
Paper A Software Platform for Global

Optimization
Ewa Niewiadomska-Szynkiewicz and Michał Marks

Abstract—This paper addresses issues associated with the

global optimization algorithms, which are methods to find op-

timal solutions for given problems. It focuses on an integrated

software environment – global optimization object-oriented li-

brary (GOOL), which provides the graphical user interface

together with the library of solvers for convex and nonconvex,

unconstrained and constrained problems. We describe the

design, performance and possible applications of the GOOL

system. The practical example – price management problem –

is provided to illustrate the effectiveness and range of appli-

cations of our software tool.

Keywords—global optimization, integrated software systems,

nonconvex optimization, numerical libraries, price manage-

ment.

1. Introduction

Many decision problems are formulated as optimization

tasks in which the objective function is nonconvex and has

multiple extrema in the region of interest. In addition, in

many practical contexts, the optimization problem cannot

be described analytically due to the natural complexity and

uncertainty of real-life systems. In such cases the simula-

tion experiment is usually used to evaluate the expected per-

formance of the system for each set of decision variables. It

involves of simulation-based optimization that is the merg-

ing of optimization and simulation techniques [1], [2].

The usage of traditional optimization methods is usually in-

efficient for solving multimodal or simulation-based prob-

lems. Therefore, methods designed for global optimization

are important from a practical point of view. The prob-

lem of designing algorithms to compute global solutions

is very difficult. In general there are no local criteria in

deciding whether a local solution is a global one. During

last decades, however, many theoretical and computational

contributions helped to solve multiextreme problems aris-

ing from real-world applications [3]–[5].

In our paper we will present an integrated software envi-

ronment, called global optimization object-oriented library

(GOOL), which can be used to solve complex optimiza-

tion problems. GOOL supplies the library of optimiza-

tion algorithms for convex and nonconvex, unconstrained

and constrained problems together with the graphical envi-

ronment for supporting the considered problem definition

and tools for dynamic, on-line monitoring of the computed

results. The GOOL system integrates various functional-

ities, and can be successfully used in research, education

and commercial applications. The preliminary version of

the system was described in [6]. The currently available

version is more advanced and has wider range of applica-

tions.

This paper is organized as follows. In Section 2 we will

discuss the principle features of the global optimization

algorithms. Next, we will describe organization, imple-

mentation and usage of our software platform GOOL, and

numerical algorithms supplied in GOOL. Finally, the re-

sults of the application of solvers from the GOOL library

to a price management problem will be presented and dis-

cussed.

2. Global Optimization Algorithms

Global optimization algorithms can be categorized into two

groups: deterministic and stochastic, with respect to their

implementation.

Deterministic algorithms are typically based on approxi-

mation techniques, approaches that adaptively perform par-

tition, search and bounding, chaotic movement and tabu

search. These methods usually require more or less access

to global information about the problem. Many of them are

guaranteed to find the global minimum (within some toler-

ance). A unified and insightful treatment of deterministic

global optimization is provided in [3], [7], [8].

Stochastic algorithms are typically based on random search,

adaptive search, biological inspired heuristics and meta-

heuristics. Heuristic stochastic methods are widely used

in many industrial and scientific applications. These ap-

proaches are flexible, robust and less demanding of the

problem properties. The main methodological and theo-

retical developments in stochastic global optimization, the

basic principles and methods of global random search,

Markovian and population-based random search and meth-

ods based on statistical models of multimodal functions are

discussed in [9]. The evolutionary algorithms, genetic al-

gorithms, genetic programming, learning classifier systems,

evolution strategy, differential evolution, particle swarm op-

timization, and ant colony optimization, and other meta-

heuristics, such as simulated annealing, hill climbing, tabu

search, and random optimization are elaborated in [4], [5],

[10], [11].

Global optimization is generally complex and usually in-

volves cumbersome calculations, especially when consider

simulation-optimization case when we have to perform

simulation experiment in every iteration of the algorithm.

The restrictions are caused by demands on computer re-

49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235206609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ewa Niewiadomska-Szynkiewicz and Michał Marks

sources – central processing unit (CPU) and memory. The

directions, which should bring benefits are:

– hybrid techniques that combines global and local al-

gorithms, to solve the optimization problem;

– parallel computing where the whole task is partitioned

between several cores, processors or computers.

Hybrid approaches can speed up the convergence to the so-

lution. Parallel implementation allows to reduce the com-

putation time, improve the accuracy of the solution, and

to execute large program which cannot be put on a single

processor [1], [12], [13].

3. GOOL: Software Environment for

Global Optimization

In this section we present the design and implementation of

GOOL and comparison of our project to the other existing

tools for global optimization.

3.1. Related Works

Most of the existing libraries of optimization techniques

focus on the problem of computing locally optimal solu-

tions. However, recently a number of software packages

with numerical solvers for global optimization have been

developed, and can be find in the Internet. They support

sequential and parallel programming. Publicly available

implementations of interval analysis and branch-and-bound

schemes are discussed in [14]–[16].

The goal of the COCONUT (continuous constraints – up-

dating the technology) project [17] was to integrate the

currently available techniques from mathematical program-

ming, constraint programming, and interval analysis into

a single discipline, to get algorithms for global constrained

optimization. The authors of [18] report the results of

testing a number of existing state of the art solvers us-

ing COCONUT routines on a set of over 1000 test prob-

lems collected from the literature. Solvers implementing

various types of techniques for global optimization (deter-

ministic and stochastic), i.e., interval methods, continuous

branch and bound, multistart, genetic and evolutionary, tabu

search and scatter search are provided in [15]. The Global

World [19] is a forum for discussion and dissemination of

all aspects of global optimization problems. It provides

links to libraries of solvers and a library of academic and

practical test problems.

3.2. GOOL Overview

The GOOL provides an integrated graphical software

framework that can be used to solve the following very

general problem:
min
x∈ℜn

f (x) (1)

gi(x) ≤ 0, i = 1, . . . ,m ,

where f and gi are real-valued functions.

The GOOL supplies a library of deterministic and stochas-

tic optimization solvers. When most of the available li-

braries for calculating the optimal solution provide tools

only for commerce, research or educational purposes, the

GOOL system integrates all these functionalities. The pro-

cess of implementing a given application for GOOL is quite

straightforward and convenient especially thanks to graph-

ical user interface (GUI). The system provides tools for

on-line monitoring of computation process and various pre-

sentation techniques.

Two different versions implementing two approaches

to user-system interactions: GOOL/COM (batch) and

GOOL/GUI (interactive) are supplied. GOOL/COM is ded-

icated to the complex optimization problems, where values

of the objective function are calculated based on simulation

(simulation-optimization scheme, [2]). In the case of sim-

ulation optimization the user’s task is to provide the sim-

ulation model to evaluate the expected performance of the

system to be optimized. It is assumed that solvers from the

GOOL library provide decision variables and receive val-

ues of the objective function f and constraints g in Eq. (1)

from the user application. Let the input files be called

task file.tsk and methods file.met. Then, writing

the command gool con task file [methods file] at

the command line, we call GOOL to solve the optimization

problem defined in the file task file using the optimiza-

tion algorithm pointed in the file methods file. The in-

put file task file contains the information related to the

particular problem to be solved (problem dimension, ob-

jective function definition, its gradient and constraints) or

the name of the user application (simulator). The selection

of the solver is optional.

Fig. 1. GOOL/GUI: the main window.

The GOOL/GUI is the software framework for educational

purposes and research (see Figs. 1 and 2). It supplies the

graphical environment for optimization problem definition

and calculation results presentation. The optimization prob-

50

A Software Platform for Global Optimization

Fig. 2. GOOL editor: optimization problem implementation.

lem is defined using the GOOL editor. The GOOL sym-

bolic expressions analyzer allows to enter quite complicated

functions concerning such expressions like: pow, sin, sum,

etc., and iterative expressions. The gradient is calculated

if necessary. After starting the calculations the user can

on-line employ the monitoring of the results.

3.3. System Architecture

The system consists of three components (Fig. 3):

– library of numerical methods,

– system kernel,

– graphical user interface.

Fig. 3. The GOOL system architecture.

The core component is numerical library consisting of two

sets of modules:

– GOOL/OM: optimization solvers,

– GOOL/RG: random number generators.

In addition the system facilities are provided in the form of

four groups of services. These are:

1. User interface services, which provide a consis-

tent user interface. The most important tasks of the

user interface are as follows: supporting the pro-

cess of defining a considered optimization problem,

results visualization, providing communication with

the user.

2. Calculation management services, which manage ex-

ecution of a given solver.

3. Communication management services, which man-

age communications between calculation process and

user interface.

4. Data repository services, which provide a store for

all data objects: all defined options, parameters and

calculation results.

3.4. Algorithmic and System Options

Various algorithmic and system options are available to the

user, all come with a default value so it is not necessary to

modify any options. The ability to modify them, however,

provides a great deal of flexibility. It is possible to change

all parameters of the chosen solver, type of random genera-

tor or local search using graphical interface in GOOL/GUI

or text file methods file in GOOL/COM. Different ter-

mination criteria are provided: typical to each algorithm (if

exists), convergence tolerance, maximum number of itera-

tions or function evaluations. The results can be displayed

every iteration or recorded into the disc file and displayed

at any time.

3.5. Graphical User Interface

The GUI is organized in a set of windows. The setting

windows are used to facilitate the configuration phase. The

optimization problem is defined, an objective function and

all constraints are entered.

The GOOL provides tools for dynamic, on-line monitoring

of the computed results. The following graphical presenta-

tion techniques are available: 2D, 3D graphs, leaves of the

function and a table of numbers (Fig. 4). The visualization

of a multidimensional problem is achieved by displaying in

the separate windows the leaves for each pair of variables,

under the assumption that all other variables are fixed. The

results presentation is organized in different ways, and is fit-

ted to the optimization method (points, lines, grids). Mul-

tiple windows with the results for different range of data

can be active during one run of the program. The changes

of values of parameters typical to each algorithm can be

graphically displayed too. The user can chose options of

presentation (zoom, colors, results of many optimizations

in one window, etc.). The detailed report of the results in-

cluding the problem solution, number of iterations, number

51

Ewa Niewiadomska-Szynkiewicz and Michał Marks

Fig. 4. Results visualization.

of function and gradient evaluation and number of con-

straints violation is displayed after finishing the calcula-

tions.

3.6. GOOL Operation

The interaction with GOOL/GUI is organized as follows.

At the beginning the user is asked to define the problem

to be solved and select the optimization algorithm. Within

the next step the user is asked to provide some information

related to the considered method and calculation process

if necessary. This information includes: parameters typ-

ical for the chosen algorithm, type of the stop criterion,

maximal number of iterations, type of results visualization,

etc. After completing the initial settings, GOOL starts the

calculation engine. The user employs monitoring of the

current situation. It helps him to assess the effectiveness of

the chosen optimization algorithm. The calculations may

be interrupted.

3.7. Implementation

The GOOL system is completely based on C++. All numer-

ical methods – the optimization engine – and the higher-

level activities, i.e., problem definition, parameters setting,

results presentation, managing calculations and communi-

cation between the optimization engine and the user in-

terface are implemented in uniform form as C++ classes.

Two functionalities of GOOL, i.e., user interface and cal-

culations are separated and can be easily modified. The

hierarchy of classes implementing numerical solvers is nat-

ural and well defined (Fig. 5). Three fundamental clas-

Fig. 5. GOOL: hierarchy of classes. Explanations: GA – genetic

algorithm, SA – simulated annealing, BFGS – Broyden-Fletcher-

Goldfarb-Shanno.

52

A Software Platform for Global Optimization

ses: Task, inserting the considered optimization problem

to be solved, Algorithm, the basic class of all optimiza-

tion methods and Generator, for random numbers gener-

ation are provided. The library can be extended by new

methods developed by the user. Available software may

be easily adopted, new techniques can be implemented ap-

plying classes defined in GOOL. The open design of the

system architecture, and its extensibility to include other

open source modules, was chosen in the hope that the sys-

tem will be a useful platform for research and education

in global optimization. The code is currently available for

MS-Windows and Linux operating systems. The software

is free available for researchers and students.

4. Library of Solvers

The numerical library consists of two parts: GOOL/OM

and GOOL/RG. The GOOL/OM is a collection of differ-

ent optimization solvers for calculating local and global

minimum. GOOL/RG provides several random numbers

generators.

4.1. Local Optimization

Several techniques for calculating local minimum of the

performance index were implemented in GOOL. The fol-

lowing methods for one-dimensional search are avail-

able: golden section search, parabolic interpolation, one-

dimensional search with first derivatives (Goldstein test).

Two, well known nongradient methods in multidimen-

sions [20] are available too: downhill simplex algorithm

(Nelder-Mead) and direction set (Powell’s) method.

4.2. Global Optimization

Deterministic and stochastic techniques are provided. Cur-

rently implemented are methods based on the approx-

imation and branch-and-bound techniques, deterministic

chaotic movement, clustering techniques, random search,

heuristics and metaheuristics. The following variants are

provided:

• Branch-and-bound (BB) for Lipschitz problems:

uniform grid, few versions of non-uniform grids

[3], [21]: Galperin’s, Gourdin-Hansen-Jeaumard’s,

Meewella-Mayne’s, and Pijavskij’s algorithm of lin-

ear sub-approximations of the performance function,

developed for one-dimensional problems.

• Chaotic movement: Griewank’s algorithm (trajectory

method) [22], [23].

• Clustering method developed by Torn [21], with dif-

ferent grouping techniques.

• Pure random search and three variants of population

set based direct search methods controlled random

search (CRS): CRS2, CRS3 and CRS6 as described

in [13], [24].

• Simulated annealing (SA) as described in [25].

• Genetic algorithm (GA) using fixed-length binary

strings for its individuals and evolutionary strategy

(ES) with real-valued individuals [10], [11].

The available algorithms can be used to solve general con-

strained optimization problems. The constraints that can-

not be handled explicitly are accounted for in the objective

function using simple penalty terms for constraints viola-

tion. The reformulation of Eq. (1) is made inside the GOOL

system:

min
x∈ℜn

[f (x)+ Ψ(x)] , Ψ(x) = µ
m

∑
i=1

max(0,gi(x))
p
. (2)

The user can insert the value of parameters µ and p in

Eq. (2).

4.3. Random Numbers Generation

Many heuristic algorithms provided in GOOL use random

number generators to calculate a new decision. The large

number of random generators have been developed over

the last decades. Several procedures representing different

types of generators are available in the library: uniform

(two variants), normal (three variants), beta distribution,

Cauchy distribution. Sequences of n-tuples that fill n-space

more uniformly, than uncorrelated random points are called

the quasi-random sequences [20]. That term is somewhat of

a misnomer, since there is nothing “random” about quasi-

random sequences – they are cleverly crafted to be, in fact

sub-random. Three such sequences are available in GOOL:

Halton, Sobol and Faure.

5. Case Study Results

5.1. Formulation of Price Management Problem

Several stochastic algorithms from GOOL library were

compared. In this section we present the computational

results obtained for prices optimization problem.

The considered case study was to calculate the optimal

prices for products that are sold in the market. The goal

was to maximize the total profit PR:

max
x

[

PR =
n

∑
i=1

(

xi

(1 + vi)
−di

)

Si(x)

]

, (3)

where n denotes number of products exist (corresponding

to n price decisions xi), vi and di are given constants cor-

responding to the market entities of VAT (value added tax)

and cost per product, Si are expected sales of product i

within the considered period, assuming that prices of all

products are fixed over this period. Several sales models

can be found in the literature [26]. All these models de-

scribe market response on the price of jth product. We

considered three of them.

53

Ewa Niewiadomska-Szynkiewicz and Michał Marks

Cobb-Douglas model. This model is following:

Si(x) = αi

n

∏
j=1

x
βi j

j , (4)

where x j denotes the price of product j, αi is the scaling

factor for sales of product i, βi j is the elasticity of sales

of product i with respect to the price of product j (βii is

referred to as the direct elasticity and βi j, i 6= j is the cross

elasticity).

Gutenberg model. The response function Eq. (4) is widely

used but it does not capture some important effects, such

as different market sensitivities to small and large price

changes. Another sales model is formulated:

Si(x) = ai −bxi + c1i sinh(c2i(xi − xi)) , (5)

where ai, bi, c1i and c2i denote model parameters and xi

the average competitive price, i.e., price computed as the

average of competitor prices taking into account their re-

spective market share. The additional term can be added

to this expression: c3i sinh
(

c4i(xi − xi0)
)

, where xi0 denotes

the current price of the product i. The response function

Eq. (5) belongs to the group of s-shaped models. The ma-

jor difficulty is in fact that for some values of parameters

such market response can involve multiextreme profit PR

in Eq. (3), as presented in Fig. 6 (see [27] for details).

Fig. 6. Values of profit for different prices of a given product

(model Eq. (5)).

Hybrid model. In the model Eq. (5) the cross-effects with

other substitute or complementary own products are not

included. The next considered model formulated in [28]

combines functions Eqs. (4) and (5):

Si(x) = ai −bxi + αi

n

∏
j=1

x
βi j

j

+c1i sinh(c2i(xi − xi))

+c3i sinh
(

c4i(xi − xi0)
)

, (6)

where αi, βi j, xi and xi0 the same like in Eqs. (4) and (5),

ai, b, c1i, c2i, c3i, c4i model parameters. This model exhibits

an s-shape and includes cross-effects.

Constraints. The following constraints for price, sale and

cash of each product and for total sale and cash can be con-

sidered: ximin
≤ xi ≤ ximax

, Simin
≤ Si ≤ Simax

, Cimin
≤ xiSi ≤

Cimax
, T Smin ≤

n

∑
i=1

xi ≤ TSmax, TCmin ≤
n

∑
i=1

xiSi ≤ TCmax.

In listed constraints ximin
and ximax

denote minimal and max-

imal prices of product i, Simin
, Simax

minimal and maximal

sale, Cimin
, Cimax

minimal and maximal cash, T Smin, T Smax

minimal and maximal total sale, and TCmin, TCmax min-

imal and maximal total cash. In practice, usually prices

of only some products are changed at anyone time. The

following constraint restricts the number of prices, which

can be modified

n

∑
i=1

γ(xi − xi0)
2

1 + γ(xi− xi0)
2
≤ w , (7)

where γ and w are assumed parameters, xi0 the current price

of the product i.

5.2. Comparison of Market Response Models

The comparative study of all presented market response

models was performed. The goal of the experiments was

to calculate the optimal prices for fifteen products (n = 15

in Eq. (3)). The optimization model was defined using

the GOOL graphical editor (see Fig. 2). All models pa-

rameters were randomly generated in ranges determined

based on real historical data. The evolutionary strategy

solver supplied in the GOOL library was used to solve the

task.

The results – suggested prices of fifteen products – obtained

for three presented market response models, taking into

account only price bounds are depicted in Fig. 7. We can

observe that the model Eq. (4) suggests the highest prices

while the model Eq. (5) expresses less optimism suggesting

lower prices. The results for Eq. (6) are between values

obtained using Eqs. (4) and (5).

5.3. Comparison of Solvers

The goal of the second series of tests was to compare the

efficiency of selected solvers from the GOOL library. The

experiments were performed for historical data. Calcula-

tions were terminated after 100 iterations of each algorithm.

The results obtained for 15 products, market response

function Eq. (6) w.r.t. all listed constraints are compared

in Table 1. The values collected in the adequate columns

denote: PR – the total profit defined in Eq. (3), time – time

of calculations in seconds.

Table 1

Simulation results for market response function Eq. (6)

Method PR Time [s]

CRS2 1252 91

SA 1286 96

ES 1281 11

54

A Software Platform for Global Optimization

Fig. 7. Prices for different market response models.

The available numerical results indicate that ES and SA

methods give better solution than CRS method. The best re-

sult was obtained using SA but the time required to compute

solution was longer than ES method. Attempts to solve the

considered problem using other solvers provided in GOOL

(clustering method, branch-and-bound and chaotic move-

ment) failed. The feasible solution was not found or the

computation time was unacceptable long. The conclusion

to be drawn is that heuristics such as ES, although quite

simple are efficient and robust for many real-life optimiza-

tion problems.

Finally, two versions of controlled random search meth-

ods described in [13] and [24], i.e., CRS2 and CRS6 were

compared. CRS are population set based random search al-

gorithms. The basic random search consists of three main

steps: generate the initial set of points, transform the pop-

ulation, and check the assumed stopping condition. Sev-

eral versions of CRS methods related to different strategies

of new trial points calculations were developed. CRS2 is

the simplest one. CRS6 is much more advanced – it

uses quadratic interpolation and random numbers gener-

ation from the β distribution to calculate new trial points.

The weakness of all CRS methods is the way in which the

constraints of a type gi(x) ≤ 0 are handled. The infeasible

points are simply rejected from further consideration. The

suggested approach is to use penalty terms for constraints

violation Eq. (2).

The optimization results of price management problem

Eq. (3) with sales model Eq. (4) and all listed constraints,

considering CRS2 and CRS6 methods are presented

in Tables 2 and 3. The experiments were performed for

several sets of historical data, containing various groups

of products offered in supermarkets. Prices of 15, 31 and

53 products were calculated. Each solver was executed

five times, the assumed accuracy was 10
−4. The results

obtained for modified objective function Eq. (2) were com-

pared with those obtained for the standard approach that

discards infeasible points (Table 2). The values collected

in tables denote: n – number of products, PR – average

total profit, time – average time of calculations in seconds,

fcall – average number of the objective function Eq. (3)

evaluations.

The results presented in Tables 2 and 3 indicate that the

CRS2 algorithm is very fast but only gives an approximate

solution, even in the case when the penalty function is used

(see Table 2). The CRS6 method provides better results

with respect to CRS2 but the time required to compute

a solution was longer than the CRS2 method.

Table 2

Total profit PR in case of two approaches

to infeasible points (15 products)

Method
Discarding Penalty for

infeasible points constraints violation

CRS2 1215.95 1237.45

CRS6 1241.27 1241.27

Table 3

Comparison of the fastest and the most

accurate methods

n Best PR Algorithm fcall PR Time [s]

15 1241.27 CRS2 24002 1235.41 1.98

CRS6 39392 1241.27 3.16

31 830.75 CRS2 69562 805.76 23.39

CRS6 122298 830.71 33.64

53 544.65 CRS2 76169 526.03 23.85

CRS6 285849 544.65 75.99

As a conclusion the following strategy is proposed: in

cases when accuracy of the solution is the crucial the

CRS6 method with the discarding of infeasible points are

suggested; when it is crucial that the problem is solved

quickly the CRS2 method with the penalty function should

be used.

6. Summary and Conclusions

In this paper a brief description of the software plat-

form GOOL for complex systems optimization was made.

GOOL was design to be powerful, effective, flexible, and

easy to use software for optimization. It is suitable to solve

55

Ewa Niewiadomska-Szynkiewicz and Michał Marks

different optimization problems and can be successfully

used for global minimum calculating. The user-friendly in-

terface allows to perform the numerical experiments in the

effective manner both for research and education. The open

design of the system architecture, and its extensibility to

include new solvers make GOOL be a useful platform for

global optimization. The current version of GOOL can

support researchers and engineers during the design and

control of real-life complex systems in the sense of deci-

sion automation. In our future research we plan to extend

our system to multiobjective optimization to provide the

tool that will support interactive optimization process.

Acknowledgments

This work was partially supported by Ministry of Science

and Higher Education grant NN514 416934.

References

[1] E. Niewiadomska-Szynkiewicz, “Symulacja komputerowa w analizie

i projektowaniu złożonych systemów sterowania”, Warsaw, Warsaw

University of Technology Press, 2005 (in Polish).

[2] J. C. Spall, Introduction to Stochastic Search and Optimization. New

Jersey: Wiley, 2003.

[3] R. Horst and P. M. Pardalos, Handbook of Global Optimization.

Dordrecht: Kluwer, 1995.

[4] Z. Michalewicz and D. B. Fogel, How to Solve it: Modern Heuristcs.

New York: Springer, 2000.

[5] T. Weise, Global Optimization Algorithms: Theory and Application,

e-book, 2009 [Online]. Available: http://www.it-weise.de/

projects/book.pdf

[6] M. Publicewicz and E. Niewiadomska-Szynkiewicz, “GOOL –

global optimization object-oriented library”, in Proc. KAEiOG’2003,

Conf., Łagów, Poland, 2003, pp. 173–181.

[7] A. C. Floudas, Deterministic Global Optimization: Theory, Methods

and Applications. Dordrecht: Kluwer, 1999.

[8] A. Neumaier, Complete Search in Continuous Global Optimization

and Constraint Satisfaction, Acta Numerica. Cambridge, Cambridge

University Press, 2004, pp. 271–369.

[9] A. A. Zhigljavsky and A. Zilinskas, Stochastic Global Optimization.

Springer Optimization and Its Applications. New York: Springer,

2007.

[10] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. New York: Springer, 1997.

[11] R. Schaefer, Foundations of Global Genetic Optimization. Berlin-

Heidelberg: Springer, 2007.

[12] A. Karbowski and E. Niewiadomska-Szynkiewicz, “Obliczenia rów-

noległe i rozproszone”, Warsaw, Warsaw University of Technology

Press, 2001 (in Polish).

[13] W. L. Price, “Global optimization by controlled random search”,

JOTA, vol. 40, no. 3, pp. 333–348, 1983.

[14] K. Holmqvist and A. Migdalas, “C++ class library for interval arith-

metic in global optimization”, in State of the Art in Global Optimiza-

tion, C. A. Floudas and P. M. Pardalos, Eds. Dordrecht: Kluwer,

1996.

[15] “Solver technology – global optimization” [Online]. Available:

http://www.solver.com/technology5.htm

[16] S. Tschoke and T. Polzer, “Portable parallel branch-and-bound li-

brary: PPBB-Lib, user manual, library version 2.0”, University of

Paderborn, Germany, 1999.

[17] “COCONUT – continuous constraints updating the technology”

[Online]. Available: http://www.mat.univie.ac.at/∼neum/

glopt/coconut

[18] A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinko, “A compar-

ison of complete global optimization solvers”, Math. Programm.,

vol. 103, no. 2, pp. 335–356, 2005.

[19] “Global World Forum” [Online]. Available:

http://www.gamsworld.org/global/index.ht

[20] W. H. Press, S. A. Tukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes in C, The Art of Scientific Computing. Cambridge,

Cambridge University Press, 1992.

[21] A. Torn and A. Zilinskas, Global Optimization, LNCS, vol. 350.

Berlin: Springer, 1989.

[22] A. O. Griewank, “Generalized descent for global optimization”,

J. Opt. Theory Appl., vol. 34, no. 2, pp. 11–39, 1981.

[23] J. W. Rogers and R. A. Donnelly, “A search technique for global

optimization in chaotic environment”, JOTA, vol. 61, no. 1,

pp. 111–121, 1989.

[24] M. M. Ali and C. Storey, “Modified controlled random search al-

gorithms”, Int. J. Comput. Math., vol. 53, no. 3–4, pp. 229–235,

1994.

[25] A. Dekkers and E. Aarts, “Global optimization and simulated an-

nealing”, Math. Programm., vol. 50, no. 1–3, pp. 367–393, 1991.

[26] H. Simon, Price Management. North-Holland: Elsevier, 1989.

[27] M. Dygas and E. Niewiadomska-Szynkiewicz, “Optymalna wycena

produktów i usług – modele, oprogramowanie i eksperymenty

symulacyjne”, Int. Rep. ICCE WUT, no. 03-17, Warsaw, 2003

(in Polish).

[28] K. Malinowski, “PriceStrat 4.0 Initial Research Paper”, KSS Int.

Doc., Manchester, 2000.

Ewa Niewiadomska-Szynkie-

wicz received her Ph.D. in

1996, D.Sc. in 2006 from the

Warsaw University of Technol-

ogy. She works as a Professor

of control and computation en-

gineering at the Warsaw Univer-

sity of Technology. She is the

Head of the Complex Systems

Group. She is also an associate

professor at the Research and

Academic Computer Network (NASK), and the Director

for Research of NASK since 2009. She is the author or

co-author of three books and over 90 journal and confer-

ence papers. Her research interests focus on complex sys-

tems modeling and control, computer simulation, global

optimization, parallel calculations and computer networks.

She was involved in a number of research projects includ-

ing three EU projects, coordinated the Groups activities,

managed organisation of a number of national-level and in-

ternational conferences.

e-mail: ens@ia.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

e-mail: ewan@nask.pl

Research Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

Michał Marks – for biography, see this issue, p. 41.

56

