allow for multiple distinct communica-

tions to take place on the same machine or by the same

process, but each one must use a different source endpoint.

Connections

To obtain the reliability and flow control mechanisms de-

scribed above, the protocol initializes and maintains cer-

tain status information for each stream. Multiple streams

with the same address and port source form a connec-

tion. Each connection is uniquely specified by endpoint

addresses, ports and streams.

The protocol must first establish a connection (initialize

the status information on each side) before two processes
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can communicate and when that communication is com-

plete, the connection is closed and the used resources freed.

In order for the connections to be established over unreli-

able communication systems, a handshake mechanism with

timeout-based sequence numbers is used to avoid erroneous

initialization of connections.

Multiple endpoints

Similar protocols only implement reliable communication

between two endpoints or unreliable communication from

one to many.

The protocol provides a way to communicate with multi-

ple hosts at the same time while offering the facilities of

a point-to-point connection oriented communication.

In this form of communication, a retransmission model

must be chosen. Either one or all of the peers must ac-

knowledge packets so retransmission will not occur.

Congestion control

Congestion control is implemented the same way as for

TCP, by using a congestion window representing the max-

imum number of packets (or of bytes) sent but not yet ac-

knowledged. The difference from a standard point-to-point

protocol is the definition of a packet being acknowledged

(e.g., depending on the transmission mode, a packet is ac-

knowledged if one, some or all of the destinations acknowl-

edge the packet).

3.2. Sequence Numbers

One of the main concepts in the protocol design is that

a sequence number is assigned to every packet sent over

a connection. This is similar to every other protocol that

provides reliable communication. Because every packet

has a sequence number, each and every one of them can be

acknowledged and this allows for detection of duplicates

or lost packets. Every stream of the communication has

a sequence number for each direction.

It is essential to remember that the actual sequence number

space is finite, from 0 to 2
32 −1. Since the space is finite,

all arithmetic dealing with sequence numbers must be per-

formed modulo 2
32. If this protocol is extended, a sliding

window can never be larger than 2
31.

Using sequence numbers, the protocol must perform the

following operations:

– determine that an incoming packet contains a se-

quence number that is expected,

– determine that an acknowledgement number refers to

a sent packet with a sequence number not yet ac-

knowledged.

When an acknowledgement has been received for all sent

sequence numbers, the protocol can conclude that all pack-

ets have been sent successfully.

3.3. Automatic Repeat Request

Automatic repeat request (ARQ), also known as Automatic

Repeat Query, is an error-control method for data transmis-

sion that uses acknowledgements and timeouts to achieve

reliable data transmission over an unreliable service. If

the sender does not receive an acknowledgment before the

timeout, it usually retransmits the packet until the sender re-

ceives an acknowledgment or exceeds a predefined number

of retransmissions.

Our protocol uses a variant of the Go-Back-N ARQ for

transmission. In Go-Back-N, the sending process continues

to send a number of packets specified by a window size

even without receiving an acknowledgement packet from

the receiver. It can be viewed as a particular case of a slid-

ing window protocol with the transmit window size of N

and the receive window size of 1.

If the sender sends all the packets in its window and re-

ceives no ACK or only future or past ones, but not the

expected one, it will go back to the sequence number of

the last valid ACK it received from the receiver, fill its

window starting with that frame and continue the process

over again. Only the expected ACK will advance the ex-

pected sequence number. Past “duplicate” ACKs or future

“out-of-order” ACKs will be ignored.

Go-Back-N ARQ is more efficient than Stop-and-wait ARQ

since unlike waiting for an acknowledgement for each

packet, the connection is still being utilized as packets are

being sent. In other words, during the time that would oth-

erwise be spent waiting, more packets are being sent. This

method also results in one frame possibly being sent more

than once and the receiver has to be aware of duplicates

and discard them.

If the highest possible throughput is desired, it is important

to force the transmitter not to stop sending data earlier than

one round-trip delay time (RTT) because of the limits of

the sliding window protocol. In order for the protocol not

to limit the effective bandwidth of the link, the limit on the

amount of data that it can send before stopping to wait for

an acknowledgement should be larger than the bandwidth-

delay product of the communication link.

The protocol can be configured in the initialization stages

on how to handle retransmission in a multiple endpoint

communication. In the broadcast mode, all the peers must

acknowledge the sent packets before transmission can move

forward. In the any-cast mode, at least one peer must ac-

knowledge the packet. In both of these modes, each packet

is actually sent to all the endpoints. In the more general

case, at least P destinations must acknowledge the packet

in order to consider it fully acknowldeged at the source.

We also implemented a mechanism in which a packet must

be sent to at least a number K of the destinations (K ≤

the number of destinations). In this case, a packet may be

considered acknowledged either if all, at least one or, more

generally, at least P≤K, of the destinations to which it was

sent acknowledge it.

When we do not need to send each packet to each destina-

tion, we also implemented a load balancing mechanism, in
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which the (K) destinations for the packet are selected based

on a load metric computed at the source for each destina-

tion (e.g., a combination of average response time for the

packets sent to it during the last few seconds/minutes and

the number of lost packets sent to it in the same time in-

terval; the response time is defined as the time difference

between the moment when the packet was sent and the

moment when its corresponding ACK was received).

Note that when a packet is sent to multiple destinations,

each copy of the packet is handled by the sender as a sep-

arate, different packet for timeout and retransmission pur-

poses.

3.4. Header Format

As with any protocol implemented over the network stack,

each layer encapsulates the ones above. In computer net-

working, encapsulation is a method of designing modular

communication protocols in which logically separate func-

tions in the network are abstracted from their underlying

structures by inclusion or information hiding within higher

level objects. The UDP protocol encapsulates our proto-

col header and adds destination and source addresses and

destination and source port numbers. A description of the

contents of the header follows:

• Version (8 bits): The version field indicates the for-

mat of the protocol header.

• Source stream (8 bits): The source stream number.

• Destination stream (8 bits): The destination port

number.

• Flags (8 bits): Flags that indicate if the packet starts

or ends a message or if it is the first packet sent on

this connection.

• Sequence number (32 bits): The sequence number

of the first data byte in this segment. If this is the

first message sent, this number is the initial sequence

number and the first data byte is this number plus

one.

• Acknowledgment number (32 bits): The value of the

next sequence number the sender of the segment is

expecting to receive.

• Data payload size (32 bits): Size of the data con-

tained in the packet.

• Cyclic redundancy check (32 bits): The checksum

field is the 32 bit one’s complement of the one’s

complement sum of all 32 bit words in the header.

• Payload data (variable length): The actual data the

application wants to transmit.

3.5. Connection Open

When opening a connection, for each stream of this connec-

tion a “three-way handshake” procedure similar to TCP’s

Fig. 1. Connection open.

Connection Opener is used. This procedure is normally ini-

tiated by the starting point and responded by the endpoint.

In a multiple endpoints environment, each stream has its

own independent opening. The three-way handshake re-

duces the possibility of false connections. It is a trade-off

between memory and messages to provide information for

this checking. The three-way handshaking works as fol-

lows:

1. A SYN (Synchronize) segment (as indicated by the

bit flag) containing a 32-bit sequence number A

called the Initial Send Sequence (ISS) is chosen by,

and sent from, the starting point (Host 1). This 32-bit

sequence number A is the starting sequence number

of the data in the packet and is incremented by 1 for

every byte of data sent within the segment. The SYN

segment also places the value A+1 in the first byte

of the data.

2. Host 2 (the destination) receives the SYN with the

sequence number A and sends a SYN segment with

its own totally independent ISS number B in the se-

quence number field. In addition, it sends an incre-

ment on the sequence number of the last received

segment in its acknowledgment field. This stage is

often called the SYN-ACK. It is here that the MSS

is agreed.

3. Host 1 receives this SYN-ACK segment and sends

an ACK segment containing the next sequence num-

ber. This is called Forward Acknowledgement and is

received by Host 2. The ACK segment is identified

by the fact that the ACK field is set.

Protocol peers must not only keep track of their own ini-

tiated sequence numbers but also those acknowledgement

numbers of their peers. When connecting to multiple hosts,

a similar procedure is followed for each endpoint and the

starting host has a separate sequence number and acknowl-

edgment number for each peer. Distinction between streams

is provided by the stream destination field.
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Normally, our protocol has one separate stream for each

destination. However, there is no problem adding more

streams for some of the destinations by using the API.

Because of the security vulnerability of this procedure, the

three-way handshake is planned to be changed with a four-

way cookie-based handshake similar to SCTP in a future

version of the protocol.

In the rest of this paper, we will define the roles of “client”

and “server” as follows. The client is the node initiating the

connection and the server is the one accepting a connection.

Thus, in the case of our protocol, the client is the source

node and each destination node acts as a server. These

concepts are also used in Fig. 1 which depicts the steps of

the connection opening procedure.

3.6. Connection Close

In the case of a normal connection close, each side termi-

nates its end of the connection by sending a special packet

with the FIN (finish) flag set. The packet is called a FIN

message and serves as a connection termination request to

the other device. The device receiving the FIN responds

with an acknowledgment (ACK) and a FIN to indicate that

it was received and it is ready to close.

Fig. 2. Connection close.

The connection as a whole is not considered terminated

until both sides have finished the shutdown procedure by

sending a FIN and receiving an ACK for each stream be-

longing to that connection. This procedure is similar to the

normal termination of a TCP connection, but repeated for

every stream (see Fig. 2).

3.7. Communication System Architecture

The core of the communication system consists of three

execution units: a sender, a receiver and a timer. These

execution units send and receive data from the Internet and

deposit them to buffers in each of the managed streams;

connections can have more than one stream for trans-

mission. Each execution unit is actually implemented as

a thread pool. There are no other requirements regarding

them (e.g., the thread pool may contain a fixed number of

threads or it may adjust its number of threads dynamically,

according to needs).

The sender unit is tasked with checking client send buffers

for any data to be sent, pack it in the correct format and

send it over the network. The receiver thread waits for data

from the network, reads it, unpacks it and puts it into the

receive buffer of the appropriate client.

When a packet is sent to the network, the sender also tells

the timer to announce it after a certain period has passed.

Once an ACK for the packet has been received, the timer

is told to cancel that announcement. If no packet is re-

ceived, the timer does notify the sending unit and that unit

implements a retransmission algorithm.

From the point of view of the receiver and sender, each

stream can be considered as an individual client. Each

stream has its own buffers and is identified by the stream

id in the header of each packet.

Fig. 3. Communication system architecture.

A general view of the architecture is presented in Fig. 3.

Thick lines represent data being moved around. Thick grey

lines show data that is received by clients while data in thick

dark lines illustrate data sent by the clients. Even though

in the figure lines from streams interconnect, streams have

no way of seeing data from other streams.

When the application uses the API to send or receive data,

it only accesses the local stream buffers. For sending, data

is inserted into the send buffer (and later picked up by the

sender unit). For receiving, data is fetched from the receive

buffer (which was placed there by the receiver unit).

When the application tries to receive data from the network,

but the receiving buffer is empty, a wait is performed on

a conditional synchronized variable until the operation can

be completed. The same thing happens when the applica-

tion tries to send data, but the send buffer is full.

From the point of view of the receiver, if data is received

from the network, but the receive buffer of the stream is

full, the data is discarded and no ACK is sent. This will

force the sender of the data to retransmit at a later time,

when the application might have read the data and emptied

the receive buffer.
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4. Communication System and Protocol

Implementation

The code is divided into 3 components: The API (Appli-

cation Programming Interface) class, the execution units

implementations and the global components. The API is

implemented as a single C++ class to provide all the func-

tionality in one place. Because the actual work of the proto-

col is done in an asynchronous fashion, the execution units

tasked with transmission are separate from the API. These

thread pools can be considered the core of the communica-

tion system and they are not part of a class or container as

each thread is individual and only performs work related to

itself. The only time when the core needs to interact with

other entities is when exchanging data. These exchanges

are governed by global synchronization mechanisms.

Besides the API and the core threads, there are also com-

mon components used by both parts. These contain both

miscellaneous functionality such as CRC calculation and

protocol particular structures like packet queue definition.

They are called global (with respect to the protocol) be-

cause they are used by different parts of the code base and

different components need access to them.

To implement this protocol extensive use of threads was re-

quired and a lot of inter-thread synchronization. To achieve

this, the POSIX thread library pthread was used.

4.1. Linux POSIX Threads

The POSIX thread library contains a standards based thread

API for C/C++. It allows one process to spawn a new

concurrent execution flow. It is most effective on multi-

processor or multi-core systems where the process flow

can be scheduled to run on another processor thus gain-

ing speed through parallel or distributed processing. All

threads within a process share the same address space.

A thread is spawned by defining a function and its argu-

ments which will be processed in the thread.

The threads library provides three synchronization mecha-

nisms:

• Mutex (mutual exclusion lock) – enforces exclusive

access by a thread to a variable or set of variables.

• Join – makes a thread wait until another thread is

complete (terminated).

• Condition variable (data type pthread cond t) –

blocks a thread’s execution until a condition is met.

Mutexes are used to prevent data inconsistencies due to

operations by multiple threads upon the same memory area

performed at the same time or to prevent race conditions. A

contention or race condition often occurs when two or more

threads need to perform operations on the same memory

area, but the results of computations depend on the order

in which these operations are performed. Mutexes are used

for serializing shared resources such as memory. Anytime

a global resource is accessed by more than one thread the

resource should have a Mutex associated with it. All global

variables accessed by the protocol are accessed only after

first obtaining a mutex that governs them.

A join is performed when one thread wants to wait for

another thread to finish. The project only uses joins when

the last connection of the process is closed and the protocol

threads used for transmission need to be closed. A join is

used to make sure the threads finish sending/receiving all

the data and then exit gracefully.

A condition variable is a variable of type pthread cond t

and is used with the appropriate functions for waiting and,

later, continue processing. The condition variable mech-

anism allows threads to suspend execution and relinquish

the processor until some condition is true. A condition

variable must always be associated with a mutex to avoid

a race condition created by one thread preparing to wait and

another thread which may signal the condition before the

first thread actually waits on it, thus resulting in a deadlock.

The thread will be perpetually waiting for a signal that is

never sent. Any mutex can be used; there is no explicit link

between the mutex and the condition variable. Condition

variables are used a lot throughout the code base. Waiting

for a packet to be received is done via waiting for a condi-

tion to be met. Another example is the sending thread that

waits for data to be sent from any of the clients.

4.2. Application Programming Interface

To make use of the protocol, an API is provided. The API is

implemented in C++ using classes with virtual members. If

another developer wants to extend or tweak the functionality

of the protocol (s)he can do so by extending a class and

changing its virtual members. It is also designed to be

similar to the POSIX standard for sending and receiving

packets.

4.2.1. Init

This function is called without parameters and used for ini-

tializing local communication members (i.e., the commu-

nication system). This is the first function the application

must call before it can begin opening or accepting con-

nections. Failure to initialize the communication channel

will lead to inability to send or receive data. The sending

thread(s), the receiving thread(s) and the timer thread(s) are

created and their ids are stored globally.

4.2.2. Stop

This function is called without parameters and signals that

the communication system should be stopped. The execu-

tion units are stopped.

4.2.3. Connect

This function is called with two parameters: a vector of

hostname and port pairs and connection flags. If the ap-

plication uses the connection as a client, it must specify
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to what hosts it will communicate. This function receives

a vector of hostname and port pairs and connects to all of

them, encompassing them in a single connection. A num-

ber of streams (by default 1) is opened for every endpoint

and the Connection Open handshake is executed. Currently

a TCP-like three way handshake is used. The connection

flags explain the retransmission model to be used in case of

packet loss for one of the connected peers. Possible values

include:

• CANY to indicate that the sent message must reach at

least one connected peer. In case the message is lost

for some of them, but one peer still received it and

sent an ACK, transmission will continue normally. In

case no ACK is received, the packet is retransmitted

for all peers.

• CALL to indicate that the sent message must reach

all of the connected peers. All peers must receive the

message and reply with an ACK. In case an ACK is

not received from some peers, the message is retrans-

mitted for those peers only.

• CBAL to indicate that the load balancing mechanism

should be used.

Since all streams are independent, a common synchroniza-

tion structure is created for the streams under the same

connection. This will enable the retransmission behavior

described above. A communication channel object is cre-

ated and stored internally and a pointer to it is returned by

the function.

4.2.4. Close

This function is called on a communication channel. When

the application finished sending or receiving data on the

communication channel, it has to call this function. This

will enable all the transmission buffers to be emptied and

close the communication channel. All the streams inside

this channel from all associated endpoints will be closed. It

will also close the operating system UDP socket and enable

it for reuse. The function also removes the connection from

the global client list.

4.2.5. WaitForClient

This function is called on a communication channel, with

one parameter: port number. If the application uses the

connection to act as a server, it must specify a port onto

which clients will connect. This function listens for data

on that port and then waits for a client to connect to it. The

client and the server establish the connection via the con-

nection open handshake. Currently a TCP-like three way

handshake is used. When a client successfully connects to

the server, a communication channel object is created and

a pointer to it is returned.

4.2.6. Send

This function is called on a communication channel with

the following parameters: pointer to message, message

length and flags. The application instructs the protocol to

send a message of a specific size to the connected peers. If

the application is acting as a client, the message is sent to

the ones specified at connect, following the retransmission

model described by the connect flags. If the application is

acting as a server, the message is sent to the client that con-

nected to it in the WaitForClient method. If the message is

sent as one big chunk and is lost, the protocol retransmits

the message again. For large messages this will prove inef-

ficient. Therefore, the message is first broken into chunks

of a maximum size MaxData and packets are made with

each chunk. Also, markers are placed for the start of the

message and the end of the message in the corresponding

packets to enable the reconstruction of the message when

received. The flags parameter is used to specify different

communication behaviors. The function returns only after

all the data was placed into the send queue/buffer (a condi-

tion variable is used for waiting until room is available in

the send queue/buffer).

4.2.7. WaitForSend

This function is called on a communication channel with

one parameter: stream number. The send function only

inserts data into the queues and returns. The actual sending

of the data is achieved asynchronously. This function is

used if the application desires to block until the data is sent.

It waits on a synchronized condition until all the packets

inside the sending queue associated with the stream have

been sent and acknowledged.

4.2.8. Receive

This function is called on a communication channel with

the following parameters: pointer to buffer to store the mes-

sage, length of buffer, stream number and flags. The appli-

cation instructs the protocol to retrieve a received message

from a certain stream and store it in the buffer passed as

a parameter. This function blocks until a new message is

ready to be given to the application. This implies waiting

until all the packets corresponding to that message have

been received and stitching them back together using the

start of message and end of message markers. The flags

parameter is used to specify different communication be-

haviors.

4.2.9. AddDestination

This function is called on a communication channel in order

to add a new destination to it. A new stream towards the

destination is created and the connection open procedure is

used. If the connection already contains this destination as

its peer, the effect is that a new stream is created towards

the destination.
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4.2.10. RemoveDestination

This function is called on a communication channel in order

to remove a destination from its peers. The stream towards

that destination is closed. If there are multiple streams

towards the destination, only one of them is closed.

4.2.11. FullyRemoveDestination

This function is similar to the previous one, except that all

the streams towards the given destination are closed.

4.3. Internal Members

4.3.1. Send Queues

These queues act as a buffer space where data from the

client application is stored before the sending threads pick

them up. Each stream has its own queue and the API

function Send inserts data here. There exists one sending

queue for each communication channel. Moreover, there is

one sending queue for each stream.

4.3.2. Receive Queues

These queues act as a buffer space where data for the client

application is stored after the receiving threads get data

from the network. Each stream has its own queue and data

resides here until the client application decides to make an

explicit read for the data using the Receive function. There

exists one receive queue for each stream of a communica-

tion channel.

4.3.3. Socket Descriptor

The socket descriptor is an abstraction used by the operating

system socket to transmit data. Each UDP “connection” has

a socket descriptor and each comunication channel uses just

one socket for a connection, regardless of how many peers

it has connected to it. All communications send by the

protocol for this connection pass through this socket. All

the streams use the same socket. It is initialized when

a connection is first opened, either via a Connect or via

a WaitForClient function call. The socket will remain valid

until the connection is closed via a Close call.

4.3.4. Destination Address Vector

A vector containing destination structures particular to the

operating system. They describe the communication peers.

It is initialized in the Connect or WaitForClient functions

and modified in the AddDestination, RemoveDestination

and FullyRemoveDestination functions. There exists one

such vector for each communication channel.

4.3.5. Synchronization Primitives

These primitives are used for synchronization with the pro-

tocol threads that do the actual communication. In case

of synchronized network communication, the client thread

has to wait for the sending or receiving thread(s) to finish

transmission. A synchronized network transmission always

occurs in the handshake as no communication is possible

until it has completed successfully. The synchronization is

achieved through mutexes and condition variables. When-

ever the application has to wait for data to be sent, it waits

for the send condition to be fired. Whenever the receiving

thread obtains an ACK for a packet and there are no more

packets to be sent for that particular stream, a send condi-

tion is broadcasted. If the application wants to receive data,

but there is no more data in the receive queue, it waits until

a receive condition is fired. Whenever a receiving thread

adds more data for a particular stream, it also broadcasts

a receive condition. Each communication channel has its

own set of synchronization primitives.

4.4. Global Elements

In order for the threads to know what clients (communi-

cation channels) are managed, a list of all the clients must

be stored. Access to this list must also be synchronized

and also flags must be raised when the process exists. All

streams use a packet queue for receiving and another for

sending. These queues are accessed by both the API and

the transmission threads and access to them must be syn-

chronized. Additional operating system elements must also

be stored globally to be accessed from all components of

the protocol.

4.4.1. Client List

A global client list needs to be maintained for the sending

threads to know where to look for data to be sent and for

receiving threads to know where to insert captured data

from the network. This list is stored in a vector available

to all the elements of the protocols and contains pointers to

the protocol client classes. Whenever a new connection is

initiated/accepted, the Connect/WaitForClient function call

inserts a pointer to the created communication channel class

here. Access to this list is synchronized via a mutex.

4.4.2. Thread Flag

The thread flag is a special global variable is provided glob-

ally and always accessed by the internal threads before any

new round of operations is started. This flag is used to

signal when the internal components of the protocol needs

to stop. Other notifications can also be implemented in

the future via this flag, for example temporarily stopping

the protocol for a temporary duration. Access to this flag

is granted only after acquiring the global resource access

mutex.

4.4.3. Packet Queues

The packet queue is one of the most important data struc-

tures of the protocol. It is designed based on the producer-

consumer model where one entity inserts data into the
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queue and another extracts data from the queue. From

an implementation perspective we can compare the queue

to a circular buffer where elements are always inserted in a

clockwise direction and always the first element removed is

the first element inserted. The queue holds packets and it is

required that all the elements inserted into the queue have

successive sequence numbers. Thus, the packet queue takes

care of packet sequences and assigns a sequence number

to every inserted element. To keep track of the elements

inside the queue, 3 markers are used. One marker shows

the next element to be removed, another marker shows the

next position a new element will be inserted at and a third,

send queue specific marker, shows the next packet to be

sent.

There is a difference here on how the queue is used. If it’s

used for a sending buffer, the API functions insert elements

into the queue where the second marker is positioned and

increment it every time. When the sending thread wants

to transmit a new packet, it takes the one pointed by the

third marker, sends it, and increments the third marker. An

element is removed from the queue only if the receiving

thread obtains an ACK from the network for that particular

packet and thus increments the first marker. When the

queue is used as a receiving queue, only two markers are

used. The receiving thread inserts into the queue a new

packet and increments the second marker. The API function

that receives elements removes packets from the queue and

increments the first marker.

Since there is more than one execution unit accessing the

data structure, all operations with the data structure is syn-

chronized with an access mutex. Whenever an element is

inserted or a marker incremented, the mutex must first be

acquired and then released afterwards. Because of perfor-

mance reasons, the queue must have an upper limit for how

many elements it can hold. If an attempt is made to insert

elements in a full queue, a return code of QUEUEFULL is

returned. Furthermore, queries can be done to check if the

queue is full or empty.

Given the circular nature of the queue, all marker operations

are done modulo the size of the queue. The current size

is 128 elements. This may be increased or decreased to

obtain better performance according to experiment results.

The size of the queue is practically the size of the sliding

window in the Go-Back-N protocol. No more packets will

be sent if there are already 128 sent that haven’t received an

acknowledgement. Once an ACK is received, the element is

removed from the sliding window (from the packet queue).

4.5. Transmission Threads

To properly process packets and prepare them for sending

over the network or receiving them from the network three

types of threads are implemented. Each thread is imple-

mented as a function that executes in a continuous while

loop. In order to limit 100% processor usage and avoid

a busy-waiting situation, synchronization mechanisms are

implemented that wake a thread only when there is work

for it to do.

4.5.1. Sender Thread

Since we may use multiple sender threads, we considered

the following inmplementation. There is a global data

queue, from which each sender thread extracts data in a syn-

chronized manner. When a new packet is placed in the send

queue of a stream, information regarding the communica-

tion channel and stream number are placed in the global

data queue (e.g., a pointer to the stream’s send queue).

The global data queue’s condition variable is signalled and

a sender stream is woken up (if it was waiting at the global

data queue’s condition variable). Each sender stream con-

tinuously checks if there are any elements in the global

data queue. If there are no elements, then it waits on the

queue’s condition variable. Otherwise, it removes the first

element from the global data queue. Afterwards, using the

extracted information, the sender stream sends the packet

identified by the information from the global data queue to

its destination.

After a packet is sent, the timer thread is announced of the

need for a timeout after a certain amount of time. The cur-

rent value of the timeout is 50 ms. Retransmission occurs

if an acknowledgement is not received before the timeout

is fired.

4.5.2. Receiver Thread

A receiving thread waits for data to be available for reading

from any network socket the protocol manages. The UDP

sockets are distributed among the existing receiving threads

in a balanced manner. Dynamic redistribution is also pos-

sible (e.g., if a thread is very busy with receiving packets

from some sockets, then some of the other sockets may be

redistributed to other receiving threads, in order to avoid

starvation or simply to improve performance), but was not

implemented in out protocol.

Waiting is achieved using the provided operating system

function called “select”. If there is nothing to be read, the

thread blocks and the execution scheduler gives CPU time

to another thread. Because of the need for the thread to

respond to events such as application shutdown, this waiting

is not indefinite. Waiting is limited to 100 ms. After every

waiting round, the thread checks if it needs to respond to

any miscellaneous event such as shutdown.

Whenever a packet is received, the ACK message corre-

sponding for that packet is prepared for sending. Currently

the protocol sends an ACK message for each message it

receives, but future iterations of the protocol can wait for

multiple packets to be received and only send one ACK for

the whole group.

4.5.3. Timer Thread

The timer thread acts as a ticking clock and constantly pro-

cesses events every defined interval of milliseconds. This

interval was chosen at 50 ms. More fine values are sup-

ported, but the protocol needs to consider other processes
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that use CPU time. Because a clock that ticks without any-

body listening to it is not efficient, the timer is only active

while there is a packet timeout that needs an alarm. The

timer maintains a list of timeout events that will be fired in

the future. If this list of events is empty, the timer waits on

a synchronized condition. The API of any client wanting

to send data also signals the timer thread and unlocks it if

it was waiting for this condition.

Because of the way Linux threads are implemented, sleep

cannot be used. Using sleep will cause the whole process to

wait for the given time. Therefore, a way was implemented

to make only a thread of a process sleep for a certain period

of time. The function pthread cond timedwait waits for a

condition to be signaled. If the condition is not signaled

until a specified time is reached, the thread continues op-

eration. Using this function with a mutex and a condition

that never gets signaled will always make the thread wait

for until the specified time is passed. To wait for a rela-

tive amount of time, one can wait until the current time

(given by gettimeofday) plus the relative time desired. Af-

ter the wait begins, the wait time is not affected by changes

to the system clock. Although time is specified in seconds

and nanoseconds, the system has approximately millisecond

granularity. Due to scheduling and priorities, the amount

of time it actually waits might be slightly more or less than

the amount of time specified. That is why very fine wait

periods (e.g., 0.1 ms) have a high margin of error.

Currently, the timer thread is designed to work with a gran-

ularity no less than 10 ms. Experiments still need to be

performed to check the error margins or performance gains

if this value is changed.

5. Experiments and Practical

Applications

To test the protocol, several applications were implemented

and some tests were performed. All tests were realized over

an 802.11g wireless connection. While the signal strength

was at 95% and speeds are at maximum, packet losses can

still occur. This is on purpose to check that the protocol

shows no issues. All computers have an Intel Core 2 Duo

CPU, but at different frequencies, have at least 1 GB of free

RAM, and no other programs running at the same time.

The desire was to have more than one core per computer.

CPU frequencies are not that important as the CPU load

never increases over 1% while using the test applications.

5.1. File Download

The experiment performed was the measurement of the time

it took to transfer a file from a single server. The goal was

to see if the time increased in a more than linear fashion if

the file size increased linearly. Normally the increment in

time should be proportional with the increment in file size.

If this does not happen, that means there is a problem with

the protocol when large quantities of data are transferred.

This can be a synchronization issue that makes the proto-

col block for a small period of time, a small buffer that

gets filled up quickly or something else. Also, using this

simple experiment, one can check for any performance ben-

efits by tweaking different parameters of the transmission

algorithm. The transfer time was measured by measuring

the time since the transfer application started and until the

time the application finished. Linux’s time utility was used

in this regard. The experiment was run with random data

files of sizes 1, 2, 4, 8, 16 and 32 MB (see the results

in Table 1). In each case, a client transferred the file to

a server in pieces of a certain size and received the same

data back with an ACK. The client checked the data to vali-

date it and make sure it is the same one sent and proceeded

to the next chunk of data.

Table 1

Transfer time for 1024 B of data payload (untweaked)

File size [MB] Transfer time [s]

1 1.743

2 3.375

4 6.784

8 13.735

16 27.694

32 55.394

For the first run of the experiment, the sliding window had

space for 32 elements, each packet carried a maximum data

payload of 1024 B and the timer retransmitted a packet

after 50 ms. The protocol achieved an average speed of

4.6 MB/s. The speed was consistent regardless of the size

of the file with only a very small improvement as the file

size went up. This indicates that the protocol runs well and

the larger the file size the less noticeable the handshake or

shutdown procedure gets.

Table 2

Transfer time for 8096 B of data payload (tweaked)

File size [MB] Transfer time [s]

1 0.463

2 0.867

4 1.654

8 3.166

16 6.279

32 12.563

For the second run of the experiment different parameters

have been tweaked. The sliding window now has a size of

128 elements, each packet carried a maximum data payload

of 8096 B and the timer retransmitted a non-acknowledged

packet after 10 ms. The results can be seen in Table 2.

The protocol achieved an average speed of slightly over

19 MB/s. Again, as the file size increased, the transfer

speed increased slightly. Even though the packet will be
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fragmented by the IP layer into pieces of MTU size, a speed

improvement is still observed. Testing these values in a less

reliable medium is mandatory to check if packet fragmen-

tation increases packet loss rate.

We can see there is a great improvement in the speed of the

protocol after modifying these parameters. The 19 MB/s

(for both sending and receiving) is getting closer to the

advertised speed of the 802.11g wireless standard.

Table 3

Transfer time for 8096 B of data payload

and window size of 1

File size [MB] Transfer time [s]

1 1.187

2 2.658

4 4.795

8 9.323

16 18.333

32 38.152

To verify the impact of the sliding window, a series of tests

were performed where the sliding window accepted only

one element. This basically means the protocol turned into

a variant of the stop-and-go algorithm. All the other ele-

ments were left tweaked for improved speed. The results

can be seen in Table 3. We can observe that speed has

fallen back to around 6 MB/s of data transfer. The slid-

ing window does have an impact on the performance of the

protocol. This shows why, for the highest possible through-

put, it is important that the transmitter is not forced to stop

sending by the sliding window protocol earlier than one

round-trip delay time (RTT). A different sliding window re-

transmission protocol might further improve performance.

An example is selective repeat where the sender does not

retransmit all packets starting with the lost one, but only

retransmits the lost packet.

5.2. Segmented File Download

A practical implementation for the protocol is a seg-

mented downloading program. A client connects to mul-

tiple servers at the same time and asks each of them for

different segments of a file. This can also be done via ex-

isting protocols, but in these protocols a connection must

be created for each server. With our protocol, a single con-

nection can be created that touches every server and opens

a stream with each of them. This makes implementation

much simpler and error free. We only performed validation

tests for this scenario.

6. Conclusions and Future Work

In this paper we presented a new approach for communica-

tion from one point to multiple endpoints. Our communi-

cation protocol is implemented on top of UDP and tries to

provide the same facilities as TCP, but with extra function-

ality. The implementation of multiple endpoints is reliable,

unlike multicast over UDP, and is not limited to only two

endpoints that may have multiple IPs, like SCTP’s imple-

mentation of multi-homing. Using the new protocol, appli-

cations can easily choose the type of connection they desire

with the endpoints. Connection oriented multicast, anycast

and load balancing are all fully integrated in our protocol.

Experimental results showed that our protocol can provide

good data transfer performance. However, as with any new

protocol, further (extensive) testing is needed. We also in-

tend to modify some of the components of the protocol,

such as the connection open handshake and the limitation

that a communication channel may use only a single UDP

socket underneath (perhaps using multiple UDP sockets for

sending and receiving data will be more efficient, due to

having more buffer space allocated in the operating system

kernel). Moreover, some of the parameters of the protocol

(e.g., timeouts) still need to be tweaked for optimal perfor-

mance.
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Bucharest, Romania

Vlad Olaru holds a BS de-

gree from the Politehnica Uni-

versity of Bucharest, Romania,

an M.Sc. degree from Rutgers,

The State University of New

Jersey, USA and a PhD from the

Technical University of Karl-

sruhe, Germany. His research

interests focus on operating sys-

tems, distributed and parallel

computing and real-time em-

bedded systems. His Ph.D. work concentrated on devel-

oping OS kernel services for clusters of commodity-of-the-

shelf PCs, namely cooperative caching for cluster filesys-

tems and TCP connection endpoint migration for cluster-

based servers. He was principal investigator within sev-

eral EU-funded as well as national projects targeting the

development of real-time OS software to control the next

generation 3D intelligent sensors (with emphasis on power

management and distributed control in ad-hoc wireless sen-

sor networks), real-time Java for multi-core architectures,

servers based on clusters of multi-core architectures, high-

performance computing for computer vision programs.

E-mail: vlad.olaru@gmail.com

Politehnica University of Bucharest

Splaiul Independenţei 313
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