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Abstract — Stochastic modeling of teletraffic systems with
restricted availability and correlated input arrival rates is of
great interest in GoS (grade of service) analysis and design
of certain telecommunication networks. This paper presents
some analytical properties of a recursive nature, associated
with the infinitesimal generator of the Markov process which
describes the state of a teletraffic system with MMPP (Markov
modulated Poisson process) input traffic, negative exponen-
tially distributed service times, finite queue and restricted
availability defined through a loss function. Also the possi-
ble application of the derived properties to a direct method
of resolution of the linear system, which gives the stationary
probability distribution of the system, will be discussed.

Keywords — stochastic analysis of telecommunication networks,
teletraffic theory, GoS analysis of overflow teletraffic systems,
queuing systems.

1. Introduction

Problems of performance analysis in telecommunication
networks led in the past to the concept of restricted avail-
ability systems in which the connection paths may be such
that an incoming call may be unsuccessful even when there
are still idle circuits in the destination group. In classi-
cal studies [1] of teletraffic link systems “loss functions”
were used to represent in simple mathematical terms the
effects of the restricted availability with respect to the ar-
riving calls for service. This function

�
w(υ)

�
is defined as

the conditional probability that a call arriving when there
are υ occupied servers, is rejected. In particular this con-
cept was used for calculating the blocking probability of
restricted availability overflow systems arising in teletraf-
fic networks with alternative routing. Although these sys-
tems typically did not have queuing facilities, modern tech-
nologies may provide systems with limited waiting room
(say k queuing positions in a buffer). We also may consider
teletraffic systems where decisions regarding the acceptance
or rejection of a call are of a probabilistic nature and based
on the number of calls already in progress (see example
in [2]) or waiting for service, mechanism which could be
also represented by some specific type of loss function. An
example could be the case of “load sharing” [3] schemes
of adaptive dynamic routing in multiexchange networks in
which calls rejected by a given route are offered to alter-
native routes according to a set of probabilities which are

a function of the states (number of occupations) of the in-
dividual groups of channels in the different links of the
network.
On the other hand a number of studies [4–7] suggest that
the MMPP could be used successfully for modeling certain
types of superposition of complex teletraffic flows, includ-
ing packetized voice and packet data traffic as well as video
sources traffic in ATM networks. In particular the MMPP
is the exact model for the superposition of independent
IPP (interrupted Poisson processes), representing overflow
traffics resulting from the overflow of Poisson inputs in loss
systems with exponential distribution of the service times
(model of great interest in circuit-switched networks with
alternative routing).
The m-MMPP point process may be defined as a dou-
bly stochastic Poisson process where the intensity process
fλ (t); t � 0g is governed by an ergodic Markov process,
with m states, i.e.:

λ (t) := λI(t) ;

where the R.V. (random variable) I(t) indicates the state,
at instant t, of an ergodic Markov process. When I(t) = f ,
f = 1; : : : ; m, the MMPP is said to be in phase f .
The MMPP is also a particular case of the “Versatile
Markovian Point Process” model in [8] and may also be
treated as a particular case of the Markovian arrival pro-
cess model, see [9] and [10].
In a previous work [11], the exact analysis of a loss
system with a m-MMPP input, a finite queue of capac-
ity k, N servers with negative exponential service times
and a loss function ω(υ) := 1�αυ , was performed. The
extension of this work by considering the exact analysis
of a system with finite queuing capacity whose inputs are
defined from a number of independent MMPPs each being
subject to a particular “access function” is given in [12].

The analysis of such systems, including the characteriza-
tion of the associated key processes (describing the system
state, the overflow traffic and the carried traffic) is expressed
in terms of the infinitesimal generator of the Markov pro-
cess which describes the state of the system, Q. This paper
presents some analytical properties of a recursive nature,
associated with that infinitesimal generator. The consid-
ered loss function of the system may in general depend
both on the number of occupations and the phase of the
input MMPP. The paper begins by reviewing the basic fea-
tures of the ergodic Markov process which represents the
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Q=

666666666664

A= α(0)Λ α(0)Λ
µ I A�α(1)Λ�µ I α(1)Λ

: : :

Nµ I A�α(N)Λ�Nµ I α(N)Λ
Nµ I A�α(N+1)Λ�Nµ I α(N+1)Λ

: : :

Nµ I A�Nµ I

777777777775
(2)

system state by describing the structure of its infinitesimal
generator Q obtained from previous work of the authors.
Next, some recursive formulae for the matrix which con-
tains the basis of the vector space of the solutions associated
with a submatrix of a matrix of the type of Q, are derived
by exploring the diagonal block structure of this type of
matrices. These properties are then applied to Q having
in mind its specific block structure. Also the possible ap-
plication of the derived properties to a direct method of
resolution of the linear system which gives the stationary
probability distribution of the system, will be considered.
Some numerical examples of application of such a direct
method will be presented in order to illustrate its potential
advantages and limitations.

2. Characterization of the system

Let us consider the stochastic service system represented
in Fig. 1, with m-MMPP input, finite queue k, N ser-
vers, negative exponentially distributed service times (with
mean µ�1) and a loss function ω(υ ; f ) = 1� α(υ ; f ),
υ = 0; : : : ; N+k, f = 1; : : : ; m.

Fig. 1. Stochastic service system.

Note that the input m-MMPP may represent itself the super-
position of a number of independent mr -MMPPs, and the
access function α(υ ; f ) enables to represent the conditional
probability of an arrival being accepted when the system
is in state (υ ; f ), where υ is the number of occupations
and f is the current phase of the input process (this general
case was analysed in [12]), assuming that each mr -MMPP
has a particular access function αr(υ). The details of the
analysis of the system, namely the characterization of the
overflow process, the acceptance process and the termina-
tion process are given in [11] and [12].

The stochastic process fXt ; t � 0g which describes the sys-
tem state at instant t, has the state space:

I = fi = (υ ; f ); υ = 0; : : : ; N+k; f = 1; : : : ; mg (1)

and is an ergodic Markov process. Xt is characterized by
the infinitesimal generator [12] – see Eq. (2), shown at the
top of this page, where:

α(υ) = diag
�
α(υ ;1); : : : ; α(υ ;m)

�
;

Λ = diag(λ1; : : : ; λm) ;

λ f is the intensity of the input MMPP in phase f and A is
the infinitesimal generator of the ergodic Markov process
governing the intensity process of the input MMPP.

An essential element of the system analysis or of any sys-
tem with similar infinitesimal generator is the stationary
measure π of Q (stationary probability distribution):

π =
�
πi

�
; i 2 I ; (3)

such that: �
πQ= 0
πe= 1

;

where e is the column matrix e= [1; : : : ; 1]T .

Note that the most relevant GoS parameters of this type of
system, namely the call congestion and the waiting proba-
bility, may be expressed in terms of π (see [11] and [12]).
In this paper a recursive formula for π will be derived which
beyond its analytical value may also be used for a direct
resolution of the linear system (3).

3. Analytical properties

3.1. Preliminary analysis and results

Let us consider the linear system (3), where Q is the square
matrix composed of S+ 1 rows (and columns) of square
blocks of order m:

Q :=

6666666664

A0 C0
M1 A1 C1

: : :

Mi Ai Ci
: : :

MS AS

7777777775
: (4)
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It is assumed that Q is the infinitesimal generator of an
ergodic jump Markov process (of stationary measure π),
and the matrices M1; : : : ;MS are regular.
Let us now consider the submatrix Q0 with (S+1) block
rows and Sblock columns, obtained from Q by eliminating
the block column S:

Q0 :=

666666666664

A0 C0
M1 A1 C1

: : :

Mi Ai Ci
: : :

MS�1 AS�1
MS

777777777775
: (5)

Since the square submatrix Q00:

Q00 :=

66666664
M1 A1 C1

: : :

MS�2 AS�1 CS�2
MS�1 AS�1

MS

77777775 (6)

of order S:m is regular (because all its diagonal blocks
M1; : : : ; MS, are regular), we conclude that Q0 has also rank
S:m (Q0 has S:m columns). Therefore the set s of solutions
of the homogeneous system:

uQ0 = 0 (7)

constitutes a vector space of dimension (S+1)m�Sm=m:
Let T := fx0; : : : ; xm�1g be a basis of s, and consider the
rectangular matrix:

X :=

6664 x0
: : :

xm�1

7775=
�
X0 jX1 j : : : jXS

�
; (8)

where every square block Xi has order m.
From Eqs. (7) and (8):

XQ0 = 0: (9)

Obviously π 2 s(πQ= 0) πQ0 = 0). Then we have:

π = γX ; (10)

where γ := [γ0; : : : ; γm�1] is a row matrix of order m.
Representing by Ik the identity matrix of order k, putting:

X0 = Im (11a)

(which guaranties T as a basis of s) and multiplying the
first block column of Q0 by X we obtain:

X0A0+X1M1 = 0 , X1 =�X0A0M�1
1 =�A0M�1

1 : (11b)

Using now the second block column:

X0C0+X1A1+X2M2 = 0 , X2 =�(X0C0+X1A1)M
�1
2 :

(11c)

For the (i�1)th block column:

Xi =�(Xi�2Ci�2+Xi�1Ai�1)M
�1
i ; i = 2; : : : ;S: (11d)

Therefore Eqs. (11) allow us to obtain X recursively.
Let us now designate by Qi ; i = 0; : : : ;S, the ith block
column of matrix Q. From (9) we have XQi = 0;
i 2 f0; : : : ;S�1g. However the ergodicity of the Markov
jump process referred to above implies, as is well known,
that the set of solutions of Eq. (3) constitutes a vector space
of dimension 1. Then we have, for m> 1 (the case m= 1 is
trivial because π becomes directly determined from (11)):

XQS 6= 0: (12)

Therefore (12) in conjunction with Eqs. (10) and (3) allows
us to say that γ can be obtained by resolving the m-order
system:

γ(XQS) = 0: (13)

Explicitly:

γ(XS�1CS�1+XSAS) = 0: (14)

This system is obviously singular but its vector space of
solutions has dimension 1. By introducing γ in (10), π be-
comes known in terms of X after the normalization πe= 1.

Remark. The present analysis is also applicable to systems
with Q having the same general properties, but with the
form:

Q=

66666664
A00 A01 A02 : : : A0S
M1 A11 A12 : : : A1S

M2 A22 : : : A2S
: : :

MS ASS

77777775 : (15)

In this case, (11) becomes:

Xi =�

 
i�1

∑
j=0

XjAj ;i�1

!
M�1

i ; i = 1;2; : : : ;S: (16)

3.2. Application to the system

In the case of the matrix Q of the system shown in Fig. 1
we have S= N+k and:

Mi = f (i)µ Im; i = 0; : : : ;S

Ci = α(i)Λ; i = 0; : : : ;S�1

CS = 0

Ai = A�Mi�Ci ; i = 0; : : : ;S; (17)

where α(i) and Λ are diagonal of order m; Im is the identity
matrix of order m; A is singular of order m and:

f (i) :=

�
i if i < N
N if i � N

:
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Proposition. For the case of matrix Q (2) and making
X0 = Im; X is given recursively by:

Xi =

$
Xi�1Ci�1�

 
i�1

∑
j=0

Xj

!
A

%
M�1

i ;

i = 1; : : : ;N+k: (18)

Proof (by induction):

1. From Eqs. (11b) and (16) (for i = 1):

X1 =�A0M�1
1 = (C0�A)M�1

1

which satisfies Eq. (18), taking into consideration
that X0 = Im.

2. From Eq. (11d):

Xi+1 =�
�
Xi�1Ci�1+XiAi

�
M�1

i+1: (19)

Substituting (17) in (19):

Xi+1 =
�
�Xi�1Ci�1�XiA+XiCi +XiMi

�
M�1

i+1:

Introducing (18):

Xi+1 =

$
�Xi�1Ci�1�XiA+XiCi +Xi�1Ci�1+

�

� i�1

∑
j=0

Xj

�
A

%
M�1

i+1 =

"
XiCi �

� i

∑
0

Xj

�
A

#
M�1

i+1:

2

From Eq. (18), with i = S we have:

XSMS=�

 
S�1

∑
j=0

Xj

!
A+XS�1CS�1

or:  
S�1

∑
j=0

Xj

!
A= XS�1CS�1�XSMS:

By adding XSA to both sides we obtain: 
S

∑
j=0

Xj

!
A= XS�1CS�1�XSMS+XSA

or, taking into consideration that AS= A�MS: 
S

∑
j=0

Xj

!
A= XS�1CS�1+XSAS

this implies, taking (15) into consideration, that the m-order
system:

γ

" 
S

∑
j=0

Xj

!
A

#
= 0 (20)

may be used for obtaining γ .
The result (20) can also be derived from stochastic consid-

erations, noting that u :=
N+k

∑
0

πυ is the stationary probabil-

ity measure of the underlying Markov jump process of the
input MMPP.

3.3. The case m= 2m= 2m= 2

In this case, formulae (18) and (20) can be simplified. In
fact since A is the infinitesimal generator of a Markov jump
process, the sum of the elements of each row is zero. In
other words, the first and the second columns of A have
symmetrical elements. Let

A0 :=

�
a0;0
a0;1

�
; A1 :=

�
a0;1
a1;1

�
;

iR :=
i

∑
j=0

Xj ; i = 0; : : : ;N+k (21)

since A0 =�A1, this implies iRA0 =�iRA1. So, this kind
of symmetry of matrix A is transmitted to the matrices iRA
and these matrix products are simplified.
The space of solutions of the singular system (20) has di-
mension 1. So we may arbitrate γ0 = 1 and put:

R :=N+k R :=

�
r0;0 r0;1
r1;0 r1;1

�
;

RA=

�
r0;0a0;0+ r0;1a1;0 �

�
r0;0a0;0+ r0;1a1;0

�
r1;0a0;0+ r1;1a1;0 �

�
r1;0a0;0+ r1;1a1;0

� �(22)

then:

γ(RA) = [1;γ1]�

�

�
r0;0a0;0+ r0;1a1;0 �

�
r0;0a0;0+ r0;1a1;0

�
r1;0a0;0+ r1;1a1;0 �

�
r1;0a0;0+ r1;1a1;0

� �= 0

and

γ1 =�
r0;0a0;0+ r0;1a1;0

r1;0a0;0+ r1;1a1;0
=�

r0;0+αr0;1

r1;0+αr1;1
;

α :=
a1;0

a0;0
: (23)

4. Calculation of the probability
distribution

An obvious application of the recursive formula (18) is the
resolution of the linear system (3).
In [13], an iterative method for solving a system which is
a particular case of the one under consideration (with full
availability which corresponds to α(υ ; f ) = 1, for all (υ ; f ),
was presented. This method results from the application
of the general procedure for constructing iterative methods
(see [14], p. 532):

π 0Q= 0, π 0R=�π 0(Q�R),

, π 0 = π 0(Q�R)(�R)�1 (24)

and

π
0(n) = π

0(n�1) (Q�R)(�R)�1
; (25)
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where π 0(n) is the value of π 0 after the nth iteration. This
scheme converges if the spectral radius of (I �QR)�1 is
less than 1 ([14], theor. 8.2.1).
In [13] it is considered:

R := IN+k+1
 (A�Λ�Nµ Im); (26)

where 
 represents Kronecker product.

Putting
M =�(A�Λ�Nµ Im) (27)

then
(�R)�1 = IN+k+1
M�1

: (28)

Introducing (27) and (28) in (25) the following iterative
method is now obtained for the system (3), with Q given
by (2):

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

π 0(n)
0

=

�
π 0(n�1)

0

h�
I �α(0)

�
Λ+Nµ I

i
+

+ π 0(n�1)
1

µ I

�
M�1

: : :

π 0(n)
i

=

�
π 0(n�1)

i�1
α(i�1)Λ+π 0(n�1)

i

h�
I �α(i)

�
Λ+

+(N� i)µ I
i
+π 0(n�1)

i+1
(i +1)µ I

�
M�1

: : :

π 0(n)
N

=

�
π 0(n�1)

N�1
α(N�1)Λ+π 0(n�1)

N

h�
I �α(N)

�
Λ
i
+

+ π 0(n�1)
N+1

Nµ I

�
M�1

: : :

π 0(n)
N+ j

=

�
π 0(n�1)

N+ j�1
α(N+ j�1)Λ+π0(n�1)

N+ j
�

�
h�

I �α(N+ j)
�
Λ
i
+π 0(n�1)

N+ j+1
Nµ I

�
M�1

: : :

π 0(n)
N+k

=

�
π 0(n�1)

N+k�1
α(N+k�1)Λ+π0(n�1)

N+k
Λ
�

M�1:

(29)

As initial value, analogously to Meier [13], we may put:

π
0(0) =

�
(N+k+1):m

�
�1

eT
: (30)

As an alternative one might apply the recursive scheme (18)
for constructing a direct method of resolution of the system:

1. X0 = Im.

2. For i = 1; : : : ;S, apply the recursion (18) in Xi .

3. Solve:

γ
�
XS�1α(S�1)Λ+XS�1(A�MS)

�
= 0

with respect to γ , by any suitable method.

4. Compute π 0 = γX and finally π =
π 0

π 0e
.

This method has the disadvantage of any direct method:
error propagation. However it has the advantage of its sim-
plicity and efficiency in terms of implementation, which
makes it attractive for systems with small dimension. This
method may also be used to obtain a first approximate so-
lution, which may then be improved through an iterative
scheme such as (29). Note, on the other hand, that the
method takes advantage of the particular block structure
of Q.
For an interesting overview of numerical techniques for
the resolution of sparse linear systems namely related to
Markov processes analysis, see [15].

5. Computational experiments

In Table 1 some computational results are presented, ob-
tained under the following conditions:

µ = 1; k= 0; N = 160; m= 2;

α(υ) = diag(1�cN�υ ; : : : ;1�cN�υ);

υ = 0; : : : ; N�1; c=
λ

µN

(where λ is the mean intensity of the input m-MMPP, and
the choice of α(υ) corresponds to the classical “geometric
group” approximation by Smith [17]),

A=
j �a0 a0

a1 �a1

k
; Λ =

j l0
l1

k
:

Each row corresponds to a calculation of π by three
different methods: using recursive formula only (col-
umn “recurs”), recursive formula refined by the iterative
method (columns “refined” and “nitd”) and iterative method
only (columns “iterat” and “nitm”). Iterative schemes

are stopped when max
n��π (n)

i
� π (n�1)

i

��; i 2 I
o
� 10�6

(columns “nitd” and “nitm” present the number of itera-
tions in the respective case). After calculation of π , the
vector err = πQ is evaluated; columns “recurs”, “refined”,
“iterat” present the maximum absolute values of this vector
in the three cases:

recurs
refined
iterat

9=
;= max

n��erri
��; i 2 I

o
= εmax:

It can be seen that the recursion is sensitive to the “jit-
ter” [16] of the input MMPP. In fact greater values of a0
and a1 (which imply increased “jitter”) increases the re-
cursion fragility, leading to unacceptable εmax unless the
refinement through the iterative procedure is applied. An-
other point to take into consideration concerns the relative
values of l0 and l1; when l0 approximates l1, the input
MMPP approximates the Poisson process and recursion ef-
ficiency increases. To illustrate this behavior some exam-
ples are shown where the input MMPP degenerates into
a Poisson process (l0 = l1); in such examples εmax = 0.
In the great majority of cases the recursion followed by
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Table 1
Computational results

N l0 l1 a0 a1 λ recurs refined nitd iterat nitm
160 80 0 0.1 0.1 40.0 4.8�10�2 2.4�10�4 62 1.6�10�4 1864
160 80 0 0.1 1 72.7 1.1�10�3 1.6�10�4 3 2.8�10�4 1380
160 80 0 0.1 10 79.2 0 2.4�10�12 1 2.8�10�4 997
160 80 0 1 0.01 0.8 3.4�10�1 1.6�10�4 2069 1.3�10�4 2832
160 80 0 1 0.1 7.3 1.0�100 1.6�10�4 1743 1.3�10�4 2557
160 80 0 1 1 40.0 5.0�10�1 1.6�10�4 997 1.6�10�4 1367
160 80 0 1 10 72.7 0 3.9�10�8 1 2.8�10�4 929
160 80 0 10 0.1 0.8 3.1�101 1.6�10�4 2166 1.3�10�4 2116
160 80 0 10 1 7.3 2.4�101 1.3�10�4 1931 1.3�10�4 1823
160 80 0 10 10 40.0 3.0�101 2.2�10�4 1304 2.3�10�4 1082
160 80 48 0.1 0.1 64.0 0 8.9�10�16 1 2.1�10�4 1148
160 80 48 0.1 1 77.1 0 2.2�10�15 1 2.5�10�4 1352
160 80 48 0.1 10 79.7 0 1.8�10�15 1 2.5�10�4 1006
160 80 48 1 0.1 50.9 0 8.9�10�16 1 1.9�10�4 1629
160 80 48 1 1 64.0 0 6.7�10�16 1 2.1�10�4 992
160 80 48 1 10 77.1 0 1.8�10�15 1 2.5�10�4 980
160 80 48 10 0.1 48.3 0 3.1�10�9 1 1.9�10�4 1415
160 80 48 10 1 50.9 0 3.8�10�8 1 1.9�10�4 1364
160 80 48 10 10 64.0 0 1.9�10�7 1 2.4�10�4 1071
160 80 80 0.1 0.1 80.0 0 8.9�10�16 1 2.4�10�4 931
160 80 80 0.1 1 80.0 0 1.3�10�15 1 2.4�10�4 1098
160 80 80 0.1 10 80.0 0 8.9�10�16 1 2.4�10�4 1013
160 80 80 1 0.1 80.0 0 2.2�10�15 1 2.4�10�4 1098
160 80 80 1 1 80.0 0 6.7�10�16 1 2.4�10�4 931
160 80 80 1 10 80.0 0 8.9�10�16 1 2.4�10�4 1003
160 80 80 10 0.1 80.0 0 8.9�10�16 1 2.4�10�4 1013
160 80 80 10 1 80.0 0 1.3�10�15 1 2.4�10�4 1003
160 80 80 10 10 80.0 0 4.8�10�13 1 2.4�10�4 931
160 160 0 0.1 0.1 80.0 1.1�102 1.2�10�4 7175 1.6�10�4 1680
160 160 0 0.1 1 145.5 3.0�100 3.0�10�4 1091 4.0�10�4 1382
160 160 0 0.1 10 158.4 1.4�10�2 2.9�10�4 44 4.2�10�4 996
160 160 0 1 0.1 14.5 3.0�101 1.7�10�4 2583 1.2�10�4 3018
160 160 0 1 1 80.0 1.2�102 1.2�10�4 1542 1.7�10�4 963
160 160 0 1 10 145.5 2.0�101 5.5�10�4 490 4.0�10�4 1176
160 160 0 10 0.1 1.6 1.4�102 8.9�10�5 2294 1.1�10�4 2160
160 160 0 10 1 14.5 7.4�101 1.7�10�4 1809 1.2�10�4 1779
160 160 0 10 10 80.0 2.3�101 2.4�10�4 1180 3.2�10�4 631
160 160 96 0.1 0.1 128.0 0 1.9�10�9 1 2.5�10�4 1220
160 160 96 0.1 1 154.2 0 1.2�10�14 1 3.5�10�4 1383
160 160 96 0.1 10 159.4 0 1.3�10�15 1 3.5�10�4 1429
160 160 96 1 0.1 101.8 0 5.4�10�8 1 2.3�10�4 1771
160 160 96 1 1 128.0 0 1.0�10�8 1 3.2�10�4 1266
160 160 96 1 10 154.2 0 3.6�10�15 1 3.4�10�4 1082
160 160 96 10 0.1 96.6 8.3�10�1 2.5�10�4 692 2.3�10�4 1277
160 160 96 10 1 101.8 1.5�100 2.5�10�4 826 2.3�10�4 1328
160 160 96 10 10 128.0 1.1�10�4 5.6�10�5 1 3.2�10�4 1346
160 160 128 0.1 0.01 130.9 0 2.2�10�15 1 3.1�10�4 6168
160 160 128 0.1 0.1 144.0 0 1.3�10�15 1 2.9�10�4 1277
160 160 128 0.1 1 157.1 0 2.7�10�15 1 3.3�10�4 1380
160 160 128 0.1 10 159.7 0 1.3�10�15 1 3.3�10�4 1860
160 160 128 1 0.1 130.9 0 1.8�10�15 1 2.7�10�4 1449
160 160 128 1 1 144.0 0 1.8�10�15 1 3.2�10�4 1180
160 160 128 1 10 157.1 0 2.7�10�15 1 3.3�10�4 1083
160 160 128 10 0.1 128.3 0 3.6�10�15 1 2.7�10�4 1615
160 160 128 10 1 130.9 0 9.2�10�15 1 2.7�10�4 1568
160 160 128 10 10 144.0 0 3.1�10�15 1 3.2�10�4 1195
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the iterative procedure performs more efficiently then the
“pure” iterative procedure. The “refined” recursion tends
to be less efficient then the “pure” iterative method when
intensity l1 is close to 0, corresponding to the MMPP “de-
generating” into a IPP and when the “jitter” has a significant
increase, leading to a direct solution with great error. Many
other computational experiments have confirmed these gen-
eral trends.

6. Conclusions

Analytical properties of a recursive nature, associated with
the infinitesimal generator of jump Markov processes de-
scribing certain teletraffic systems having a peculiar diag-
onal block structure, have been derived. These proper-
ties were applied to the infinitesimal generator of a system
with MMPP input, negative exponentially distributed ser-
vice times, finite queue and restricted availability defined
through a loss function. The resulting recursive formulae
may be applied as a direct scheme for the resolution of the
linear system, which gives the stationary probability dis-
tribution of the system, in terms of which the main GoS
parameters may be expressed. Numerical examples with
systems of small dimension, suggest that the method error
depends critically on the “jitteriness” of the input MMPP
and the arrival intensities. Therefore it is recommended that
the derived recursion be used to obtain a first approximate
solution to be improved through an iterative scheme. Com-
parison of this “refined” recursive scheme with the “pure”
iterative model in [13] indicate that the former performs
more efficiently in most cases when the arrival intensities
are all relatively far from zero and when the “jitterness”
factor of the input MMPP is limited.
Finally note that the obtained recursive formulae are valid
for any infinitesimal generator with the considered block
structure. Possible application of the recursion to other
Markovian stochastic systems with the same type of block
structure might be envisaged as future work.
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