
Paper BSBI – a Simple Protocol

for Remote Verification of Identity
Adam Kozakiewicz and Tomasz Pałka

Research and Academic Computer Network (NASK), Warsaw, Poland

Abstract—The paper presents the design and the rationale

behind a simple verification protocol for autonomous verifica-

tion modules, and the architecture enabling use of such mod-

ules. The architecture assumes strict separation of all per-

sonal metadata and the actual verification data. The paper

also describes a prototype implementation of the protocol and

its extension enabling the state of the module to be monitored

from the main system. The proposed design solves the prob-

lem of using advanced verification methods, especially biomet-

ric ones, in systems where direct implementation is not pos-

sible due to hardware incompatibilities, insufficient resources

or other limitations.

Keywords—access control, authentication, biometric verifica-

tion, network protocols.

1. Introduction

The security of any computer system depends to a large
extent on the proper verification of the identity of its user.
The access control policy used in the system is meaningless
if the user is misidentified and allowed to work as someone
else, especially if the user is not authorized to use the sys-
tem at all. In most systems, this verification of identity is
very simple, usually requiring the knowledge of a password.
Naturally, systems with higher security requirements should
employ more secure methods of verification. The pass-
word protection is actually quite good, there is no reason
to eliminate it, but it should be accompanied by other meth-
ods, preferably employing hardware identification devices
(tokens, cards, etc.) and/or biometric measurements.

In this paper we are dealing with the problem of applying
advanced biometric verification methods in a system, which
– for reasons stated in the next section – cannot implement
them directly. We introduce a separate module, called BSB,
responsible for performing the verification. We present the
architecture of such a solution and the protocol used to
connect the host system with the verification station.

Section 2 shows the background of this research, ex-
plaining the reasons why a separate verification module
is needed in our solution. The section also presents a sim-
ple architecture which satisfies our requirements. As the
architecture requires a special protocol for communication
between the BSB and the host, we review the existing so-
lutions in Section 3 and – having explained why none of
them fit our needs – describe the protocol we designed,
called BSBI, in Section 4. Section 5 describes our proto-
type implementation and Section 6 explains how it could

be perfected in the future. We conclude with a short sum-
mary in Section 7.

2. Background, Assumptions and Design

The secure workstation for special applications [1] is
a Linux-based system using visualization to process data
from different security domains in separate environments.
The guest systems can be either Linux- or Windows-based,
but the main point of access control is the host system,
based on Linux (specifically the project uses Red Hat En-
terprise Linux). The task of verifying the identity of the
user is performed at the host level. The built-in capabil-
ities, including password-based verification are available.
However, the system’s high security level requires more
advanced access control, preferably using several different
methods in parallel.
Among the project goals is the demonstration of different
authentication mechanisms [2], including hardware-based
verification (e.g., token or card [3], [4]) and biometric
verification [5], [6]. Specifically, we chose to implement
iris recognition [7], [8]. This biometric modality is rela-
tively reliable from the technical point of view, guaran-
tees low false negatives and – more importantly – false
positives.
The combination of iris recognition and Linux host op-
erating system is unfortunately a significant compatibility
problem. The commercially available specialized cameras
for iris recognition rarely have drivers for Linux systems.
Even the few that do, do not offer full functionality with
those drivers. Furthermore, iris recognition requires quite
advanced numerical analysis, available in the ACIrisSDK
library developed at NASK [7], [8]. However, due to the
driver issues described above, that library was written for
the Windows system and porting it is not an easy task. Im-
plementing iris recognition on the host system level would
therefore be prohibitively difficult.
The difficulty is not the only reason against a host-level im-
plementation. For security reasons, the host operating sys-
tem should be minimal and based on well-tested software.
The biometric processing is quite complex and works with
externally provided data (photos of the iris). This makes it
a potential weak spot in the system, especially since – as
stated before – it would have to be new, implemented from
scratch or ported in a non-trivial way. With no prior pro-
duction use, even after rigorous tests this implementation
would be likely to contain numerous bugs, some of which
may be exploitable security vulnerabilities.

50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235206906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BSBI – a Simple Protocol for Remote Verification of Identity

This situation left the designers with only two possible
choices. The iris recognition would have to be performed
on a Windows-based system, separate from the host. That
system could be a virtualized guest or an external module.
Since the workstation is basically designed as a minimal,
secure virtualization environment, a hypervisor is already
present on the host and the virtualization approach may
seem sufficient. In fact, this is illusory. Implementation
as a virtual machine would have several important conse-
quences for the whole workstation, quite contradictory to
the projects goals. The physical separation of virtual ma-
chines, postulated in the project, would require a whole
physical CPU to be reserved for the biometric virtual ma-
chine1. A computer with two physical processors would
then not be enough to run two protected, user-accessible
virtual machines in parallel, as required. The alterna-
tive, deactivating the biometric VM when not necessary,
would solve the issue, but greatly increase the verification
delay.
The requirements of the biometric machine are also prob-
lematic. It would require full access to the camera, most
likely connected via USB, and two-way communication
with the host. The other virtual machines are not allowed
to have any two-way communication with the host and
their access to USB ports is heavily controlled (only spe-
cial, cryptographically protected USB drives are allowed).
Adding exceptions increases the probability of introducing
vulnerabilities.

Fig. 1. The general architecture of the system. Note that the two
types of data are kept separate and linked only with a numeric
identifier.

For the above reasons, the final decision seems clear – the
iris recognition will be performed on a separate physical
machine. The system will consist of two separate mod-
ules, as shown in Fig. 1: the secure workstation and the
verification station (called BSB). The authentication tasks
are clearly divided between the two modules – every ac-
tion is only performed on one of the stations, e.g., the
password-based authentication is performed by the host sta-
tion without any interaction with the BSB, while biometric
authentication is performed entirely by the BSB. The BSB
is autonomous in its operations. The biometric database
and the biometric software are placed only on the BSB, no

1This is a simplification, multiple VMs may in fact use the same CPU
if and only if they belong to the same security domain.

such details are passed to the host station. Any necessary
hardware must therefore be also connected to the BSB.
The only information about the user passed between the
two modules is a numeric identifier. The BSB is equipped
with its own screen and does not need the host system as
a proxy for user communication.
The architecture described in the previous paragraph is in-
spired by the way in which credit card terminals are often
integrated with ticket vending machines, etc. The termi-
nal is only activated on request and is autonomous. The
machine instructs the user to follow the instructions dis-
played by the card terminal and waits for a confirmation
from the terminal. This makes the integration very easy
for the designers of the vending machine.
The construction of the BSB itself is a separate issue, out-
side the scope of this paper. If the autonomous nature of
the BSB is preserved, then the issue is not at all impor-
tant for the host system. The integration would be done
exactly the same way if the verification used a completely
different biometric modality or hardware ID. However, this
elasticity depends on the flexibility of the communication
protocol connecting both modules.

3. Related Work

There is a multitude of existing authentication protocols. In
theory, using them would be the simplest and best way to
meet the requirements of the project. However, the exist-
ing protocols are in fact designed for a completely different
task. They are usually used as scalability enhancers for
distributed systems, delegating the task of user authentica-
tion, authorization and accounting to a central server. This
approach is used in protocols like RADIUS [9] or Diam-
eter [10]. Also Kerberos [11], [12] uses a central server
approach, focusing on a cryptographic ticket mechanism
to provide single logon. All of these protocols are power-
ful tools enabling effective management of large networks.
However, our needs are much simpler. The authentication,
assignment of rights, etc., are all performed on the host
system. However, the verification tasks delegated to the
BSB are handled there completely.
The TACACS+ [13] protocol and its predecessors
(TACACS, XTACACS) take a different approach. They do
provide the means to perform remote interactive authen-
tication, separated logically from authorization. The pro-
tocol handles password-based authentication very well and
can be adapted to any other similar authentication method,
e.g., hardware tokens. Adapting it to use biometric verifica-
tion is a lot more difficult, but probably possible. However,
the assumptions of the TACACS family of protocols are
a reversed version of our design. The authentication server
performs the actual authentication, but the user interaction
is done on the terminal side. In our setting the entire ver-
ification process is performed on the BSB side. The host
system simply requests the authorization to be performed
and awaits results. This makes TACACS+ a suboptimal

51



Adam Kozakiewicz and Tomasz Pałka

choice for our system. Taking into account the minimal
amount of necessary communication, the decision was to
develop a specialized protocol.
Since biometric verification was our main goal in this
project, it was also possible to use an existing biometric
protocol. Such a protocol exists – the standard biometric
API called BioAPI [14] can be mapped into network mes-
sages using ASN.1, resulting in BIP – BioAPI Internet-
working Protocol [15]. However, from our point of view
this protocol is very low-level, giving access to many de-
tails of the biometric processing. It would be useful, if the
user database was placed on the host machine, but since all
biometric activity is limited to the BSB, introducing such
low level information in the protocol only serves to make
it less universal. A simpler protocol could easily be used
with different configurations of the BSB, using different
biometric modalities, or even non-biometric methods.

4. Communication Protocol

The design of a communication protocol for identity verifi-
cation is relatively simple in this setting – the required set
of operations is very small. In fact, the minimal set would
include only two operations: adding a user by registering
the necessary data given the user’s identifier or verification
of the identity of the user given the identifier of the user
he claims to be. For practical reasons, a third operation is
quite useful – deleting the user with the given identifier,
removing all data collected for him.
The basic design requirements, apart from providing the
specified minimal set of operations, were as follows:

1. The design must be based on well known, standard
solutions.

2. The autonomous nature of BSB, as specified in the
proposed architecture, must be preserved.

3. The messages should be limited to ASCII characters
and not excessively long, so that the protocol can be
used unmodified on any link.

4. The messages should be human readable when unen-
crypted (useful in implementation and testing phase).

5. The protocol should be easy to implement.

6. The protocol should be easily extendable.

The requirements and the natural request-response nature
of communication with BSB resulted in a solution based on
Web Services. The choice between SOAP and XML-RPC
was also clear, as SOAP is unnecessarily complex – we
have no use for its advanced capabilities and the large en-
velope directly contradicts the requirements. Since ASCII
is a subset of UTF-8, it is easy to satisfy requirement 3 us-
ing XML entities and BASE64 encoding where necessary.
Also, the clear hierarchical structure of XML documents
satisfies requirement 6.

4.1. Extended Functionality for More Advanced BSBs

While the three basic operations are sufficient for the verifi-
cation module, the actual protocol provides two additional,
optional features – capabilities and log collection.
Capabilities, although simple, are a powerful extension, al-
lowing more advanced verification modules with multiple
verification methods to be designed and used without fur-
ther modifications to the protocol. A capability is simply
a name of a verification method. The protocol allows the
host to obtain a list of capabilities supported by the ver-
ification module and to specify the desired set of meth-
ods during verification or registration of a user’s identity.
The verification module is also required to define internally
a default set of verification mechanisms, allowing it to be
used with a host which does not support capabilities.
Capabilities are described in the format
<capabilityname>_<mode>. The <capabilityname>
part identifies the general method of verification (e.g.,
biometric modality) and should be unified. The BSBI
protocol provides names for most popular verification
methods:

• CHIP Chip ID card or other intelligent hardware ID
inserted into a reader,

• FACEGM Face geometry,

• FPRINT Fingerprint,

• FVEIN Vein pattern in a finger,

• HANDGM Hand geometry,

• IRIS Iris,

• PASS Password or PIN code,

• RCHIP Wireless chip card or other intelligent wire-
less hardware ID,

• RETINA Retina,

• RFID RFID-based ID card or other simple wireless
hardware ID,

• SIGN Written signature,

• SPASS One-time-password,

• SWIPE Magnetic ID card or other simple hardware
ID inserted into a reader,

• TOKEN Hardware token,

• VOICE Voice.

The above list is by no means complete. Additions to it
should be done in a consistent manner.
The <mode> part is not strictly defined – it may be any
string (without whitespace) specifying a variant of the
method, preferably in a clear and descriptive way. Short
mode names are preferred. If only one variant is imple-

52



BSBI – a Simple Protocol for Remote Verification of Identity

mented for a given capability, it is allowed to use only the
capability name as its identifier, but the preferred name uses
mode default. This mode is not reserved for that use, so
it is, for example, perfectly acceptable to offer capabilities
SIGN_default, SIGN_press and SIGN_nopress, where
the latter two modes define whether pressure measurements
should be taken into account and the defaultmode is syn-
onymous to one of the other variants. Synonyms are not
treated in any special way, from the point of view of the
protocol all modes are different.
The log collection is simply a way to access more detailed
information about the operations of the verification module.
The host system may use it to obtain a copy of some of
the module’s logs. The proposed specification assumes that
the logs are treated as a single stream of entries by the
host, delegating the selection of entries to the verification
module. Better granularity may be provided by extending
the protocol, if necessary.

4.2. Specification of Operations

The protocol consists of five methods – one for each of
the elementary operations of the BSB, one listing the ca-
pabilities of the BSB and one used to collect the logs. The
methods generally report their execution status using nu-
meric error codes, which are defined as follows:

– 0 BSBI_SUCCESS – successful completion;

– 99 BSBI_UNKNOWN – unknown error;

– 100 BSBI_USER_NEXIST – the given user ID is not
registered in BSB database;

– 101 BSBI_USER_EXIST – the given user ID is already
registered in BSB database;

– 110 BSBI_USER_LIMIT – number of registered users
exceeds a preset limit;

– 200 BSBI_PROC_TIMEOUT – processing timeout in
verification module;

– 210 BSBI_PROC_INTERNAL – internal error in veri-
fication module;

– 299 BSBI_PROC_UNKNOWN – unknown error in veri-
fication module;

– 300 BSBI_CAPA_NSUPPORT – requested capability
not available in the BSB;

– 301 BSBI_CAPA_NCOLLECT – data required by the
requested capability not collected;

– 310 BSBI_CAPA_NODATA – no user template for the
requested capability for the specified user.

Additionally the following library-level error codes (900–
999) are defined. These are never sent as part of

the protocol and are reserved for use by libraries imple-
menting BSBI:

– 900 BSBI_CONN_FAIL – cannot establish connection
to BSB (connection refused or other problem);

– 901 BSBI_CONN_TIMEOUT – timeout while waiting
for BSB response;

– 910 BSBI_CONN_PARSE – bogus response from BSB;

– 920 BSBI_CONN_FATAL – BSB or link security
breach suspected (e.g. invalid BSB certificate);

– 930 BSBI_CONN_INTERNAL – BSBI library internal
error;

– 940 BSBI_CONN_PROTO – protocol incompatibility –
BSB does not support requested functionality;

– 999 BSBI_CONN_UNKNOWN – unknown connection er-
ror.

The methods of the protocol are defined as follows:

enroll.user(uid, capa) – the method registers a new user
with the supplied ID. The BSB is expected to collect and
store autonomously all necessary information, e.g., biomet-
ric data.
The mandatory parameter uid contains the numeric ID of
the user.
The optional parameter capa may contain a list of verifi-
cation methods the host system intends to use in the future.
The BSB is required to collect and store all necessary data
for these verification methods, failure to collect any of them
must cause the entire operation to fail. It may also collect
data for other variants, but failure to obtain those must not
be considered an error. Specifying a capability not sup-
ported by the BSB is an error and user enrollment must
fail in this case. If the list contains a capability specified
only by capability name (omitted mode part of the name),
the BSB is free to use any of the available modes of that
capability.
If the parameter capa is not provided, the BSB is free to
choose which kinds of data should be collected. As a min-
imum, the BSB should collect data for all capabilities used
by default (that is when the capa parameter is omitted) by
the verify.usermethod – failure to collect those may and
should be considered a failure to register the user. The pre-
ferred action is to collect data for all installed capabilities,
but tolerate failure to obtain data for verification methods
not used by default.
The method returns a single value code, which is a numeric
error code. The following error codes are possible in this
method:

– BSBI_SUCCESS,

– BSBI_UNKNOWN,

– BSBI_USER_EXIST,

53



Adam Kozakiewicz and Tomasz Pałka

– BSBI_USER_LIMIT,

– BSBI_PROC_TIMEOUT,

– BSBI_PROC_INTERNAL,

– BSBI_PROC_UNKNOWN,

– BSBI_CAPA_NSUPPORT (only if the capa parameter
was provided),

– BSBI_CAPA_NCOLLECT.

verify.user(uid, capa) – the method verifies the identity
of a user, based on the supplied ID. The BSB is ex-
pected to collect autonomously the necessary data and ver-
ify its correctness for that ID using templates created by
the enroll.user method.
The mandatory parameter uid contains the numeric ID of
the user.
The optional parameter capa may contain a list of veri-
fication methods that should be used. The verification is
successful if and only if all of the listed capabilities were
successfully used and confirmed the user’s identity. The
BSB may not use any capabilities not in the list. Speci-
fying a capability not supported by the BSB is an error.
If the list contains a capability specified only by capability
name (omitted mode part of the name), the BSB is free to
choose one or more of the available modes for which data
was collected during enrollment of the user being verified.
If user data is not available for any mode of the capability,
then the verification obviously fails.
If the parameter capa is not provided, the BSB is free to
choose which capabilities to use for verification and how to
proceed if one of them fails. The choice should be limited
to the capabilities used during enrollment of the user being
verified.
The method returns one or two values. The first value is
code, a numeric error code. The following error codes are
possible in this method:

– BSBI_SUCCESS,

– BSBI_UNKNOWN,

– BSBI_USER_NEXIST,

– BSBI_PROC_TIMEOUT,

– BSBI_PROC_INTERNAL,

– BSBI_PROC_UNKNOWN,

– BSBI_CAPA_NSUPPORT (only if the capa parameter
was provided),

– BSBI_CAPA_NODATA.

The second value, also numeric, called verifica-
tionResult, is provided if and only if the value of code
is BSBI_SUCCESS and is either 0 if the user’s identity was
confirmed, or 1 if the user’s identity was rejected.

delete.user(uid) – the method removes from the BSB all
data related to a user identified by the supplied ID.
The mandatory parameter uid contains the numeric ID of
the user.
The method returns a single value code, which is a numeric
error code. The following error codes are possible in this
method:

– BSBI_SUCCESS,

– BSBI_UNKNOWN,

– BSBI_USER_NEXIST,

– BSBI_PROC_UNKNOWN.

list.capa() – the method retrieves a list of all capabilities
supported by the BSB.
The method does not require any parameters and returns an
array of character strings called capa. There is no code
value in this case – any non-empty response should be
regarded as confirming the result BSBI_SUCCESS, while an
empty response should be interpreted as BSBI_UNKNOWN.

get.logs(zipmode) – the method retrieves new log entries
from the BSB. Selection of the entries depends on the
configuration of BSB, the protocol does not provide any
method of controlling it.
The optional parameter zipmode specifies the compression
method which should be applied to the logs. It is a string
from a well defined set of values. Currently, the defined
values are ZIP, GZ and NONE, new ones may be added in
the future. The values are not case sensitive. The BSB
must use the specified compression method, unless it does
not support it – in that case, no compression should be used
(as if the value of zipmode was NONE).
The method returns one or four values. The first value is
code, which is a numeric error code. The following error
codes are possible in this method:

– BSBI_SUCCESS,

– BSBI_UNKNOWN,

– BSBI_PROC_INTERNAL (reserved for errors generated
when parsing BSB’s logs),

– BSBI_PROC_UNKNOWN.

The other three values are returned if and only if the value
of code is BSBI_SUCCESS.
The value logs contains the log entries in BASE64 encod-
ing. If the zipmode parameter was specified and not NONE,
the entries may be compressed before BASE64 encoding is
applied. There is a limit set on the length of this value –
it may not exceed 32 kilobytes after BASE64 encoding.
The value zipmode defines whether compression has been
used and is either a copy of the input parameter with the
same name, or NONE if the specified compression method
is not supported.

54



BSBI – a Simple Protocol for Remote Verification of Identity

Finally, the value hasnext is a boolean value, true if and
only if not all available entries fit under the 32 kilobyte
limit. The host system should then immediately call this
method again to retrieve the missing lines.

5. Prototype

The prototype implementation (as shown in Fig. 2) was
completed in the C language, using a preexisting XML-
RPC library. The BSBI was implemented as a portable li-
brary, easily adaptable to new uses.

Fig. 2. The structure of the prototype implementation of the BSB:
(a) verification requests are handled by a special PAM module
using the BSBI library; (b) communication with the biometric
module uses a simple wrapper library; (c),(d),(e),(f) events from
the biometric module (c) and system-level events (d) are logged
into files, which are (e) monitored by a special module of the BSBI
library and (f) selected entries are reported to the host station’s
syslog.

The BSB has been equipped with Apache HTTP server
configured to enable SSL-protected connections from the
BSB. The connection requires authentication with a regis-
tered certificate by both the client and the server, ensuring
a secure pairing of the BSB with the host system. The
BSBI module on the server handles BSBI calls by translat-
ing them to calls to functions of a specially designed thin
wrapper around the ACIrisSDK library, responsible for the
actual biometric processing. The module also collects re-
sults of a separate process which parses logs generated on
the BSB and extracts the entries, which will be sent to the
host system on the next call to get.logs.
On the client side, the library is used to generate calls
to BSB. It could potentially be used by regular applica-
tions requiring biometric verification of identity, but in the
designed system it is reserved for use in the initial user
authentication process.
Given that the host operating system in the project is Red
Hat Enterprise Linux, the natural way to include the BSB
in the user authentication process is to implement a module
for the PAM (Pluggable Authentication Modules) system.
The module is then included in PAM configuration as the
second step after standard password authentication. Such

a module, called pam_biometric.so, has been imple-
mented. However, the most obvious authentication policy,
strictly requiring successful biometric verification, is not
acceptable in practice. The design of the secure worksta-
tion prohibits any external modifications (e.g., after booting
from a live CD), the only way to change its configuration
is to authenticate successfully as an administrator. This
means that any failure of the BSB makes the host system
completely unusable – even replacing the BSB is not pos-
sible, unless the original private key can be recovered.
For this reason the PAM configuration is a bit more com-
plex. Another simple module for the PAM system was
developed, called pam_spec.so. This module performs
a simple password-based verification. However, the mod-
ule only accepts users belonging to a special group spec,
and the password is never used normally. It is also stored
in a separate file, /etc/spec_shadow, protected using
SELinux. The approach is quite secure, especially if pass-
word and BSB are not the only authentication modules used
by the workstation.
The final configuration can be as follows:

First, a successful password-based authentication is re-
quired. If it succeeds, the identity of the user is already
tentatively established and a BSB-based authentication can
be attempted using his identifier. As the second line spec-
ifies, successful BSB authentication is sufficient and ends
the process. Rejection by BSB also ends the process – au-
thentication fails. However, if the module reports that it is
unavailable, i.e., the BSB cannot be contacted, then pro-
cessing continues. The third line rejects any users not in
group spec and the fourth line attempts special password
authentication as the final, decisive step. The audit option
used in both modules implemented in the project turns on
detailed logging for audit purposes and can be omitted if
not necessary.
The integration package includes both PAM modules, the
BSBI library and some helper programs. The helper pro-
grams enable pairing of the host system with the BSB,
testing the connection, enrollment and removal of users,
setting the special passwords, etc.

6. Possible Extensions

While the BSB + BSBI verification mechanism is imple-
mented and working well, it is still only a prototype. A fully
mature commercial system would require further extensions
and modifications. Some of the extensions described in this
section are planned as future work, others are just proposals
which may or may not be considered for implementation
in the future.

55



Adam Kozakiewicz and Tomasz Pałka

Most importantly, to be used as part of a secure worksta-
tion, especially one certified for processing of classified
information, the BSB would have to adhere to the same
stringent security requirements as the workstation itself.
Several steps in that direction were already made. The
BSB, once configured, does not have any connected hu-
man interface devices and the touchscreen built into the
computer used in the prototype is used only as an output
device. Nevertheless, the casing is a purely temporary so-
lution, not acceptable for production use, as it does not
offer any physical security. All ports of the computer are
relatively easy to access. In a final implementation the com-
puter and the camera would be installed in a locked casing
with secure, well placed ventilation holes, so that accessing
any ports would require a key (it is normally only neces-
sary during installation and initial pairing with the host).
Protection of the link is also important, although as long
as the BSBI communication is cryptographically protected
this may not be crucial. Also note that the BSB is not
really designed for use in the field – processing of classi-
fied information typically takes place in rooms providing
significant physical security and well documented access
control. In other applications the BSB would likely not be
a separate piece of equipment. Whether wall-mounted or
built into a larger device, it would probably be sufficiently
protected. Even now, physical integration with the host
workstation is perfectly possible if the workstation’s casing
is large enough. However, in the envisioned application
a smaller, standalone verification device connected to the
host with a cable seems much more usable as it offers a lot
more flexibility in placing the camera so that using it would
not require leaving the chair.

The security requirements, especially at higher levels, may
require replacing SSL-based encryption and symmetric au-
thentication with encryption hardware. This is however
easy to do and does not require any changes in the BSBI
protocol.

Another security-related shortcoming of the current solu-
tion is the relatively low security of the BSB itself. As long
as there are no input devices connected to it (apart from the
camera, of course), this is not a serious problem. However,
the computer used in the BSB is small enough to carry in
an average bag. The consequences of stealing the BSB or
making a copy of its data are hard to define. The BSB does
not have any useful metadata associated with the biomet-
ric (or other) verification data stored on it. The identifier
passed to it by BSBI is not easily identifiable. However,
the data may be quite useful anyway, especially if the set
of registered users is sufficiently small. The connection be-
tween a person and its verification data can be recovered in
several ways, e.g., by analysing the logs present on the BSB
and comparing them with observations of the times when
individual users accessed the workstation. The verification
data, especially biometric templates, should definitely be
considered sensitive.

Another interesting piece of information on the BSB is its
private key, used to pair with the host. Having this certifi-

cate, it is generally possible to develop a fake BSB, which
will pair correctly with the host, but will, e.g., always reply
to verify.user calls with a positive verification. It may
be possible to use the Trusted Platform Module (TPM) of
the BSB to protect the key. This method, however, will not
suffice to protect the verification data.
One method worth trying would be to put the biometric
software along with the database on an encrypted vol-
ume. The key necessary to access that volume would be
stored on external storage during the setup phase, and af-
terwards it could be put on the host system, preferably en-
crypted using the host’s TPM. The BSBI protocol would
then require two extensions. One new error code, called,
e.g. BSBI_NOT_READY would be used to inform the host in
reply to any call that the BSB’s verification modules are not
yet running. Then, a separate method of the BSBI protocol
(e.g. init) would be used to send the necessary key to
the BSB, which would then be able to start the verification
services. This way the sensitive data could not be accessed
without connection to the right host.
Another possible extension would be to enrich the
get.logs method with the possibility to specify the re-
quested type of logs, or even to implement two-way com-
munication, where the logs are simply pushed to the host
machine. The latter variant is easiest to do using syslog
instead of extending BSBI.

7. Conclusions

The architecture and protocol described in this paper have
been implemented and tested as part of the project “Se-
cure workstation for special applications”, but the solu-
tion is more general, not limited to this one application.
We have shown that the approach borrowed from credit
card terminals – making the verification station a sepa-
rate, autonomous module and developing the main system
as agnostic of the inner workings of that module – is in-
deed workable for this application. The approach may be
used whenever advanced identity verification is necessary
in a system in which such solutions are not readily avail-
able or may not be possible to implement due to, e.g., lack
of sufficient computing power.

Acknowledgements

This work is part of the project called “Secure workstation
for special applications” and is funded by a grant number
OR00014011 from the National Center for Research and
Development – science funding for years 2010–2012.

References
[1] A. Kozakiewicz, A. Felkner, J. Furtak, Z. Zieliński, M. Brudka, and

M. Małowidzki, “Secure workstation for special applications”, in
Secure and Trust Computing, Data Management, and Applications,
C. Lee, J.-M. Seigneur, J. J. Park, R. R. Wagner, Eds., Commu-
nications in Computer and Information Science, vol. 187. Berlin:
Springer, 2011, pp. 174-181.

56



BSBI – a Simple Protocol for Remote Verification of Identity

[2] L. O’Gorman, “Comparing passwords, tokens, and biometrics for
user authentication”, Proceedings of the IEEE, vol. 91, no. 12,
pp. 2021–2040, 2003.

[3] H. K. Lu and A. Ali, “Communication Security between a Computer
and a Hardware Token”, in Proc. Third Int. Conf. Sys. ICONS 2008,
Cancun, Mexico, 2008, pp. 220–225.

[4] R. Molva and G. Tsudik, “Authentication method with impersonal
token cards”, in Proc. IEEE Comp. Soc. Symp. Res. Secur. Priv.,
Oakland, CA, USA, 1993, pp. 56–65.

[5] R. M. Bolle, J. H. Connell, S. Pankanti, N. K. Ratha, and A. W. Se-
nior, Guide to Biometrics. New York: Springer, 2004.

[6] K. Ślot, Wybrane zagadnienia Biometrii. Warszawa: Wydawnictwo
Komunikacji i Łączności, 2008 (in Polish).

[7] A. Czajka and A. Pacut, “Iris recognition system based on Zak-
Gabor wavelet packets”, J. Telecom. Inform. Technol., no. 4,
pp. 10–18, 2010.

[8] A. Czajka and A. Pacut, “Iris recognition with adaptive coding”, in
Rough Sets and Knowledge Technology, Lecture Notes in Artificial
Intelligence, vol. 4481. Berlin: Springer, 2007, pp. 195–202.

[9] J. Hassell, Radius – Securing Public Access To Private Resources.
O’Reilly & Associates, 2002.

[10] P. R. Calhoun, G. Zorn and P. Pan, “DIAMETER Framework Doc-
ument”, IETF, 2002.

[11] B. C. Neuman and T. Ts’o, “Kerberos: an authentication service for
computer networks”, IEEE Commun. Mag., vol. 32, no. 9, pp. 33–38,
1994.

[12] J. T. Kohl, B. C. Neuman, and T. Y. T’so, “The Evolution of the Ker-
beros Authentication System”, in Distributed Open Systems, D. Jo-
hansen and F. M. T. Brazier, Eds. Los Alamitos, CA: IEEE Computer
Society Press, 1994, pp. 78–94.

[13] D. Carrell, “The TACACS+ Protocol Version 1.78”, Network Work-
ing Group INTERNET-DRAFT, Cisco Systems, 1997.

[14] “Information Technology – BioAPI – Biometric Application Pro-
gramming Interface – Part 1: BioAPI Specification”, ISO/IEC
19784-1.

[15] “Information Technology – BioAPI Interworking Protocol (BIP)”,
ISO/IEC 24708.

Tomasz Pałka graduated from
the Faculty of Mechatronics
of Warsaw University of Tech-
nology, Poland. Currently he
works as a Specialist at Systems
and Information Security Meth-
ods Team in NASK Research
Division. His present areas of
interest are centered around the
security of information systems.

E-mail: tomasz.palka@nask.pl
Research and Academic Computer Network (NASK)
Wąwozowa st 18
02-796 Warszawa, Poland

Adam Kozakiewicz – for biography, see this issue, p. 21.

57


