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Abstract — Envelope constrained filter design is concerned
with the time domain synthesis of a filter whose response
to a specified input signal stays within prescribed upper
and lower bounds and in addition has minimal noise enhance-
ment. In many practical applications, a “soft” approach,
such as least mean square, is not the most suitable and it
becomes necessary to use “hard” constraints such as the ones
considered in the paper. We present an overview of key ideas
related to robust continuous time envelope constrained filter
design.
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1. Introduction

In the continuous time envelope constrained (EC) filter de-
sign problem, we consider the design of a filter such that the
noiseless response to a specified excitation fits into a pre-
scribed envelope. Furthermore, we seek those filters that
minimize a cost functional that is appropriate for the appli-
cation of the filter.

Often in a time domain filter synthesis problem, the perfor-
mance criterion used is the mean square error between the
filter output and some desired signal. However, in many
practical applications, this “soft” approach is not the most
suitable and it becomes necessary to use “hard” constraints
such as envelope constraints. Moreover, problems often
arise in practice where it is crucial that the shaped signal
fits into a prescribed envelope. The specifications of the
output constraint envelope can arise either from standards
set by certain regulatory bodies or practical design con-
siderations. In telecommunications systems, pulse shapes
used in transmission systems are specified by recommen-
dations issued by standards bodies [1�4]. In sonar, radar
ranging systems and imaging systems, the constraints arise
from consideration of resolution and are associated with
pulse compression technique requirements [5�8].

Over the past twenty years, the work on envelope con-
strained filters has evolved to take into account many engi-
neering issues. In our overview, we present the key ideas
related to robust continuous time envelope constrained fil-
ter design. Numerical methods for obtaining the solution
to the problems formulated are not considered in this pa-
per. The reader is referred to the following references for
a range of efficient techniques for computing the optimal
solution [9�18].

2. The envelope constrained filter
applications

In this section, we briefly review a few applications that
have motivated the study of envelope constrained filter de-
sign. The applications covered are by no means exhaustive
and are intended to bring out a number of different aspects
of the envelope constrained filter design problem.

2.1. Radar application

In radar and sonar, narrow pulses are required for range res-
olution and clutter reduction, but it is also important that
the transmitted pulses contain sufficient energy for long-
range detection. These two conflicting requirements would
seem to dictate narrow pulses with high peak power. How-
ever, because of transmitter design considerations, peak
power is limited, pulses of relatively long duration are trans-
mitted and an operation known as pulse compression is
performed at the receiver as illustrated in Fig. 1. This com-
pression is most commonly achieved with a matched filter,
that is, by correlating the incoming signal with the time-
shifted and/or frequency shifted copies of the transmitted
waveform. Matched filtering is well known to be optimal
with respect to various performance criteria.

Fig. 1. Pulse compression.

The presence of a signal is detected when the matched filter
output exceeds a threshold value, and parameters such as
time delay and (Doppler) frequency shift are estimated by
locating the peak output in time and frequency. If a sig-
nal s, non-zero on the interval (t0; t0+T), appears at the
input to a pulse-compression filter, the output typically con-
sists of a main peak surrounded by sidelobes, as shown in
Fig. 1. When a radar must distinguish among multiple tar-
gets, these sidelobes can cause false detections and impede
resolution of adjacent pulses. For example, if the trans-
mitted pulse is a 13-bit Barker code and a matched filter
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receiver is used, the output is compressed to 1/13 of the
original pulse length, improving range resolution with no
detection loss. Unfortunately, the output pulse is accompa-
nied by 12 sidelobes, where the amplitude of each of these
sidelobes is 1/13 of that of the main lobe peak. Thus, it is
necessary in certain cases to remove or at least restrict the
height of these sidelobes to an acceptable level. Of course
there will be some noise penalty that results.

Problems of this type are often treated by using a least
square approach, where the mean squared difference be-
tween the output and some desired pulse shape is mini-
mized. If the sidelobes are reduced using a least square
cost, there is no guarantee that the appearance of low-
energy high-peak sidelobes (which can cause false detec-
tions) can be avoided. Moreover, the solution can be sen-
sitive to the detailed structure of the desired pulse, and it
is usually not obvious how the shape of the desired pulse
should be altered in order to achieve better performance in
terms of low level sidelobes.

The reduction of sidelobes can be formulated in terms of
an envelope constrained problem: find the filter (if it exists)
that causes least detection loss while reducing the output
sidelobes to a specified fraction of the mainlobe peak. The
envelope or pulse shape mask takes on the form shown in
Fig. 2. Since the probability of detection is proportional
to the signal to noise ratio, which in turn, is inversely pro-
portional to the square of the norm of the filter, we are
faced with the task of finding a minimum norm filter sub-
ject to the constraint that the sidelobe peaks remain within
the specified values.

Fig. 2. Pulse shape constraints for radar/sonar problem.

2.2. Digital transmission application

In telecommunication standards, the performance of a dig-
ital link is often characterized by pulse masks applied to

the test pulses (see, for example, the CCITT recommen-
dations [1, 2]). The signal s would correspond to the
test signal specified in the standards. As an example,
consider the equalization of an RG59B/U coaxial cable
channel whose attenuation follows an approximate

p
f law

(one with a 150 m length has approximately 12 dB loss
at 70 MHz). The frequency response of a coaxial cable of
length l is given by

H( jω) = e�Al
p

jω = e�Al
�p

ω=2+ j
p

ω=2
�
:

Let A0 denote the attenuation of the cable in dB at a fre-
quency f0 Hz. Then,

A0 =
�
20Al loge

�rω0

2
=
�
20Al loge

�p
π f0 ;

where ω0 = 2π f0. The impulse response of the cable is
given by

h(t) =
Al

2
p

πt3
exp

�
� A2l2

4t

�
; t > 0 :

A plot showing the impulse response for several values of
Al is given in Fig. 3. Since Al increases with increasing ca-
ble length, the peak of the pulse in transit decreases and its
base width widens as the cable lengthens. In order to suc-
cessfully detect these pulses, the width must be compressed
by means of pulse shaping networks at the receiving end.

Fig. 3. Impulse response of coaxial cable for various lengths.

For a digital transmission channel consisting of a coaxial
cable operating at the DX3 rate, i.e. 45 Mb/s (see [1, 2]),
the American National Standards Institute (ANSI) specifies
that at the pulse received, after transmission should fit in
the mask illustrated in Fig. 4. From the characteristics of
the cable shown in Fig. 3 it can be seen that for long cables
the received pulse will not fit in the mask. An equalizing
filter is required to shape the impulse response of the cable
so that it fits in the envelope given by the DSX3 pulse tem-
plate in Fig. 4. In Fig. 4 we have also shown the received
pulse and the pulse at the output of an optimal EC fil-
ter. The cable has a 30 dB attenuation at frequency 2π=β ,
where β denotes the baud interval (22:35�10�9 s).
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Fig. 4. DSX3 pulse template, coaxial cable and filter output.

Consider another transmission system example shown in
Fig. 5, where a pulse pre-shaping filter is placed before the
channel. When a rectangular pulse is transmitted, the noise-
less output of the channel is required to fit into a T1 mask
specified by the ANSI. The T1 baud rate is 1.544 Mb/s.
It makes sense to minimize the norm of the pulse shap-
ing filter to reduce the crosstalk to other signal as this is
proportional to the transmit signal power.

Fig. 5. Pre-shaping of pulse.

3. Formulation of optimal envelope
constrained filters

In this section, we first introduce the basic EC filter design
problem. This includes consideration of possible cost func-
tionals for selecting the optimum filter. Then we expand
the basic formulation by considering the problem of de-
signing EC filters that are robust to signal modeling errors
and filter implementation errors.

3.1. Basic envelope constrained filter design problem

We now formalize somewhat the definition of the EC filter-
ing problem in its simplest form. The previous section has
outlined some applications that motivated the study of the
EC filtering problem without an explicit problem statement.
This section presents a more precise statement that covers

all the applications previously discussed for both analog
and hybrid filters.

3.1.1. Analog filters

Consider the filtering function shown in Fig. 6 be it for
pulse compression or equalization. The excitation s enter-
ing the filter is corrupted by additive zero-mean, stationary
noise n. The impulse response u of the linear time-invariant

Fig. 6. Receiver model and output mask.

filter is to be determined and is restricted to be Lebesque
square-integrable on [0;∞). The output consists of two
components ψ and ξ due to the signal and noise respec-
tively. The noiseless output ψ is given by the convolution
s�u:

ψ(t) = (s�u)(t) =
Z ∞

0
s(t�λ )u(λ )dλ :

The notation Ξs is adopted to denote the mapping of u to
the filter response ψ = s�u, i.e.

Ξsu= s�u : (1)

Let ε� and ε+ be two piece-wise continuous functions of
time representing the lower and upper boundaries of the
output mask respectively. Then the envelope constraints
require the filter output ψ to fit into a fully specified enve-
lope as depicted in Fig. 6, i.e.

ε�(t)� ψ(t)� ε+(t); 8t 2 Ω � [0;∞) : (2)

Define

d = 0:5(ε++ ε�) and ε = 0:5(ε+� ε�) :

Then (2) can be written as

jΞsu�dj � ε :

So far we have defined the feasible region for the filters we
wish to find. In many cases, the feasible region is not empty
and there are many filters for which (2) holds. However,
in many applications, there are other considerations that in
fact lead us to select a specific filter. For example, it may
be desirable to minimize the noise enhancement of the filter
if the signal input to filter is corrupted by noise or it may
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be necessary to minimize the filter output power to contain
crosstalk. We consider in detail the noisy input case and
define our cost function f to be the output noise power. Let
ξ denote the noise component of the filter output. Then,

ξ (t) =
Z ∞

0
n(t�λ )u(λ )dλ : (3)

Assuming that the additive noise n at the receiver input
is zero-mean, stationary, with autocorrelation Rnn(τ), the
output noise power is:

f (u) = E
�
ξ 2(t)

�
=

Z ∞

0

Z ∞

0
Rnn(κ �λ )u(λ )u(κ)dκdλ :

(4)

By defining a linear operator L based on the autocorrelation
function Rnn as

(Lu)(λ ) =

Z ∞

0
Rnn(κ �λ )u(κ)dκ (5)

and using the usual inner product, the cost functional de-
fined by Eqs. (1) and (4) can be expressed in a more conve-
nient and intuitive form as a quadratic function of the filter
impulse response:

f (u) = hu;Lui : (6)

The cost functional is strictly convex when L is positive
definite. In this case,

k u kL �
p
hu;Lui

is a norm.
Suppose that in addition to being additive, zero-mean and
stationary, the input noise n is also white, with autocorre-
lation

Rnn(τ) = N0δ (τ) ;

where δ is a unit impulse. Then, the output noise power
E [ξ 2( t ) ], Eq. (4), is proportional to the square of the
L2-norm of the filter,

E
�
ξ 2(t)

�
= N0

Z ∞

0

Z ∞

0
δ (κ �λ )u(λ )u(κ)dκ dλ =

= N0

Z ∞

0
u2(λ )dλ = N0kuk2

2 : (7)

The cost functional in this case is strictly convex (not all
norms are strictly convex), and L, defined by Eq. (5), is
the identity operator.
In the derivation of the previous cost functionals, it is as-
sumed that the statistics of the noise are known. In some
applications, the exact noise statistics may not be known.
We now consider one approach for dealing with this case.

Suppose that the noise spectral density is denoted as
ΦN(ω). It can be verified that the output noise power due
to the input noise n is given by

PN =
1

2π

Z ∞

�∞
ΦN(ω)jU( j ω)j2dω ;

where U denotes the Laplace transform of u. Assume that
ΦN the noise power density satisfies

kΦNk=
1

2π

Z ∞

�∞
ΦN(ω)dω � 1

but is otherwise unknown. It makes sense to consider the
output noise power for the worst case input noise, i.e.

PN = maxkΦNk�1

1
2π

Z ∞

�∞
ΦN(ω)jU( j ω)j2dω :

It can be shown [26], that

kUk2
∞ = maxkΦNk�1

1
2π

Z ∞

�∞
ΦN(ω)jU( j ω)j2dω ; (8)

where kUk∞ denotes the H∞ -norm of U and is defined as
kUk∞ = supω2RRRjU( jω)j.
Hence, minimizing the output noise power for the worst
case input noise is equivalent to finding a filter of transfer
function U(s) with minimum H∞ -norm. In this case, the
cost functional can be expressed explicitly in terms of u as

f (u) =


Z ∞

0
u(t)e�stdt


2

∞
: (9)

This cost functional is convex (but not strictly convex).
In cases in which the input signal is subject to random
disturbance with unknown but bounded power spectrum,
the H∞ optimization approach may offer a robust design.

The use of these and similar convex cost functionals can
also be motivated by consideration of the filter’s sensitivity
to implementation errors and uncertainties in filter param-
eters.

3.1.2. Hybrid filters

Advances in the development of digital processors motivate
the consideration of filter structures realized with digital
components. A continuous-time filter can be implemented
as a hybrid filter composed of an A/D converter, a discrete-
time filter, a D/A converter and a post-filter. The EC design
filter problem is to determine the discrete-time component
of such a filter so as to minimize the effect of input noise
whilst satisfying the constraint that the response of the filter
to a specified signal fits into a prescribed mask.
The hybrid filter is shown in Fig. 7. The post-filter’s func-
tion is to smooth the output of the D/A block. In other
words, the combined function of the D/A block and the
post-filter is to interpolate the (discrete-time) output of
the digital processor. The absence of a post-filter corre-
sponds to piece-wise constant interpolation of the digital
output. Next on the ladder of complexity is linear inter-
polation. The output of the system varies from a stair-
case to much smoother waveforms depending on the type
of interpolation. In practice, the post-filter is often im-
plemented as a lowpass filter with cut-off frequency being
half of the sampling frequency, fo example, Butterworth,
Bessel, Chebyshev and elliptic filters.
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Fig. 7. Hybrid filter.

It is assumed that the incoming signal is sampled at or
above the Nyquist rate. To simplify matters, quantization
effects inherent in digital processes are neglected. This
assumption results in a linear system.
Consider a digital processor that has a discrete-time impulse
response u 2 l2. Then, the response of the hybrid filter to
the continuous-time excitation x is given by

ψ(t) =
∞

∑
i=�∞

∞

∑
j=0

x
�
(i� j)τ

�
u( j)Λ(t� iτ); t 2 [0;∞) ; (10)

where

Λ(t) =
Z ∞

0
Π(λ )h(t�λ )dλ ; (11)

Π(t) =

�
1; t 2 [0; τ]
0; otherwise

(12)

and h(t) is the impulse response of the post-filter.
Assuming appropriate post-filtering such that (10) con-
verges for all t 2 [0;∞) (e.g. bounded input bounded output
stability). Then, ψ is bounded and continuous on [0;∞).
Moreover, the mapping defined by

(Ξxu)(t) =
∞

∑
i=�∞

∞

∑
j=0

x
�
(i� j)τ

�
u( j)Λ(t� iτ) (13)

is a continuous linear operator. The constraint set for this
problem

F =
�

u2 l2 : ε� � Ξsu� ε+
	

is thus convex. In analog or discrete filtering, the operator
Ξx corresponds to a convolution by x under appropriate
signal spaces.
A simple cost functional that one could use for the EC prob-
lem is the norm of the discrete-time filter. However, unlike
the discrete-time the output noise power of the hybrid filter
is not directly proportional to this norm. Assuming sta-
tionary input noise samples n(i τ), it can be shown that
the output noise ξ (t) � (Ξnu)(t) is cyclo-stationary with
period τ and that an appropriate well-defined cost for the
EC problem with hybrid filter is the averaged output noise
power given by

f (u)� 1
τ

Z τ

0
E
�
ξ 2(t)

�
dt =

∞

∑
l=0

∞

∑
m=0

u(l)u(m)Ll ;m ; (14)

where

Ll ;m =
1
τ

∞

∑
j=�∞

∞

∑
k=�∞

Rnn
�
( j�k)τ

��
�
Z τ

0
Λ
�
t� ( j + l)τ

�
Λ
�
t� (k+m)τ

�
dt (15)

and Rnn
�
( j�k)τ

�
is the input noise autocorrelation.

3.2. Envelope constrained filtering problem

The EC filtering problem can be expressed as

min f (u)

subject to jΞsu�dj � ε ; (16)

where ε� and ε+ are two continuous functions of time
representing the lower and upper boundaries of the out-
put mask respectively and an appropriate cost functional as
discussed above is selected.
To eliminate output envelopes that permit the trivial solu-
tion u = 0, it is sufficient to assume the existence of an
open subset I of Ω such that ε+(t)ε�(t)> 0;8t 2 I . This
means that there is an open interval where both the upper
and lower boundaries have the same sign.

3.3. Robust envelope constrained filter design

Assuming that the set of feasible filters does not contain the
origin, i.e. no trivial solution, and since we seek feasible
filters with smallest possible norm, it follows that the opti-
mum filter always lies on the boundary of the feasible set.
This means the response of the optimum filter to the pre-
scribed input touches the output envelope at some points.
Consequently, it is to be expected that disturbances in the
prescribed input or implementation error can cause the out-
put constraints to be violated. The problem of designing
filters that are robust to such disturbances or techniques for
providing a guard band on the output mask are essential
to the implementation of practical EC filters. Of course,
the penalty for robustness is a possible increase in the cost
functional.
Three robustness formulations are introduced in the follow-
ing sections. The first incorporates input uncertainty into
the constraints. We refer to this as the EC with uncer-
tain input (ECUI). The second approach incorporates filter
implementation uncertainty into the constraints. The third
approach does not consider the source of the disturbances
but deals with possible disturbances by forcing the filter
output away from the envelope boundaries. We refer to
this as the constraint robustness problem.

3.4. EC with uncertain input

The EC filtering problem with uncertain input (ECUI), [22],
addresses the robustness to input disturbances by allowing
for uncertainty in the input pulse (Fig. 8). Here the input
s is not specified exactly, but is known to lie within an
input envelope described by upper and lower boundaries
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s� and s+. The filter is required to fit the response of all
excitations within the boundaries s� and s+ into the output
mask. Of course, the penalty for robustness is the increased
noise gain of the filter. For example in the radar sidelobe
reduction problem, it is desirable to design a sidelobe re-
duction filter which is robust in the sense that its output
sidelobes remains small even if the input signal is slightly
different from the nominal input. In channel equalization,
the ECUI approach can handle the case where the channel
characteristics are not known exactly but are known within
limits. Note that the EC filtering problem is a special case
of the ECUI problem.

Fig. 8. EC filtering with uncertain input.

When the excitations are also constrained to stay within
an envelope described by upper and lower boundaries
s+; s� 2 L2[0; ∞). The feasible set F is given by

F =
�

u2 L2[0;∞) : jΞxu�dj � ε; 8x : jx�sj � θ
	
:

It can be shown that the feasible region F is closed and
convex. However, while the description of the feasible re-
gion in terms of the set of possible inputs is adequate for
characterizing the problem it is not useful for computa-
tional purposes. To find out if a filter is feasible one would
need to compute its response to every signal inside the in-
put mask. There are no standard numerical techniques for
handling problems with constraints of this form.
The following result has been established in [27].

Theorem 1: jx� u�dj � ε; 8x 2 L2[0;∞) : jx� sj � θ if
and only if js�u�dj+θ � juj � ε .
This result enables us to eliminate the perturbed input x
from the original constraint expression and allows problem
to be stated as follows:

min f (u)

subject to G(u) = jΞsu�dj+Ξθ juj� ε � 0 : (17)

The cost functional and the constraint are continuous and
convex function of the filter impulse response u. The pa-
rameters of this constraint function only involves the known
signals d; ε; s and θ . Note that G is not always everywhere
differentiable with respect to u.

3.5. Filter implementation uncertainty

In practice, it is often the case that a designed filter or sys-
tem impulse response cannot be implemented exactly, there

are always implementation errors. These errors can arise
from component mismatch or quantization of filter coeffi-
cients. So we are interested in finding filters which ensure
that the envelope constraints are satisfied in the presence
of implementation errors (if such filters exist).
It is assumed that for a given filter u, we can achieve actual
implementations that are known to be within δ of u, where
δ is a bounded function, i.e. any implementation of u be-
long to the set

V (u;δ )� �ν 2 L2[0; ∞); jν �uj � δ
	
:

In the EC filtering problem we seek filters u whose re-
sponses to a prescribed signal s stay within some specified
the output envelope. With uncertainty in the implementa-
tions, we are interested in those u such that the response
of any elements of V (u; δ ) to the signal s stays inside the
output envelope, i.e.

jΞsν �dj � ε; 8ν : jν �uj � δ : (18)

Similar to the uncertain input problem, the description of
the constraint is not very useful for computational purposes.
We can show that the statement in (18) is equivalent to

jΞsu�dj+ jΞsjδ � ε : (19)

Thus, to ensure robustness to implementation errors, we ef-
fectively tighten the output mask by reducing ε to ε�jΞsjδ .

Of course, if the uncertainty δ in the implementation is too
large, the resulting output mask would not admit a feasi-
ble solution. We can determine from the implementation
uncertainty δ whether robustness can be achieved. For
instance, if there exists an interval I 2 [0; ∞) such that�jΞsjδ

�
(t) � ε(t) for t 2 I , then there is no feasible so-

lution.

3.6. Constraint robustness

In this section, we present a technique for providing a guard
band on the output mask and investigate how the trade-off
between the noise gain and the constraint robustness can be
achieved by proposing a new optimization problem. This is
a generic approach which does not take into consideration
the source or cause of the perturbation. Instead, we try to
force the filter output to stay as far away from the mask
as possible subject to some specified maximum allowable
increase on the noise gain (Fig. 9).
For a given filter u (which may or may not satisfy the
envelope constraints), consider the difference between its
response Ξsu and upper or lower mask boundary defined
by

�
φ+(u)

�
(t) =

�
Ξsu

�
(t)� ε+(t) ; (20)

�
φ�(u)

�
(t) = ε�(t)� �Ξsu

�
(t) : (21)

It is clear that if φ+(u) and φ�(u) are non-positive for all
8t 2 Ω then u satisfies the output constraints. To quantify
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Fig. 9. Mask margins.

the notion of robustness we define its constraint robustness
margin as

ρ(u) = min
�
mint2Ω

��φ+(u)
�
(t); min

t2Ω

��φ�(u)
�
(t)
	
:

(22)

The feasible region of the EC filtering problem can now be
expressed in terms of the robustness margin as

F =
�

u2 L2[0; ∞) : ρ(u)� 0
	
: (23)

Moreover, if ρ(u)> 0, the minimum distance of the output
(Ξsu)(t) from the output mask is at least equal to ρ(u).
Therefore we may say that the filter u is robust with con-
straint robustness margin ρ(u).
In practice, it may be necessary to have a larger constraint
robustness margin over certain intervals. In this case, β can
be used to specify the weightings in different time intervals.
Define the weighted constraint robustness as follows:

ρβ (u) = min

�
mint2Ω

[�φ+(u)](t)
β (t)

; mint2Ω
[�φ�(u)](t)

β (t)

�
;

(24)

where β is a positive, piece-wise continuous function which
is normalized so that it attains a minimum of unity on
Ωc and δ > 0 is a constant which specifies the allowable
amount of increase of the output noise power in the design
of the optimal filter with maximum constraint robustness
margin.
Let u0 denote the optimal solution of the EC filtering prob-
lem without any additional robustness constraints, that is
the solution to Eq. (16). The EC problem with robustness
constraint is the following constrained optimization prob-
lem

maxρβ (u)

subject to kuk2� (1+δ )ku0k2 : (25)

We can transform this to an equivalent problem as fol-
lows:

min f (u; σ)� �σ
subject to g1(t; u; σ)� σβ (t)�d(t)+

�ε(t)+(Ξsu)(t)� 0;

g2(t;u;σ)� σβ (t)+d(t)� ε(t)� (Ξsu)(t)� 0;

g4(t;u;σ)� kuk2�(1+δ )ku0k2 � 0: (26)

3.7. Theoretical foundation

From a mathematical point of view the following two the-
orems can be considered to capture all that one needs to
know about the EC filtering problem defined in the previous
sections.
Theorem 2: Let F be a closed and convex subset in
a Hilbert space H, and f a continuous and convex func-
tional on H. If F is non-empty, then there exists a u0 2F
such that

f (u0)� f (u) ; 8u2F :

Moreover, if f is strictly convex, then u0 is unique.

Theorem 3: Let F be a closed and convex subset of
a separable Hilbert space H with non-empty interior
F 0, and f a continuous and convex functional on H. Let
u0 be a minimum of f on F and u0

n a minimum of f on
F \ �fνign

i=0

�
, where

�fνig∞
i=0

�
denotes the linear span of

fνig∞
i=0. If fνig∞

i=0 is total in H, then f (u0
n) monotonically

decreases to f (u0) as n tends to infinity. Moreover, if f is
an inner-product-induced norm, then

lim
n!∞

ku0
n�u0k= 0 :

Theorem 2 tells us about the existence of a solution and its
uniqueness. Theorem 3 tells us about the convergence of
finite structured filters to the optimal filter.
From a numerical analysts point of view, we would be
concerned with the definition and characterization of al-
gorithms for computing a solution. In fact, this aspect has
been studied extensively both at a generic level and for the
EC problem specifically, [10, 14�18, 20]. However, the
treatment of these aspects is beyond the scope of this paper.

3.8. Finite filter structures

3.8.1. Analog filters

Suppose that one seeks to realize a filter by designing a net-
work whose impulse response approximates that of the op-
timum EC filter in some sense, e.g. least squares, Páde,
orthogonal approximations. The important question that
arises is: would this approximation still satisfy the con-
vex constraints? Thus, it would seem more appropriate
to choose a particular filter structure and then impose the
constraints. Sub-optimum solutions based on an appropri-
ate choice of basis functions for the filter are likely to be
more useful from a practical viewpoint.

9
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Let fνig∞
i=0 be a total sequence in l2, and let the finite-

structured filters have impulse responses given by Kaaa2 l2,
where K : RRRn ! l2 is a bounded linear operator defined by

Kaaa=
n�1

∑
i=0

aiνi = νννTaaa ;

where ννν =
�
ν0;ν1; : : : ;νn�1

�T .
The feasible region, F\�fνign�1

i=0

�
, is hence embeded in an

n-dimensional sub-space and can be characterized by the
set of feasible filter coefficients which is defined in RRRn as

�
aaa2RRRn : 8x2 S; x� (Kaaa) 2 Ψ

	
:

To obtain an explicit expression for the cost functional in
terms of the vector of filter parameters aaa, we have

f
�
K(aaa)

�
= hKaaa; LKaaai= aaaTK†LKaaa ;

where K† : l2 !RRRn is the adjoint (operator) of K defined

by K†u =
�hν0; ui; hν1; ui; : : : ; hνn�1; ui�T . The operator

K†LK : RRRn !RRRn can be represented by the following n�n
matrix, (often called a Gram matrix):

K†LK =

=

2
6664
hν0;Lν0i hν0;Lν1i : : : hν0;Lνn�1i
hν1;Lν0i hν1;Lν1i : : : hν1;Lνn�1i

:
. . . :

hνn�1;Lν0i hνn�1;Lν1i : : : hνn�1;Lνn�1i

3
7775 : (27)

The Gram matrix K†LK is positive semi-definite since L
is positive semi-definite. Furthermore if L is positive def-
inite and the νi’s are linearly independent then K†LK is
also positive definite. In most practical situations, L is the
identity operator and K is specified by a finite subset of
a complete set of orthonormal νi ’s over the interval Ωu. In
this case it is easily seen that the Gram matrix K†K is the
identity matrix I . The main reason for considering filter
realization by orthonormal sets is that it is possible to gen-
erate and combine certain set of vectors using simple finite
filter structures. The most notable examples are Laguerre
and Legendre functions.
There are two main techniques for building filters. The
parallel structure is the simplest and most direct method
(Fig. 10). The transfer function for each block is denoted
by Θi(s); i = 0; 1; : : : ; n�1 and the transfer function of the
filter is immediately given by

U(s) =
n�1

∑
i=0

aiΘi(s) :

In this case, νi = θi , where θi is the inverse Laplace trans-
form of Θi . The parallel structure is widely used for many
filters employing orthonormal functions.
The second method is the transversal structure (Fig. 11).
The transfer function for each block is denoted by

Fig. 10. Parallel filter structure.

Θi(s); i = 0; 1; : : : ; n�1. Let Vi denote the Laplace trans-
form of νi . Then

Vi(s) =
i

∏
j=0

Θi(s)

and the transfer function of the transversal filter is given by

U(s) =
n�1

∑
i=0

ai

i

∏
j=0

Θi(s) :

The best known examples of filters employing the transver-
sal structure are Legendre or Laguerre filters or when the
Θi’s are pure delay elements.

Fig. 11. Transversal filter structure.

These finite-structured filters restrict the space of filter im-
pulse responses to a finite dimensional subspace of L2. That
is, the optimization is carried out on this subspace rather
than on the whole of L2. The subspace spanned by fνign�1

i=0
(denoted as

�fνign�1
i=0

�
) is closed and convex, hence, the fea-

sible region F \�fνign�1
i=0

�
is also closed and convex. Strict

convexity of the cost functional ensures a unique optimum
solution if an interior point exists. For a norm cost, it fol-
lows from Theorem 3: that the sub-optimum CCR filters
for the finite filter structures converge to the optimum CCR
filter as the filter structure grows. For a general convex
cost, the sub-optimum costs converge to the optimum cost.

3.8.2. Hybrid filters

So far we have considered filters with impulse responses
in l2. Now we narrow down the discrete-time filters to
practical filters that have a finite structure.

10
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Let fνig∞
i=0 be a total sequence in l2, and let the impulse

response of finite filter structures be described by

u= Kaaa=
n�1

∑
k=0

akνk ;

where K : RRRn ! l2 is a bounded linear operator.

Such filters can be realized by FIR filter or discrete-time
Laguerre networks where, incidentally, the corresponding
νk’s are also orthonormal. The set of feasible filter coeffi-
cients is given by

�
aaa2RRRn : ε� � ΞsKaaa� ε+

	
: (28)

Assuming that the noise samples are statistically indepen-
dent, the average output noise power can be expressed in
terms of aaa yielding the cost functional

f (Kaaa) = aaaTLaaa ; (29)

where

L =
�
N0=τ

�Z ∞

�∞
www(ζ )wwwT(ζ )dζ ; (30)

www(t) =
�
w0(t); : : : ; wn�1(t)

�T
; wk(t) =

∞

∑
j=0

Λ(t� jτ)νk( j) :

(31)

If the noise samples are independent, the cost functional
aaaTLaaa is a strictly convex function of aaa.

4. Numerical examples

In this section, we present three applications of EC fil-
ter design to illustrate the effectiveness of the techniques
presented in the previous sections. The reader is referred
to [9, 15] for many more examples.

4.1. EC with uncertain input

Consider the compression of a 13-bit Barker coded signal
shown in Fig. 12.
For this example, we use a 27-tap FIR filter and a Bessel
post-filter of 3th order with cut-off frequency ωc = 2π=β .
To obtain the approximate solution, we have constrained
the output at every ti = iβ=8. Figures 13 and 14 show,
respectively, the filter’s responses to the nominal input and
signals which were randomly perturbed about the nominal
input but still fit inside the input mask. Observe that these
responses stay within the boundary of the output envelope.
The noise gain of the ECUI filter is 0.027.

Fig. 12. 13-bit Barker code with input uncertainty.

Fig. 13. Response of filter to nominal Barker coded input.

Fig. 14. Response of filter to perturbed Barker code.

4.2. Filter implementation uncertainty

The FALC54 is a Siemens IC for communications used
in framing and line interface for PCM30 and PCM24. It

11
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provides a very flexible way to create a custom waveform.
Each pulse is partitioned into four subpulses of equal sup-
port as shown in Fig. 15. Hence, a pulse u generated from
a FALC54 can be modeled as

u(t) =
n�1

∑
k=0

xkΠ(t�kT=n) ;

where n = 4; Π denotes a rectangular pulse with sup-
port [0;T=n] and xk denotes the level of the kth subpulse.
The shape of the transmit pulse is thus characterized by
the vector of parameters xxx =

�
x0; x1; : : : ; xn�1

�T . We are
concerned with the problem of determining the levels of
the transmit pulse to satisfy constraints which have arisen
from the need to conform to standards such as ANSI,
CCITT [3, 22].

Fig. 15. Partition of pulse support.

Consider the transmission of the T1 pulse over an RG59B/U
coaxial cable channel with an attenuation that follows an
approximate

p
f law. For a coaxial cable of length l , its

frequency response can be modeled as H( jω) = e�Al
p

jω .
Our design is for a length of a coaxial cable which has
an attenuation of 4.5 dB at the DS1 rate f0 = 772 kHz,
(i.e. ω0 = 4:8506� 106 rad/s) and T = 648� 10�9 s. We
consider implementation errors on the transmit pulse shape
that are bounded by www= 0:052[1; : : : ; 1]T , i.e. δ = 0:052.
Figure 16 shows the received signal at the end of the cable
for a optimal transmit pulse design that does not take into
account implementation errors bounded by δ = 0:052. Note
that for some implementation errors the received pulses
violate the prescribed mask.
Figure 17 shows the received signal at the end of the cable
for an optimal transmit pulse design that takes into account
implementation errors bounded by δ = 0:052 and uses the
optimization problem formulated in Section 4.2. Note that
the received pulses never violate the prescribed mask for
any implementation error that satisfy the assumed bound.
The robustness against implementation errors has been ob-
tained at a very low cost of a 9% increase in the transmit
pulse energy.

Fig. 16. Received pulse without implementation uncertainty con-
straints.

Fig. 17. Received pulse with implementation uncertainty con-
straints.

4.3. Constraint robustness with Laguerre filter

Let us again consider the design of an equalization filter
for a digital transmission channel consisting of a coaxial
cable on which data is transmitted according to the DX3
standard [2]. The design objective is to find an equalizer
which takes the impulse response of a coaxial cable with
a loss of 30 dB at the Baud frequency and produces an
output which lies within the DSX3 pulse template. For
computational purpose, we consider the time domain con-
straints at a finite number of discrete points rather than the
entire continuum.
In our numerical studies, we use 1024 points over an in-
terval of [0; 32β ]. Using the Laguerre filter with 14 coef-
ficients and p= 12, we first solve the optimal EC filtering
problem without robustness considerations. The optimal
noise gain is

ku0k2 = kaaa0k2 = 54:2008:

The output mask, input signal and the output are shown in
Fig. 18.
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Fig. 18. Laguerre filter – EC approach.

Fig. 19. Laguerre filter – EC approach with robustness con-
straints.

To achieve maximum constraint robustness margin, we
solve the robust EC filtering problem with δ = 1:5 and

β (t) =

8<
:

3ε(t); jε(t)� 0:05
0:035; jε(t)� 0:03
ε(t); elsewhere

:

The corresponding signals are shown in Fig. 19. From an
examination of Fig. 19, we see that the output is very close
to the center of the output mask. This increased margin has
been achieved by allowing an increase of 50% in the noise
gain of the robust EC filter relative to the nosie gain of the
non-robust EC filter (δ = 1:5).

5. Conclusion

The paper has reviewed key ideas in envelope constrained
filter design. We have shown that the design problem is
motivated by practical engineering requirements. A num-
ber of filter design examples have been described. These
examples include filters for communications systems and
pulse compression applicable to sonar and radar ranging
systems. The effectiveness of the robust EC filter design

approach presented in the paper is evident in these exam-
ples.
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