
Paper Multi Queue Approach

for Network Services Implemented

for Multi Core CPUs
Marcin Hasse, Krzysztof Nowicki, and Józef Woźniak

Gdańsk University of Technology, Gdańsk, Poland

Abstract—Multiple core processors have already became the

dominant design for general purpose CPUs. Incarnations of

this technology are present in solutions dedicated to such areas

like computer graphics, signal processing and also computer

networking. Since the key functionality of network core com-

ponents is fast package servicing, multicore technology, due

to multi tasking ability, seems useful to support packet pro-

cessing. Dedicated network processors characterize very good

performance but at the same time high cost. General purpose

CPUs achieve incredible performance, thanks to task distribu-

tion along several available cores and relatively low cost. The

idea, analyzed in this paper, is to use general purpose CPU

to provide network core functionality. For this purpose pa-

rameterized system model has been created, which represents

general core networking needs. This model analyze system

parameters influence on system performance.

Keywords—generic purpose CPU, multi core, network, queue,

network services.

1. Introduction

In the recent years, CPU technology has turned into multi

core to brake the clock barrier and improve applications

performance. Higher solutions performance require much

faster medium to transfer data. Computer networking re-

mains not only a medium, but also network software stack,

which is a significant part of the network performance.

Once application efficiency is improved by using CPU tech-

nology, networking stack software could also be consid-

ered as area, were multi core can increase productivity.

There are many hardware CPU architectures used for high

speed network packet processing. Network processors In-

tel IXP28XX series [1] introduce hardware micro engines

able to process pipeline oriented traffic with significant

performance improvement. More recent design from Cav-

ium Networks called OCTEON Multi-Core Processor Fam-

ily [2] or Freescale [3] are providing hardware driven op-

portunities to divide multi flow traffic into separated cores.

These sophisticated hardware designs characterize high cost

of implementation and deployment. Cost of these high per-

formance solutions are significant but still worth their price

to satisfy network needs.

From the software point of view there are multiple im-

plementations of network stacks, protocols and solutions

provided by the market today. These solutions characterize

high performance, modular architecture and relatively easy

integration. Due to this they already have strong market po-

sition for dedicated network solutions. There are also lots

of research going on to optimize hardware support for mul-

tiple software threads [4] and to provide possible highest

performance for computer network nodes. In personal com-

puters segment multi core CPUs have also strong presence.

More and more end user applications taking advantage of

this solution and increasing their performance by adding

software support for multi core hardware architecture.

In this paper, multi queue approach to network services

implemented in multi core general usage CPUs [5] is pre-

sented. This approach has been proposed to verify, if this is

reasonable to optimize network performance for solutions

with standard CPUs. Most of new software architectures,

which support multi core environments, are dedicated to

data processing but not to the packet processing. It impor-

tant to identify how much software architecture design can

influence on network application performance.

2. Multi Core Architecture Approach

Nehalem is the codename for an Intel processor microar-

chitecture [6], [7]. The most popular available in end user

market is Intel’s Core i7 [8] processor. Higher performance

is achieved on this CPU by processing multiple data in the

same time using parallel cores. Most of operating systems

are providing multi core support and assigning tasks to be

processed by hardware with possible highest performance.

An operating system is not focusing on the type of applica-

tion beside I/O bound or CPU bound types distinguished by

the task scheduler [9]. This approach might not be enough

to support high performance networking and low perfor-

mance management and monitoring activities, running at

the same time. In the server area this problem has been

solved by introducing visualization on both application and

platform levels [10], [11]. Many visualization solutions in-

cluding hypervisor [12], became standard parts of the op-

erating systems [13] providing opportunities to work with

several contests at the same time. The software architecture

described in this paper also account visualization approach

in order to work with different contests on multiple CPU

cores. Such solutions like that are available now - for in-

stance Sun xVM Virtual Box [14], which allows multiple

operating systems run the same time on a single PC.

57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235206968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Marcin Hasse, Krzysztof Nowicki, and Józef Wożniak

Network applications are responsible for servicing data

streams. Network streams are transporting significant

amount of data, which needs to be processed and depend-

ing on application functionality either consumed (provided

to the end user) or transmitted (back to the network). Ef-

fective stream processing could have significant impact on

networking application performance.

For this research purposes, there has been defined a net-

work stream consisted of a limited sequence of data pack-

ets D1, D2, To simplify the mathematical model we as-

sume, that each packet represents different amount of data

but has the same, permanent defined size. Such approach

is often used to specify application throughput for defined

packet size

Dk = {D1

k,D
2

k , ...,D
n
k},n ∈ N . (1)

The network application can get streams from several dif-

ferent sources

S =
K

∑
k=1

Dk,k ∈ N . (2)

Each stream, responsible for delivery of potentially different

sets of information, is directed to different applications for

different sorts of processing. This diversity can be a good

approach for the system design. In our model we addi-

tionally accept, that some streams require more privilege

(priority) service and task delivery to the end user.

Multi core CPUs, ensure better performance by redirecting

tasks to be executed in the same time on multiple cores.

Each core offers the same execution condition including ac-

cess to peripherals, memory etc. [15]. Properly configured

operating system is able to manage tasks to assure pos-

sible best performance. In this paper authors propose to

change the task approach for multi core CPUs provided by

most modern operating system to the network stream ap-

proach. The intention on this research is to verify, whether

it is reasonable enough to consider general purpose CPU

as hardware platform to systems dedicated for networking.

Standard operating system (like, e.g., Linux kernel 2.6.X)

in general treats I/O coming from networking card as in-

terrupts coming from any other computer peripherals. An-

alyzing different communication devices from the data rate

per second point of view one can differ between devices

(PCI bus 528 MB and gigabit Ethernet 128 MB), however

communication expectation is to service significant amount

of data in shorter possible time. The network card driver in

the Linux kernel associated with networking stack, is able

Fig. 1. Single package queue for single physical interface.

to provide packet delivery services to dedicated applica-

tion. In cases of many different streams, which need to be

serviced by different applications existing in OS together

with another, not strict network related tasks, can meet

computer performance critical point. When critical point is

crossed, it could manifest long tasks queues and delays in

service (see Fig. 1).

Considered system approximation assumes single package

queue associated with physical interface. Packages in the

queue are arriving from a multiple resources. Each data

stream Dk in queue income, specified by amount of data S,

should be serviced by different application. Performance of

networking system from this approximation can be deter-

mine by specifying time t in which dedicated networking

application completed service of S

Ps = S(t) . (3)

In the recent days networking technology is based either

on networking pipeline [1] or dedicated multi core solu-

tions [2]. These solution offers different approaches for

networking applications than standard applications service

on generic purpose CPU. In the networking area application

can be divided into the following areas:

• Management/Controlling – responsible for control-

ling network settings, managing network events; type

of traffic – control plane able to work with full Linux

stack;

• Preprocessing – responsible for redirecting packets

to exceptions or forwarding; type of traffic – slow

path/fast path able to work with limited L3 stack to

classify packages;

• Exceptions – responsible for servicing packages, ded-

icated to particular node – type of traffic – slow path

able to work with full Linux stack;

• Forwarding – responsible for fast forwarding pack-

ages to additional network segments; type of traffic –

fast path able to work with basic/limited Linux stack.

Each of these areas has different requirements for through-

put and different user expectations related to accessibil-

ity, stability and manage ability. A general purpose op-

erating system is not providing a different set of system

resources for networking application areas, beside the abil-

ity to configure different application with different prior-

ities [9]. For example performance of Linux application

depends on number tasks executed on CPU in specified

amount of time, and scheduler latency can cause unex-

pected delays for application, which require quick system

reaction time.

Multicore CPUs, when hypervisor is used, provides ability

to distinguish different system expectation and execute each

networking application area on separated core [16]. In this

model physical network interface can be assigned directly to

OS running with fast and limited Linux stack responsible

for preprocessing. This networking application role is to

58

Multi Queue Approach for Network Services Implemented for Multi Core CPUs

classify packet and as soon as possible send it to exception

or forwarding applications running on additional cores and

with dedicated networking stacks. Last core in the system is

responsible for dealing with preprocessing, exceptions and

forwarding rules. Its management and control interface

should be easy available for system administrator though

slow port management interface (Fig. 2).

Fig. 2. Network system architecture for general purpose CPU.

Hypervisor role is to physically assign networking inter-

faces to dedicated cores. Communication between cores

is delivered trough shared memory available from each

core. This approach allows to install on each core [17]

dedicated version of OS (with dedicated networking stack)

where physical access to I/Os is pre configured by hyper-

visor. Interface access latency should be much lower than

for solutions with master OS [13], [14].

3. Common Network Traffic Models

Generic approach for traffic modeling is to mathematically

describe the physical arrival of packets as a point func-

tion of countable values. Points describe packets arrival

instances starting from T0 = 0 and is limited only to model

assumed time frame: T0,T1, . . . ,Tn, Countable values

are usually dependent on two point stochastic processes –

one, describing time distance between arrival instances and

second, describing actual value/number of delivered pack-

ets. Packet arrival time (PAT) {PATn}
∞
n=1

process is non

negative random sequence:

PATn = Tn −Tn−1 . (4)

The point process is describing each instance of packet

arrival:

Tn =
n

∑
k=1

PATk . (5)

Number of delivered packages (NDP) {NDPn}
∞
n=1

is asso-

ciated with amount of work – workload (WLD), which has

to be done to service traffic in a specified time. It can be

limited by bandwidth bottleneck and can be described via

stochastic function Dn

NDPn =

{

Dn(Tn,τ) if τ <= τmax

Dn(Tn,τmax) otherwise
. (6)

It can be useful in traffic modeling to incorporate also func-

tion describing workload WLDn associated with n-th deliv-

ered NDP. This workload can be dependent on queue delays

in case traffic is redirected between multiple queues.

Both stochastic functions PATn and NDPn are characterized

by independent distributions. In some systems also the

workload factor can be described by a stochastic distribu-

tion.

In related works authors describe different stochastic func-

tions in each component of the traffic model. One of the

oldest traffic model, which has been used in many analyzes

uses Poisson process [18]. This process assumption ran-

dom sequence arrive independently from one another and

depends on constant value. This model can be successfully

used to model different types of traffics like ex. VoIP [19].

There are also studies, which proves that Poisson model-

ing can fail [20] and using fractal (self similar) model [21]

based on results analyze of hundreds of million packets ob-

servations in LAN and WAN area, can be more effective.

Self-similar model cumulates traffic volume as self-similar

process with increments that are strictly stationary to spec-

ified shifts in time. Alternative model for Poisson indepen-

dence in arrival can be Markov process, which introduces

dependence into random sequence. Markov chains can be

used for example for TCP traffic classification [22], how-

ever the most commonly used Markov model is Markov-

modulated Poisson process (MMPP) model, which can be

used for modeling self-similar traffic [23], [24].

4. Networking System Model

The easiest way to determine possible system performance

is to crate parameterized mathematical model and calcu-

late system throughput indicators. There are many factors,

which can affect system performance, in the multicore sys-

tem architecture. Some parameters remain constant as

shared memory access latency and some depend on other

aspects like number of additional tasks executed on OS-es

dedicated to separated cores.

QIRx is an inbound queue associated with I/O net1 in

Fig. 2. This interface delivers set of K data streams Dk to

the Core 1 OS networking stuck for preprocessing. Accept-

ing burstiness limitation of Poisson process model, traffic

can be described through a counting process:

Dk{N(t + λ)−N(t) = n} =
(τλ)ne−τλ

n!
, (7)

where N(t) is the number of packet arrivals at time t from

single source.

S(t) =
K

∑
k=1

Dk(nk),k ∈ N (8)

For each stream k number of arrival nk is called stream

activity level (SAL) and should be represented by different

constant value. This model parameter correspond to NPDn

and could be parametrized by stochastic function.

59

Marcin Hasse, Krzysztof Nowicki, and Józef Wożniak

Preprocessing core is responsible for saving packages from

QIRx queue in dedicated shared memory queues: SSME –

exception and QSMF – forwarding. This model assumes

that in QIRx for every 10 packages η is classified as for-

warding and 10−η as exception. Shared memory queue

can service p packages in time t, but core ability to read

and write to the queue also depends on several other fac-

tors. Our model limits these factors to number of tasks in

CPU queue. Higher number of tasks in queue can increase

CPU average waiting time [25] and writing/reading opera-

tion can be delayed. Little’s formula describes relationship

between L – average number of processes in the queue and

W – CPU average waiting time. Parameter α can be asso-

ciated with average arrival time, which is proportional to

traffic rate.

W =
L

α
. (9)

System performance is often determined by traffic process-

ing latencies. Sum of whole latencies specified by system

model is able to show how long traffic will be processed by

the system. In this system model δL1 is latency specified

between QIRx and QSMF /QSME

δL1(t,τ,L) =
Lp

S(t)
. (10)

Latency δL2 is specified between SSME , QSMF and its

target interface. For exception core target interface would

be QITx and for forwarding it would be QFT x.

δL2(t,τ,L,η) =
η
10

L f

S(t)
+

(1− η
10

)L f

S(t)
(11)

Assuming, that traffic exception service suppose to notify

packet sender about exception condition, there need to be

considered additional process in the CPU preprocessing,

responsible for dealing with back to sender traffic.

δL2(t,τ,L,η) =
η
10

L f

S(t)
+

(1− η
10

)(L f + Lp + 1)

S(t)
(12)

Total system latency should also consider hypervisor la-

tency. For this model this is constant value δLh.

δL(t,τ,L,η) = δL1(t,τ,L)+ δL2(t,τ,L,η)+ δLh (13)

For the sake of simplicity the model has been limited to

consider only significant factors, which can influence the

system performance. It can be extended to provide more

detailed data, if this accuracy level is not satisfied enough to

determine its value against standard general purpose CPU

system. The authors’ intention was to show how fluctua-

tions of commonly accepted factors can affect the modeled

system performance, e.g., influence the packet service la-

tency.

5. Model Parameterization Results

Networking system model performance and scalability de-

pends on several configurable system parameters, starts

from incoming traffic, through different latencies and fin-

ish at operating system process utilization ability. Value

of model presented in this paper is ability to verify, how

system model parameters can influence whole system per-

formance.

Fig. 3. Data stream distribution associated with QIRx.

Fig. 4. Latency between QIRx and QSMF/QSM.

Fig. 5. Latency between SSME, QSMF and its target interface,

Lp = 5, L f = 5 – approach 1.

Sample charts presented on Figs. 3–8 provides overview of

system model parameters influence on measured latency.

Multi queue approach assumes several parameters affecting

performance value in more or less significant way. For ex-

ample, number of task, which need to be serviced by OS in

presented system model plays marginal role. Another pa-

rameters can affect time, in which packages are serviced, in

more significant way. Data stream distribution represented

by stochastic model and parametrized by system activity

60

Multi Queue Approach for Network Services Implemented for Multi Core CPUs

Fig. 6. Latency between SSME, QSMF and its target interface,

n = 2, Lp = 5 – approach 2.

Fig. 7. Latency between SSME, QSMF and its target interface,

n = 2 – approach 3.

Fig. 8. Latency between SSME, QSMF and its target interface,

n = 2 – approach 4.

level can directly influence exception and forwarding queue

latencies. Naturally higher number of transmitted packets

(average arrival time) affect latencies and can cause sys-

tem delays. Size of calculated lag seems to be reasonable

small and its effect to whole system for most of the cases

should be negligible, however system designers/architects

should be aware, that in case of adverse stream distribution

unexpected delays can happen.

6. Summary and Conclusions

The need for flexibility and performance and cost reduc-

tion in the networking systems make general purpose CPUs

worth to be considered as valuable alternative for expensive

solutions designed for packet processing. If system archi-

tecture agrees for general purpose computing limitations

(like ex. us speed), there can be considered many system

designs, which would make general purpose personal com-

puter dedicated networking solutions. Fast development of

CPU technologies allows to assumes, that CPUs dedicated

to common marked are more capable to play valuable roles

in dedicated (not generic) solutions. Good example can be

presented in this paper usage of hypervisor technology in

designing dedicated system model. The only limitation in

the possible system architecture designs can be imagina-

tion of system architects. System model can help verify

usability of dedicated solution assuming hardware/software

limitation of model parameters. Networking system pre-

sented in this paper can be a good reference for further

work, which could bring more detailed model providing

more complex analyze of system performance indicator like

queues delays, latencies as well as more self similar deliv-

ery distribution to better present ex. Ethernet characteristic.

It has been proved that idea with specialized core functions

(forwarding, exception), due to relatively small latencies

caused by between core communication, could open easy

way for generic purpose CPU usability in niches like eg.

computer networking. Solutions based on generic purpose,

multicore CPUs could be truly considered in complex, func-

tionality oriented system designs.

Acknowledgment

The work was partially supported by the Polish National

Center for Research and Development under the PBZ grant

MNiSW-02/II/2007.

References

[1] “Intel IXP4XX product line of network processors”,

http://www.intel.com

[2] “OCTEON Multi-Core Processor Family”,

http://www.cavium.com/OCTEON MIPS64.html

[3] “Semiconductors overview”, http://www.freescale.com/

[4] “Improving network performance in multi-core systems”,

in Intel Corporation White Paper, http://www.intel.com

[5] “Intel CPU documentation”, in Intel CPU,

http://www.intel.com/design

[6] “Press release”, in Intel Corporation, March 2007,

http://www.intel.com/pressroom

[7] L. Shimpi, “AnandTech”, June 2008, in The Nehalem Preview: Intel

Does It Again, http://www.intel.com

[8] “Intel Core i7” in The Nehalem Preview: Intel Does It Again,

http://www.intel.com

[9] M. Hasse and K. Nowicki, Linux Scheduler Improvement for Time

Demanding Network Applications, Running on Communication Plat-

form Systems. Gdańsk, Polska: Politechnika Gdańska, 2011.

[10] P. Barham et al., “Xen and the art of virtualization”, in Proc. ACM

Symp. Operat. Sys. Principles, New York, USA, 2003.

[11] A. Gavrilovska et al., “High-performance hypervisor architectures:

virtualization in HPC systems”, in Proc. 1st Worksh. System-level

Virtu. High Perform. Comput. HPCVirt 2007, Lisbon, Portugal,

2007.

61

Marcin Hasse, Krzysztof Nowicki, and Józef Wożniak

[12] “A Performance comparison of hypervisors”, in VMWare Perfor-

mance Study, Technical paper VMWare.

[13] “Guide to virtualization on Red Hat enterprise Linux”, in Virtual-

ization Guide, http://docs.redhat.com

[14] “Virtual box reference”, in Sun xVM Virtual Box,

http://www.virtualbox.org

[15] C. Pitter and M. Schoeber, “Time predictable CPU and DMA shared

memory access”, in Proc. FPL 2007, Amsterdam, The Netherland,

2007, pp. 317–322.

[16] K. Kolyshkin, “Virtualization in Linux”, September 2006,

http://www.pdfmob.com

[17] R. Ennals, R. Sharp, and A. Mycroft, “Task partitioning for multi-

core network processors”, in Proc. Eur. Symp. Programming ESOP,

LNCS, 2005, vol. 3443, SpringerLink.

[18] L. Moddelmog and P. Johnson, “Poisson distribution”, February

2006 [Online]. Available: http://pj.freefaculty.org/stat/Distributions/

Exponential v2.lyx

[19] I. Al Ajarmeh, J. Yu, and M. Amezzine, “Framework of apply-

ing a non-homogeneous Poisson process to model VoIP traffic on

tandem networks”, in Proc. 10th WSEAS Int. Conf. Applied In-

formatics and Communications AIC 2010, Taipei, Taiwan, 2010,

pp. 164–169.

[20] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson

modeling”, IEEE/ACM Trans. Netw., vol. 3, no. 3, pp. 226–244,

1995.

[21] W. Leleand, M. Taqqu, W. Willinger, and D. Wilson, “On the self

similar nature of Ethernet traffic”, IEEE/ACM Trans. Netw., vol. 2,

no. 1, pp. 1–15, 1994.

[22] G. Munz, H. Dai, L. Braun, and G. Carle, “TCP traffic clas-

sification using Markov models”, in Proc. Traffic Monitoring

and Analysis Workshop TMA 2010, Zurich, Switzerland, 2010,

pp. 127–140.

[23] A. Nogueira, P. Salvador, R. Valadas, and A. Pacheco, “Model-

ing self-similar traffc through Markov modulated Poisson processes

over multiple time scales”, Telecommun. Sys., vol. 17, no. 1–2,

pp. 185–211, 2001.

[24] S. Scott and P. Smyth, The Markov Modulated Poisson Process and

Markov Poisson Cascade with Applications to Web Traffic Modeling.

Oxford University Press 2003.

[25] J. F. Brady, “Virtualization and CPU wait times in a Linux guest

environmnet”, January 2008.

Marcin Hasse received the

M.Sc. degree in Telecommuni-

cation from the Gdańsk Uni-

versity of Technology, Poland

in 2005. Currently he is work-

ing for embedded computing

leading company providing so-

lutions for telecommunication

market. His research interest

and current work are related to

operating system improvements

for networking/telecommunication usage scenarios. He is

author of several publications in computer networking

mechanisms improvements for end user services.

E-mail: marcin@hasse.pl

Gdańsk University of Technology

G. Narutowicza st 11/12

80-952 Gdańsk, Poland

Krzysztof Nowicki received his

M.Sc. and Ph.D. degrees in

Electronics and Telecommuni-

cations from the Faculty of

Electronics, Gdańsk University

of Technology (GUT), Poland,

in 1979 and 1988, respectively.

He is the author or co-author of

more than 150 scientific papers

and author and co-author of

five books, e.g., “LAN, MAN,

WAN – Computer Networks and Communication Proto-

cols” (1998), “Wired and Wireless LANs” (2002) (both

books were awarded the Ministry of National Education

Prize, in 1999 and 2003, respectively), “Protocol IPv6”

(2003), “Ethernet-Networks” (2006), Ethernet End-to-End.

Eine universelle Netzwerktechnologie (2008). His scientific

and research interests include network architectures, analy-

sis of communication systems, network security problems,

modeling and performance analysis of cable and wireless

communication systems, analysis and design of protocols

for high speed LANs.

E-mail: krzysztof.nowicki@eti.pg.gda.pl

Gdańsk University of Technology

G. Narutowicza st 11/12

80-952 Gdańsk, Poland

Józef Woźniak is a Full Profes-

sor in the Faculty of Electron-

ics, Telecommunications and

Computer Science at Gdańsk

University of Technology. He

received his Ph.D. and D.Sc.

degrees in Telecommunications

from Gdańsk University of

Technology in 1976 and 1991,

respectively. He is the au-

thor or co-author of more than

250 journal and conference papers. He has also co-authored

4 books on data communications, computer networks and

communication protocols. In the past he participated in

research and teaching activities at Politecnico di Milano,

Vrije Universiteit Brussel and Aalborg University, Den-

mark. In 2006 he was Visiting Erskine Fellow at the Can-

terbury University in Christchurch, New Zealand. He has

served in technical committees of numerous national and

international conferences, chairing or co-chairing several

of them. He is a member of IEEE and IFIP, being the vice

chair of the WG 6.8 (Wireless Communications Group)

IFIP TC6 and. For many years he chaired the IEEE Com-

puter Society Chapter at Gdańsk University of Technology.

His current research interests include modeling and per-

formance evaluation of communication systems with the

special interest in wireless and mobile networks.

E-mail: jozef.wozniak@eti.pg.gda.pl

Gdańsk University of Technology

G. Narutowicza st 11/12

80-952 Gdańsk, Poland

62

