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Abstract — We describe a successful implementation of a the-
orem prover for modal logic S4that runs on a Java smart card
with only 512 KBytes of RAM and 32 KBytes of EEPROM.
Since proof search in S4 can lead to infinite branches, this is
“proof of principle” that non-trivial modal deduction is fea-
sible even on current Java cards. We hope to use this prover
as the basis of an on-board security manager for restricting
the flow of “secrets” between multiple applets residing on the
same card, although much work needs to be done to design the
appropriate modal logics of “permission” and “obligations”.
Such security concerns are the major impediments to the com-
mercial deployment of multi-application smart cards.

Keywords — security of mobile code, modal deduction.

1. Introduction

Smart cards are credit-card sized pieces of plastic with an
embedded silicon chip. Smart cards are either memory
cards, which cannot be programmed, or microprocessor
cards, which contain a small amount of RAM and disc
(EEPROM) on the card itself. A card reader/writer is re-
quired to provide power to the card, to provide a clock
signal, and to act as an interface between the card and the
terminal (a PC, an ATM machine, a public telephone, or
even a mobile telephone).
Java cards are smart cards that contain a (downsized) Java
platform, installed by the manufacturer, thus allowing users
to download Java applets and run them on the card. Java
cards can therefore provide multiple applications such as
electronic purse, credit card, passport, loyalty programmes,
all residing on the same card.
While exchanging data securely already poses a number of
problems (this prompts the need for cryptographic proto-
cols, examined in a number of other papers in this issue),
exchanging, even if only down-loading programs entails
quite a number of new problems. It is all too easy to break
every security policy by just down-loading one bad applet
and letting it loose on the card. One example, not specific
to cards, is the BrownOrifice applet [10], a Java applet that
installs on any PC that down-loads and serves its entire file
system to any outside attacker. Another is an attack allow-
ing an outside intruder to register a bank transfer via the
Quicken home-banking software [8].
The purpose of this paper is, first, to give a short sur-
vey of proposed techniques to enforce security in settings
where applications can be loaded or down-loaded, and more
specifically of Java card related techniques. Orthogonally,
logics, and more specifically modal logics, have been used

to specify security policies. We review the use of logics
in this context. One challenge here is to be able to prove
automatically formulae in sophisticated modal logics, ef-
ficiently, and – in the Java card context at least – under
sparse memory resources. We shall demonstrate how this
can be done for the logic S4– not yet the kind of logics we
would like to deal with, but already one which is known
to pose non-trivial problems. (Technically, this is because
the transitivity of S4 frames, as opposed to, say, K frames
requires loop checks that are usually memory-consuming.)
The Java cards used in this project were the GemXpresso
RAD Protyping card, containing a 32-bit microprocessor
with 512 bytes of RAM, 32 KBytes of Flash EEPROM
and 8 KBytes of ROM. As of 2001, this is state of the art
in Java card technology, and gives an indication of how
little memory is available on Java cards.
The paper is set out as follows. We spend some time in
Section 2 surveying method for ensuring security of mo-
bile code, and Java card applets in particular. This includes
discussions of several models or techniques, including the
notion of non-interference, verification by typing, by static
analysis of programs and by formal proofs in specific log-
ics. We argue that being able to prove formulae of modal
logics on-card is a promising security enforcement tech-
nique. The rest of the paper shows that, in principle, even
complex modal logics with transitive frames can be han-
dled on a card, by studying the prototypical transitive modal
logic, S4. Section 3 describes the logic S4and the basics of
modal theorem proving using tableaux. Section 4 explains
the design of our prover CardS4, while Section 5 refines
this by explaining the precise data structures that allow our
prover to run in tiny memory spaces. Section 6 describes
our implementation, and Section 7 presents test results. We
conclude in Section 8.

2. Java cards and security
of mobile code

2.1. Java cards

Current Java cards are preprogrammed to contain applets
by the manufacturer for the card vendor, typically a bank
(for credit and debit cards), or an airline (for frequent flyer
cards). But if Java cards are to succeed then a card carrier
must be able to down-load new applets onto an existing
card “just in time”, or even merge existing cards into one
card. This would mean that multiple applets from different
vendors would reside on the same card.
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The single biggest problem with this scenario is that of se-
curity. How can we guarantee that a simple query to the
drivers licence section of the card for identification pur-
poses (say) will not steal money from the card’s electronic
purse? If new applets are to be down-loaded then how can
the vendor of applet A ensure that a competing vendor’s ap-
plet will not be down-loaded at a later stage and steal infor-
mation from applet A? Alternatively, applets A and B may
trust each other to some extent, and therefore share some
information. But if applets B and C enjoy a similar trust
relationship, how can A be sure that B will not tell C infor-
mation which it has obtained from A [14, 34] ?
Many methodologies for guaranteeing such security have
been investigated, but almost all of them involve a trusted
“third” party. For example, the bank applet may be signed
using a digital signature obtained from the government that
certifies that the applet really did originate from the bank
in question. The digital certificate is decoded by the card’s
on-board digital signature chip and the applet is allowed
to access the card’s electronic purse. But the need for
a certification agency and a certification procedure makes
this avenue cumbersome.

2.2. Enforcing security policies for mobile code

An alternative methodology that involves no third parties
is for card owners to implement a personal security pol-
icy using some international standard “language for secu-
rity”. The electronic purse applet installed on the card may
come with such a built in security policy which the user
is prompted to tailor to his or her needs. Another applet
which wishes to access the electronic purse must now pass
a challenge determined by the level of security chosen by
the card user.
As new applets are added to the card, they are slotted into
this set up either explicitly by the card user, or by some im-
plicit default method. The simplest method is to use some
form of access control list as is done by the smart card for
Windows system (http://www.microsoft.com/smartcard),
which uses simple propositional logic in its access con-
trol lists. A more sophisticated approach is to use a hierar-
chy with the “public” applets at the bottom, the “private”
applets at the top, and the others in between these two ex-
tremes in some partial order [14, 34]. This is similar to
the Bell-La Padula model of military security [7], which
is the basis of the access-right policy of operating systems
like Unix. Each applet A is given an accreditation acc(A)
from some partially ordered set, while each object O on
the card has an access right right(O); the security pol-
icy is that A can only access O if acc(A)� right(O); also
A can only modify O, storing the contents of object O0

into O, if acc(A) � right(O) and right(O0) � right(O).
This is Bell and La Padula’s star condition; without it,
A might unwittingly declassify O0 by storing its contents
into O, thereby allowing non-accreditated applets to access
the contents of O0 by subsequently reading that of O. These

conditions can be enforced at run-time. The relationship
between access control lists and object-level access rights
is essentially a matter of whether access rights are stored
in a centralized way or on a per-object basis. The pre-
cise relation between these and other so-called trust man-
agement models, such as capabilities, is analyzed in detail
in [9].
The latter paper in particular addresses the difficult matters
of handling delegation, whereby a subject (an applet, in
our context) is allowed to act in the name of another for
some designated objects, and revocation, whereby subjects
are deprived of their accreditation. In the latter case, think
of a vendor applet that will only provide a service to the
card owner while she holds an annual subscription to that
service.
Apart from revocation, trust management policies are still
limited in the way they deal with dynamic change. In par-
ticular, how should the ordering � be modified when a new
applet is down-loaded? The Bell-La Padula model and its
variants all assume a fixed ordering. But if down-loading
an applet is allowed to modify the access rights ordering,
possibly adding new accreditations or object access rights,
a new policy is needed to prevent abuses; e.g., we should
not allow the down-loading process to accept applets claim-
ing to introduce a new accreditation greater than all pre-
existing ones. Also, there should be some mechanism to
enforce that the modified ordering still is an ordering.
Even then, solving these problems would not solve prob-
lems related to transitive information flows. Take the shared
secrecy example above, where applet A trusts B, and
B trusts C, but A does not trust C [14, 34]. For exam-
ple, A might be a loyalty applet, and B might be a bank-
ing applet originating from a bank that has business deals
with A’s originator, so that if the card owner has accumu-
lated enough loyalty points through A (think frequent flyer
miles), then B will offer the card owner some added pay-
ment facilities. Now C might be the on-card part of an
account management programme, which will need to ac-
cess information from B, and will be trusted by B to do so.
Then C can learn about the degree of loyalty of the card
owner vis-a-vis A’s originator by examining payment facil-
ities offered by B: although A and C’s originators never
signed a deal allowing C to access loyality information
from A, C can still get it through interaction with B.

2.3. Non-interference

Checking such properties can be done, at least partially, by
checking non-interference properties [18]. At a basic level,
non-interference for some computer system S (an applet,
or a collection of applets) means that for every collection
of objects O in the system, the value of objects with low
access rights should never depend on the value of objects
with high access rights. In other words, no observer should
be able to tell anything about the values of objects with high
access rights by just looking at values of objects with lower
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access rights. In particular, if an applet’s accreditation level
is a, its output should be independent of the value of any
object with access right > a.
Non-interference is similar to the way secrecy and authen-
tication are originally defined in Abadi and Gordon’s spi-
calculus [3]: a message M is secret in some protocol P(M)
if and only if no outside attacker can tell the difference be-
tween running P(M) or running P(M0) for some other value
M0 of the secret. Formally, this is defined by saying that for
every process I in the calculus, I parallel P(M) and I par-
allel P(M0) should be may-testing equivalent. (Technically,
this also requires the parallel compositions to be enclosed in
suitably many (νn) constructs to represent channel, nonce
and key generation.) This similarity with non-interference
can be used to cast it as a non-interference problem, where
the secret M would be assigned some high access right,
and we require that non-interference holds assuming that
the intruder has strictly lower accreditation. This is used
in a typing system for secrecy [1]. A similar but slightly
more complicated typing system also exists for authentica-
tion [17].
While non-interference seems a promising idea, checking
non-interference is harder than it seems. Many type sys-
tems have been proposed in various restricted settings. One
of the most sophisticated is [38], which considers non-
interference in the presence of concurrency, where com-
putations have observable durations, and in a probabilistic
model.
Type systems for non-interference have to be crafted so that
well-typed applets do obey non-interference. The resulting
type systems are in general severely restricted as to which
applets it will accept as well-typed.
To show what the difficulties are, first examine concurrency.
Assume that applet A and applet B are both secure in the
sense that none, when run alone, may terminate with some
low object containing a value which depends on the initial
contents of a high object. Then the parallel composition
of A and B might be insecure. For example, consider three
objects Ohi, Olo and O0

lo, with respectively high, low and
low access rights. For simplicity, assume that these objects
only contain boolean values. Let A store the contents of
Ohi inside Olo, do nothing for a while, then erase all fields
of Olo; for short we write A as the program:

Olo := Ohi; sleep; Olo := 0;

A is secure, since the final value Olo, zero, is independent
of the initial value of Ohi. Let B do nothing for a while,
test whether Olo is true, and if so set O0

lo to true, otherwise
to false. That is, B is:

sleep; if Olo then O0

lo :=true else O0

lo :=false;

Again, B is secure, since it never reads the value of any
high object. Note that, if Olo were replaced by Ohi in B,
and even though B never copies its value to any other
object, the resulting value of O0

lo would depend on that
of Ohi, and B would not be secure; this shows that Bell and

La Padula’s conditions are in general not enough to ensure
non-interference.
The important point in this example is that A and B in
parallel are not secure: if A first does Olo := Ohi, then
B tests Olo, thus in effect B is computing a value of O0

lo
that depends on Ohi, violating non-interference. This may
in fact happen with non-negligible probability, depending
on the scheduler. The paper [38] examines more sophisti-
cated interference patterns in which B cannot actually learn
from the value of some high object because of timing con-
siderations under a probabilistic model, assuming a prob-
abilistically uniform scheduler. For example, if B sleeps
long enough first in the example above, and A and B are
started at the same time, then A parallel B will in fact still
be secure with high probability.

2.4. Static program analysis

Checking properties of programs, whether security prop-
erties or others, can be done through typing, or through
dataflow analysis, in general through any static program
analysis technique.
One of the most well-known Java related dataflow analysis
technique is Java’s bytecode verifier [27]. Every down-
loaded Java class file, in particular every Java applet, is
checked for format conformance first, then names are re-
solved, then every method in the class file is checked – this
is bytecode verification proper. This latter phase checks
that all operations are well-typed, that stacks do not over-
flow, plus a number of other sanity conditions, through
a dataflow analysis.
While these checks are absolutely necessary for security
(any type confusion error can indeed be exploited to create
a security breach [30]), there are two issues that need to
be addressed. First, the Java bytecode verifier consumes
too many resources to be implemented on a Java card: in
particular, the first Java cards did not include any byte-
code verifier, and rested solely on cryptographic certifi-
cates and a trust relationship with applet issuers; as [8]
demonstrates, this is not enough. Second, the bytecode ver-
ifier only addresses low-level safety issues (bounds check-
ing, typing), and is far from ensuring any security-related
property.
There are at least two different solutions to the first prob-
lem. One, inspired from Necula’s proof-carrying code con-
cept [32], is Rose’s lightweight bytecode verification [36],
used in Sun’s small-footprint KVM Java virtual ma-
chine [39], designed for embedded applications. The idea
is to split the bytecode verifier in an off-card part and an
on-card part. The off-card verifier actually runs a dataflow
analyzer similar to the standard bytecode verifier, except
that on success it also outputs a certificate. The off-card
verifier is run by the card issuer, who then appends the
certificate to the applet. When the applet is down-loaded
on the card, it comes with the certificate. The on-card
verifier then only checks that the certificate is valid and is
a certificate for the given applet. While cryptographic cer-
tificates are certainly the simplest form of certificates, the
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approach of [36] is more drastic: the certificates there are
(a compressed form of) the typing information that a byte-
code verifier needs to compute. It merely remains for the
on-card verifier to check that the certificate is consistent
with the semantics of all bytecode instructions present in
each method. This takes less time, and more importantly
less space than standard bytecode verification. This method
applies to essentially any verification method that relies on
proving some property of an applet in some formal deduc-
tion system (in the large; here typing is thought as a for-
mal system, while Necula considers properties expressed
in a variant of the logical framework LF [22] with a few
extensions).
The other current way of incorporating bytecode verifica-
tion into Java cards is Leroy’s simplified bytecode verifier.
This does not conform to Sun’s specification of bytecode
verifier as such, and in particular may reject applets that
would be accept by the Sun’s verifier. However this is
repaired by an off-card component which rewrites any ap-
plet conforming to Sun’s specification into one that will be
accepted by the simplified verifier. The point is that the
simplified verifier is actually able to run on a standard Java
card, despite the severe restrictions on memory resources
on cards. The basic intuitions behind this technique, as well
as a lucid account of problems and solutions for bytecode
verification, can be found in Leroy’s paper [25].
The second problem with bytecode verification is that it
only addresses low-level issues: typing, stack overflows,
notably. It does not address any less trivial security issue
such as the transitive flows mentioned earlier, for exam-
ple. There is still little work on methods for checking more
sophisticated security properties. Leroy and Rouaix [26]
address the problem of verifying, by typing, that a down-
loaded applet does not corrupt designated sensitive data on
the system it is down-loaded onto. El Kadhi [5, 12] ap-
plies abstract interpretation methods to design a static ana-
lyzer that checks an applet for cryptographic confidentiality
preservation properties: the goal is to ensure that desig-
nated sensitive data on a card are not leaked to a Dolev-
Yao-style intruder (see [11]), even though this data may
have to be sent out of the card (i.e., properly encrypted).
This uses techniques from cryptographic protocol verifica-
tion.

2.5. Logics

For checking more sophisticated security properties, it is
implicit in the above discussion that we need a language
to talk about the security properties of interest that can be
understood both by card issuers and by on-card verifiers.
This language should have a formal semantics. In other
words, it should be a logic at large. Proof-carrying code
already takes the viewpoint that properties should be speci-
fied in a logic, and that proofs should be sent along with the
code to avoid costly reconstructions of proofs on the card
side – this is a technological choice that may or may not
be relevant, depending on the logic and available on-card

resources. El Kadhi’s work is another example: while the
paper [12] does not mention any specific logic, El Kadhi’s
analyzer actually does deductions in a system of symbolic
constraints that approximate the intruder’s state of knowl-
edge.
We can also use actual logics to express and check se-
curity properties. While this is the approach in Necula’s
original approach, taking a general logic such as LF might
be overkill. In particular, LF provability is undecidable.
However, multi-modal propositional logics provide interest-
ing languages that are expressive enough to encode most
properties of interest, while usually remaining decidable.
Multi-modal propositional logics are now well-established
in artificial intelligence research as bases for defeasible rea-
soning [37], logics of agents [35], and logics of authenti-
cation [4, 29]. Monniaux [31] shows that BAN and GNY
logics are decidable, while Massacci [28] gives a tableaux
calculus for the (undecidable) logic of access control of [2].
We refer the reader to [31] for more information on such
logics. Multi-modal logics like Propositional Dynamic
Logic [15] have also been used to model the changing
states of a program. Finally, propositional bi-modal tense
logics give a very simple and elegant model of the flow of
time [21].
Checking that a down-loaded applet meets the security cri-
teria is now reduced to proving, on-board, that an ap-
propriate formula is a theorem of the logic used to code
the criteria, since this is the only computer that the cus-
tomer should trust. Let us stress that multi-modal logics
are particularly well-suited to this task as most of them are
decidable. Consequently, the ability to perform automated
multi-modal deduction on Java smart cards may be of use
in electronic commerce.
But surely multi-modal deduction is simply too difficult to
perform on a smart card with extremely limited resources.
After all, even classical propositional logic is NP-complete,
and most multi-modal logics are actually PSPACE-complete!
In [19] automated deduction in bi-modal tense logics was
shown to be feasible on a Java smart card. It is reasonably
straightforward to extend this work to other multi-modal
logics, and hence to logics of knowledge and belief, or to
logics of authentication and security. But many of these
logics (e.g. PDL) contain operators which are inherently
transitive, and transitivity can lead to infinite loops. (This
will be illustrated in later sections on S4.) In the sequel we
show that transitivity is not insurmountable by implement-
ing a prover for the transitive modal logic S4. This also
shows that, although proof-carrying code-style techniques
could be used here as well, they are probably unneces-
sary.
This work is naturally still far from an on-card prover for
a logic of authentication or security, in the style of [4, 28].
This work should therefore be thought of as “proof of
principle” that a logic-based security policy could be im-
plemented on current Java cards. As the resources and
speed of Java cards skyrocket, the task will only become
simpler.
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w j=> for every w2W wj=? for no w2W
w j= p iff w2V(p) w j= :ϕ iff w 6j= ϕ
w j= ϕ ^ψ iff w j= ϕ and w j= ψ w j= ϕ _ψ iff w j= ϕ or w j= ψ
w j= ϕ ! ψ iff w 6j= ϕ or w j= ψ
w j= �ϕ iff (9v2 R(w))(v j= ϕ) w j=�ϕ iff (8v2 R(w))(v j= ϕ)

Fig. 1. Kripke semantics for S4.

3. Syntax, semantics and tableaux
for modal logic S4

3.1. Syntax and semantics for S4

Given a denumerably infinite set of atomic formulae PRP=
= fp0; p1; p2; � � � g, a formulae ϕ of modal logic is defined
using the following BNF grammar:

p ::= p0 j p1 j p2 j � � �

ϕ ::= > j ? j p j :ϕ1 j ϕ1^ϕ2 j ϕ1_ϕ2 j ϕ1 ! ϕ2

j �ϕ j�ϕ

Propositional symbols in PRP denote elementary proper-
ties, e.g., “file accounts has access right privileged”,
or “user Joe has accreditation standard”, or “stand-
ard � privileged”. They might be true or false; for
example, we may imagine that the first two properties above
are true, while the last one is false.
The other connectives are > (true), ? (false), : (negation),
^ (and, conjunction), _ (or, disjunction), ! (implication),
and the modal connectives � and �. The latter require
some explanation. We may for example understand these
connectives in the context of modeling agent knowledge
(with one agent a) by letting �A mean “a knows (is sure
that) A”, and �A mean “a believes A”. What the latter
means is that a is not sure that A is false, so a accepts A as
likely, although a cannot be sure of A.
The formulae of the logic S4 can also be given another,
temporal meaning, in which the truth-values of formulae
evolve through time, and �A means “from now on, A is
always true”, while �A means “A will eventually become
true at least once”.
These meanings of S4 formulae are special cases of its
Kripke semantics. A Kripke frame is a pair hW;Ri where
W is a non-empty set (of worlds) and R is a binary rela-
tion over W. A Kripke model hW;R;Vi is a Kripke frame
hW;Ri augmented with a valuation V : PRP 7! 2W map-
ping each atomic formula to the subset of W where they
take the value “true”. If w 2 V(p) we write w j= p and
extend this satisfaction relation to arbitrary formulae in
the usual way [21] as shown in Fig. 1 where for any
w2W, R(w) := fv2W j wRvg.

An S4-model is a Kripke model where R is both reflexive
(8w2W)[wRw] and transitive (8w1;w2;w32W)[w1Rw2&
w2Rw3 ) w1Rw3].
A formula ϕ is S4-satisfiable if and only if there exists
some S4-model with some w2W such that w j= ϕ . A for-
mula ϕ is S4-valid if w j= ϕ for every w 2 W in every
S4-model hW;R;Vi.
We illustrate this notion of model on a few S4 formulae.
First, �ϕ ! ϕ is a valid formula. Temporally, this means
that if from now on, ϕ is always true, then ϕ is true now.
For agents, if a knows that ϕ holds, then ϕ indeed holds;
that is, a does not make mistakes. Another interesting for-
mula is�ϕ !��ϕ . Temporally, this means that if ϕ holds
in every future from now, then in every future from now,
in every future of this future, ϕ will again hold. In the
world of agents, this is positive introspection: if a knows
that ϕ holds, then a also knows that it knows that ϕ holds.
A third important formula is �(ϕ ! ψ)! (�ϕ ! �ψ),
which states that agents can perform deductions: if a knows
that ϕ implies ψ , and a knows that ϕ holds, then a necessar-
ily knows that ψ holds, too. Finally, we mention the subtle
rule of necessitation: if ϕ is valid, then so is �ϕ . That
is, if ϕ is always true, typically because there is a proof
of ϕ , then a is sure that it holds. We let the logically-
minded reader that the three formulae above and the neces-
sitation rule all hold in any S4-model.

3.2. Proof search in S4 using tableau calculi

The problem of deciding whether or not a formula is
S4-satisfiable is known to be PSPACE-complete [24]. The
best known decision procedures use only O(n2:logn)-
space [23].
The most popular method for implementing theorem
provers for S4 is to use the tableau method [13, 16]. This
uses the rules of Fig. 2, plus their duals for :� and :�
obtained via the equivalences :�ϕ = �:ϕ and :�ϕ =
= �:ϕ , and for negations of other connectives obtained
via the equivalences :(ϕ1^ϕ2) =:ϕ1_:ϕ2, :(ϕ1_ϕ2) =
=:ϕ1^:ϕ2, :>=?, :?=>. The rules for implication
are derived from ϕ1 ! ϕ2 = :ϕ1_ϕ2.
An S4-tableau for a finite set of formulae Z is a binary
tree of nodes where: the root node contains Z and the
children are obtained by an application of some tableau
rules for S4 to the parent node. The rules are applied
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systematically so that the (�S4) rule is applied only to
a saturated node: a node to which all other rules have
already been applied. A branch of such an S4-tableau is
closed if its leaf node contains both ϕ and :ϕ for some
formula ϕ , or if it contains ?; otherwise the branch is
open. The whole S4-tableau is closed if every branch in
it is closed, otherwise it is open. A formula ϕ is proved
when there is a closed tableau for the finite set Z = f:ϕg.

X;ϕ1^ϕ2
(^)

X;ϕ1;ϕ2

X;ϕ1_ϕ2
(_)

X;ϕ1 X;ϕ2

X;�ϕ
(�S4)

X;�ϕ ;ϕ

X;�Y;�ϕ
(�S4)

�Y;ϕ

Fig. 2. Tableau rules for S4.

As a first example, we may prove the formula

(p^q)! (q^ (q! p))

as follows. First, negate this formula to get:

p^q^ (:q_ (q^:p)) :

Formally, we have simplified the negation by pushing nega-
tions inside formulae, using transformation rules :�A!
�:A, :�A ! �:A, :(A ! B) ! A^ :B, :(A^ B) !
:A_:B, :(A_B)! :A^:B, :> ! ?, :?! >, and
removing double negations ::A! A. This process ends
in a formula where negation is only applied to atomic for-
mulae, the so-called negation normal form (NNF).
Then, we may apply rule (^) twice to produce the tableau
node p;q;:q_ (q^:p). The only rule that applies now
is (_), yielding two nodes p;q;:q and p;q;q^:p. The
first one is closed. The only rule that applies to the second
is (^), yielding p;q;q;:p, which is closed. Each branch is
closed (contradictory): this terminates the proof. To sum
up, this proof is written:

p^q^ (:q_ (q^:p))
(^)

p;q;:q_ (q^:p)
(_)

p;q;:q p;q;q^:p
(^)

p;q;q;:p

One example we shall use in the sequel is:

��p^��q! �(q^ p) : (1)

Its temporal meaning is “if p is always such that it will be-
come true later on, and if q eventually becomes true then
remains true forever, then p and q will eventually become
true simultaneously”. Its meaning based on agent knowl-
edge is “if I know that I believe p, and if I believe that I

know q, then I believe p and q”. This formula is S4-valid,
as can be shown by looking at its Kripke semantics.
Alternatively, we prove it as follows. A tableau proof starts
with the NNF of its negation:

��p^��q^�(:q_:p): (2)

A closed tableau is then:

��p^��q^�(:q_:p)
(^)

��p;��q;�(:q_:p)
(�S4)

��p;�p(a);��q(b);�(:q_:p);:q_:p
(�S4)

��p;�q;�(:q_:p)
(�S4)

��p;�p(a);�q;q;�(:q_:p);:q_:p
(�S4)

��p; p;�q;�(:q_:p)
(�S4)

��p;�p(a); p;�q;q;�(:q_:p);:q_:p
(_)

��p;�p(a); p;
�q;q;�(:q_:p);

:q

��p;�p(a); p;
�q;q;�(:q_:p);

:p

(3)

The first (topmost) use of rule (�S4) generates a node
where there are two �-formulae, written here with super-
scripts (a) and (b). Then we may use (�S4) in two ways,
using (a) or (b). The proof above uses (b); in fact there
is no proof where we would use (a) instead at this point.
We retrieve (a) below in the same proof: this is where it is
used with (�S4). Although (a) is again regenerated below,
we do not use (�S4) again. The final rule is (_), which
closes the whole tableau. This proves (1).
Theorem 1 (Soundness and Completeness) . The finite set
f:ϕg has a closed S4-tableau iff the formula ϕ is
S4-valid [13, 16].
As a special case, ϕ is S4-valid if and only if the finite
set fψg, where ψ is the negation normal form of :ϕ , has
a closed S4-tableau using only the rules of Fig. 2. Indeed
a closed tableau for a negation normal form can only use
the rules of Fig. 2. We shall restrict to negation normal
forms in the rest of the paper.
The completeness proof gives a systematic method for
proof-search, which consists of repeatedly applying all the
invertible rules (^), (_) and (�S4) until no more appli-
cations of these rules are possible. In the case of (�S4),
this has to be made more precise: given �ϕ in the current
node, we add ϕ to it, and mark �ϕ so as to prevent any
reapplication of (�S4) to the same formula �ϕ . When
none of these rules is applicable, we have reached a node
that corresponds to a so-called saturated world in the under-
lying Kripke model under construction; see [16] for details.
Some �-formula �ϕ is then singled out for attention from
this saturated node and a successor is created for it using the
(�S4)-rule. Precisely, �ϕ is replaced by ϕ , all �-formulae
are unmarked (so as to reenable the application of (�S4)),
and all other formulae are removed from the current node.
The application of (�S4) usually requires backtracking: if
no proof is found by singling out �ϕ from the current node,
some other �-formula has to be chosen instead, until one
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finds one that leads to a proof, or until all �-formulae have
been tried.
Naive proof search for a closed S4-tableau for some finite
set of formulae Z using this systematic method can lead to
infinite loops viz. Z = f��p; pg:

��p; p
(�S4)

��p;�p; p
(�S4)

��p; p
�
�
�

Hence some form of loop-checking is necessary: if some
node is obtained that has already been generated above in
the same tableau, then proof search fails. In this example,
this means that there is no closed tableau for Z.
Backtracking involves additional complications, in that
loops do not always mean that there is no proof, rather
that we have to make different choices to find a proof (if
any). This can be seen from (3), where we can simulate
the above loop by repeatedly applying rule (�S4) on for-
mula (a) (in particular, by using this rule rather than (_)
in the bottom deduction). This would loop; nonetheless (1)
has a proof, namely (3).
Technically, it is also important that nodes are compared as
sets, not just as lists; that is, duplicate formulae in nodes
have to be removed. Otherwise, as the reader might want
to check, the formula ���p! ���p leads to infinitely
many nodes of the form ���p;���(:p);�p; : : : ;�p,
with an unbounded number of occurrences of �p.
It turns out that sets of nodes obtained higher up by the
(�S4) rule only need to be kept in the checklist. As we
shall demonstrate, this will allow us to keep the space re-
quirements for proof search to within polynomial bounds.

4. Algorithms

We now describe our algorithm and data structures in more
detail.

4.1. Terms

Negation normal form. Input formulae are assumed to
be in negated normal form (NNF). This requirement is not
restrictive since every formulae can be converted into a log-
ically equivalent NNF formula in linear time [6]. The ad-
vantage of using NNF is that the formulae in the parse tree
of the NNF formula constitute all of the formulae that can
appear in any node of the search tree.

Parse tree. A formula is parsed as a tree, where each
node has at most two children. The nodes are characterized
as CONJ, DISJ, ALL, SOME if they are of type ϕ ^ψ ;ϕ _
ψ ;�ϕ ;�ϕ respectively. At the leaves there are literals:
atomic formulae or their negations. Each node represents
a subformula of the original NNF formula, with the root
representing the whole NNF formula. With the tableau

rules of Fig. 2, it can be shown that the subformulae that
appear in the parse tree are all the formulae that can appear
in the nodes of the search tree. Clearly, the number of
nodes in the parse tree is less than or equal to the length of
the formula (it is exactly the length of the formula less the
number of negation symbols). The number of formulae in
any node of the search tree is therefore less than the length
of the original NNF formula.

The parse tree is indexed, i.e., each node of the parse tree
receives an integer number, so that each parent node has
a smaller index than its children. This simplifies the visit
sequence of the parse tree, as can be seen below.

Search tree. In the sequel we refer to the S4 tableau as
the search tree.

n�, n
�

, n_, n^. The number of subformulae of the appro-
priate type in the original NNF formula.

4.2. Storing nodes in the search tree

The parse tree provides access to the finite list of all for-
mulae that can appear in the nodes of the search tree. Thus
each node in the search tree can be represented as a bit
string, whose bits indicate whether or not the corresponding
formulae is present in the node. This bit string has length
equal to the length of the original formula. Thus storing
one node in the search tree requires n bits, where n is the
length of the original formula.
In the case of formula (2), we may index each subformula
by the following numbers

�� p
|{z}

7
| {z }

4
| {z }

1

^�� q
|{z}

8
| {z }

5
| {z }

2

^�( :q
|{z}

9

_ :p
|{z}

10

)

| {z }

6
| {z }

3
| {z }

0

(4)

The leftmost final node of the proof (3) is then the set
f1;4;7;5;8;3;9g, represented as the bit string 01110111010
(bit 0 being the rightmost), while the two conclusions of
rule (�S4) used in the proof are f1;5;3g (00000101010)
and f1;7;5;3g (00010101010).

4.3. Loop checking

As shown in Section 3.2, a S4-tableau can contain an
infinite branch. This problem can be solved by notic-
ing that only a finite number of different nodes can ap-
pear in a search tree, and by avoiding examining any node
twice. Thus if a node has ever been encountered before,
it can be safely ignored. In this case, we backtrack to
the last application of the (�S4) rule, and choose a dif-
ferent � formula there. If all � formulae have been tried,
we backtrack higher up to the previous application of the
(�S4)-rule, and so on until all avenues have been explored,
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prove(pos;neg;? :: `;boxes;dias;checkList) = true
prove(pos;neg;> :: `;boxes;dias;checkList) = prove(pos;neg; `;boxes;dias;checkList)
prove(pos;neg; p :: `;boxes;dias;checkList) = p2 neg_prove(pos[fpg;neg; `;boxes;dias;checkList) (p2 PRP)

prove(pos;neg;:p :: `;boxes;dias;checkList) = p2 pos_prove(pos;neg[fpg; `;boxes;dias;checkList) (p2 PRP)
prove(pos;neg;(ϕ ^ψ) :: `;boxes;dias;checkList) = prove(pos;neg;ϕ :: ψ :: `;boxes;dias;checkList)
prove(pos;neg;(ϕ _ψ) :: `;boxes;dias;checkList) = prove(pos;neg;ϕ :: `;boxes;dias;checkList)

^ prove(pos;neg;ψ :: `;boxes;dias;checkList)
prove(pos;neg;�ϕ :: `;boxes;dias;checkList) = prove(pos;neg; `;boxes;dias[fϕg;checkList)
prove(pos;neg;�ϕ :: `;boxes;dias;checkList) = prove(pos;neg;ϕ :: `;boxes[fϕg;dias;checkList)

prove(pos;neg; [];boxes;dias;checkList) = 9ϕ 2 dias� (boxes;ϕ) 62 checkList
^prove( /0; /0;ϕ :: boxes;boxes; /0;checkList[f(boxes;ϕ)g)

Fig. 3. A straightforward proof search algorithm.

or a closed S4-tableau is found. This, however, is not a prac-
tical method, since it would require exponential space to
store all the possible nodes of the search tree.
A better method is to check for repetitions of the nodes
obtained by the application of the (�S4) rule only, since
these contain the “core” of the new worlds built by this rule.
Thus the latter method looks for repetitions of the initial
configuration of each newly generated world. This also
guarantees the solution for the infinite branch problem, yet
requires polynomial space. The price is that identical nodes
on different branches now have to be treated separately.

4.4. A straightforward non-deterministic algorithm

A naive implementation of S4tableaux would be by the fol-
lowing recursive procedure prove. We specify it concretely
enough that we can use it as actual code in any functional
programming language. The prove function takes six ar-
guments (pos;neg; `;boxes;dias;checkList), where posand
negare sets of propositional variables (being variables p oc-
curring as p, resp. :p on the current node), ` is a list of
formulae (the part of the current node containing formulae
that we have to deal with), boxesis a set of formulae ϕ such
that �ϕ occurs in the current node, dias is a set of formu-
lae ϕ such that �ϕ occurs in the current node – so that
the current node is exactly the set of formulae in `, plus all
atoms from pos, all negations of atoms from neg, all for-
mulae of boxeswith a � added in front, and all formulae of
dias with a � added in front. Finally, checkListis a set of
pairs (boxes;ϕ) representing conclusions of the (�S4) rule
that we have encountered higher up in the current tableau
and which should not repeat (loop-checking).
Then our first algorithm may be written as in Fig. 3, which
may be implemented right away in languages like ML [33].
The notation ϕ :: ` denotes the list ` with ϕ added in front.
This is mainly used for pattern-matching purposes, and in
that case it checks that the corresponding argument is a non-
empty list, gets the first element in ϕ and the rest of the list
in `. We write [] the empty list, and [boxes] any list whose
elements are those of the set boxes.
All the clauses in Fig. 3 except the last one dispatch formu-
lae in the to-do list ` depending on their topmost symbol.
Eventually, prove will be called with ` = [], leading to

the last clause, which tries to apply rule (�S4) in a way
leading to a proof. The condition (boxes;ϕ) 62 checkList
implements loop-checking, together with the fact that we
add (boxes;ϕ) to checkList in the last call to prove. (It
would have been more natural, by the way, to call prove
on arguments ( /0; /0; ϕ :: [�ψ jψ 2 boxes]; /0; /0; :::); Figure 3
instead directly precompiles the obvious applications of
rule (�S4)).
Finally, to prove ϕ , call prove( /0; /0;Z; /0; /0; /0), where Z is
the one-element list containing the NNF of ϕ .

4.5. A non-deterministic algorithm

Figure 3 is quite detailed, and we shall rather use more
informal notation in the sequel, so as to concentrate on the
essentials. We shall also adopt a more imperative style of
writing, writing currentWorldfor the current node and as-
signing to it, and using the phrase “non-deterministically
do” to replace existential quantifications (as in the last
clause of the figure).
Since card memory is scarce, we also need to control how
much space is used, and in particular it is dangerous to use
a recursive style. Instead, we manage the recursion stack
by hand. This saves space for many useless local variables
and for return addresses: we don’t need to memorize either
kind of object. So our stack stackwill only contain pairs of
a checklist and a formula to backtrack to (these will always
be left arguments to _). As an optimization, the sequential
nature of the algorithm and the fact that check lists always
grow as a tableau expands ensure that we need not store
entire checklists: a single array checkListsuffices, and the
stack only memorizes which prefix of checkListis actually
relevant: this prefix is coded as an integer checkListSize
counting the number of initial objects in checkListthat con-
sistute the actual check list.
The following algorithm returns true if a given for-
mula ϕ0 of length n is S4-satisfiable, and false otherwise.
It requires n4 space.

stack::= empty
checkList::= empty
checkListSize::= 0
currentWorld ::= fϕ0g
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do
while there are ^, _, � rules that can be applied do

apply these rules to currentWorld
if the rule applied is an _ rule then

push (checkListSize, left child of the rule)
onto stack

currentWorld ::= the right child of rule
end if

end while
if currentWorld is closed then

if the stackis empty then
return false

else
(checkListSize, currentWorld) ::=

pop from stack
resize checkListto checkListSize
continue

end if
end if
if currentWorldappears in checkList[0..checkListSize-1]

then return true
end if
if no (�S4)-rules can be applied then

return true
end if
non-deterministically pick a formula �ϕ

from currentWorld
apply (�S4)-rule using �ϕ to currentWorld

to get newWorld
checkList[checkListSize] ::= currentWorld
checkListSize::= checkListSize+1
currentWorld ::= newWorld

while stackis not empty

Space complexity. It can be seen that stack grows by 1
only when the (_) rule is applied. Thus for one world, we
may need to store the maximum of n_ possible configura-
tions. Also the transitional rule (�S4) which moves from
one world to another preserves all the �-formulae, thus the
set of all �-formulae (the core) in consecutive worlds in
a branch of the search tree do not decrease. Therefore there
are at most n

�
different cores in the same branch of the

search tree. Also the worlds that have the same core will
form a chain in the branch. We need to find the maxi-
mum number of worlds in a chain that have the same core.
Since each new world is formed by taking all the � for-
mulae from the previous world together with one of the
� formulae, the maximum number of worlds in the chain
that have the same core is n�. Altogether, the maximum
number of configurations that we need to store in the stack
is n_�n

�
�n� � n3 (a better approximation is n3=3).

It can be seen that checkListcontains only the node which
is obtained by applying a (�S4) rule. It is also resized so
that all the nodes it contains are the initial configurations
of the worlds in the current search branch. Thus checkList
is always smaller than or equal to stack. Overall, the max-
imum number of configurations we might need to store in
stackand checkListis of order n3. Given that a configu-

ration needs n bits, the space complexity of this algorithm
is n4 [24].

4.6. An improved algorithm

First, the non-deterministic choice of the final part of the al-
gorithm must be eliminated: some form of enumeration of
� formulae has to be implemented. For each � formula �ϕ
in currentWorld, we have to generate the initial configura-
tion Xϕ of a new world by just keeping ϕ and all � formu-
lae from currentWorld, and proceeding to build a closed
sub-tableau for Xϕ . If some such attempt succeeds, then
currentWorld is refuted. To enumerate the formulae �ϕ ,
we store the world configuration currentWorld before we
apply the (�S4) rule and keep the index lastK indexof the
last (�S4) rule applied to that configuration.
Second, it is safe to always use the (_) rule before any
instance of (�S4), as done in Section 4.5, but also to only
apply (_) once all rules (^) and (�) have been applied.
While this is not always optimal, it is generally a good
heuristic: for example, the proof (3) never uses (_) before
(�S4) except at the last step. Indeed, with respect to Fig. 3,
the (_) rule involves a form of “universal” backtracking
while (�S4) involves a form of “existential” backtracking,
and it is usually better to postpone backtracking rules as
much as possible.
Third, while backtracking usually involves memorizing one
branch of the computation on the stack while we explore
the other branch, there is no need to memorize anything
when backtracking is caused by instances of (_), provided
we know which subformulae in the current node are first or
second arguments to an _ in the whole formula to prove,
and provided we exploit certain properties of our indexing
scheme for subformulae. Let us call a formula of type R if
it occurs as a second argument to _, and of type L if it
occurs as a first argument to _.
This is best explained on an example. Consider the node:

��p
|{z}

1

;�p(a)

| {z }

4

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

;:q_:p
| {z }

6

(5)

which we have already encountered in the proof (3). Note
that :q (subformula 9) is the only type L subformula, while
:p (subformula 10) is the only type R subformula, and
we may go from one to the other by incrementing, resp.
decrementing the index. This is because subformulae were
actually indexed in a breadth-first manner.
To look for a closed tableau from this node, set lastK index
to 0, and generate the first of the conclusions of
the (_) rule:

��p
|{z}

1

;�p(a)

| {z }

4

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

; :q
|{z}

9

(6)

Note that we do not stack the other conclusion of
the (_) rule. Once we reach a closed node for this node,
we know that we can obtain a corresponding node (not
necessarily closed) of the subtableau below the other con-
clusion of the (_) rule, by replacing the first type L subfor-
mula by the corresponding type R subformula (the unique
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other argument to the same _ operator), and all preceding
type R subformulae by the corresponding type L subfor-
mula. If there is no type L subformula remaining, then all
conclusions of the (_) rule have been dealt with. Here the
only type L subformula is 9, so we produce:

��p
|{z}

1

;�p(a)

| {z }

4

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

; :p
|{z}

10

(7)

Now no other rule than (�S4) applies: lastK index is in-
cremented to 4, the position of formula (a). We get:

��p
|{z}

1

; p
|{z}

7

; �q
|{z}

5

;�(:q_:p)
| {z }

3

(8)

which is the initial configuration of the new world. In par-
ticular, we memorize f1;7;5;3g into checkList. We must
also reset lastK index to 0, lest we lose required opportu-
nities for applying (�S4) later on.
Apply all ^ and �S4 rules, getting:

��p
|{z}

1

;�p(a)

| {z }

4

; p
|{z}

7

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

;:q_:p
| {z }

6

(9)

Again apply (_), leading to the closed node:

��p
|{z}

1

;�p(a)

| {z }

4

; p
|{z}

7

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

; :q
|{z}

9

(10)

This is closed, so change the type L formula :q
|{z}

9

into the

corresponding type R formula :p
|{z}

10

. This is now closed

again, and no type L formula remains. The proof is fin-
ished.
We let the interested reader do the full example (2), notic-
ing that loop-checking is now required.
Notice that our scheme for avoiding storing information for
backtracking on _ subformulae requires us to index each
subformula of the original formula with a distinct num-
ber, even though some subformulae may be equal. This
indexing of the nodes of the parse tree forbids common
sub-expressions and therefore introduces some redundancy.
There may be duplications of the same subformula, but they
are named with different indices, so they must be examined
independently.
In the following algorithm, the stack stores only the con-
figurations that have been fully expanded with non-(�S4)
rules. Also, “saturate currentWorldwith non-(�S4) rules”
means applying (^), (�S4) and the left part of (_):

X;ϕ1_ϕ2

X;ϕ1

to currentWorld while this changes currentWorld. Re-
call that the right part of the (_) rule will be obtained by
looking at remaining type L formulae in the initial config-
uration of the current world, what we call “another sibling
of currentWorld” below.

checkList::= empty
stack::= empty
currentWorld ::= world consisting of the original formula
do

1. Saturate currentWorldwith non-(�S4) rules
2. while currentWorld is closed do

if there is another sibling of currentWorldthen
take currentWorld to be that sibling
reset lastK index to indicate no �S4 rules

have been applied yet
else if the stackis empty then

return false
else

(lastK index,currentWorld) ::=
pop from stack

pop from checkList
end if

end while
3. do

lastK index ::= the next �-formula
from currentWorld

if no more (�S4) rules can be applied then
if stackis empty then

return true
else

(lastK index,currentWorld) ::=
pop from stack

pop from checkList
end if

end if
apply the �S4 rule to currentWorld

to get newWorld
while newWorldappears in checkList

4. put (lastK index,currentWorld) into stack
put newWorldinto checkList
currentWorld ::= newWorld

while stackis not empty

Note that now checkListand stack are of the same size.
The checkListis actually the core of the world configuration
stored at the corresponding location in stack. Thus it can
be obtained from stackby generating the core of each world
in stack. This gives a more efficient use of space. It can be
seen that for one node in the search tree, we need only one
location in stack. Thus the space requirement is reduced
by a factor of n_: the maximum number of configurations
stored in stackat one time is n

�
�n� � n2, and the space

complexity of this algorithm is n3 (a better approximation
is n

�
�n� � n2=2, and the space requirement is n3=2).

5. Data structures

5.1. The parse tree

The parse tree is stored in two byte arrays, one (childs) of
length 2n and the other (nature) of length n. The 2i and
2i +1 entries in the first array indicate the children of the
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ith node in the parse tree (i.e. the indices of some other
nodes in the parse tree, or the atom at that node), while the
ith entry in the second array indicates if the ith node in the
parse tree is a �, �, _, ^, : or PRP. The _ and ^ nodes
have two children. The �, �, : and PRP nodes have one
child, thus the second child for these node is redundant.
This is not a severe problem, since the parse tree is fixed
through the proving procedure. Note that in case of the :
and PRP nodes, the 2i entry of the child array contains the
atom itself, not the index to another node in the parse tree.

5.2. The nodes in the search tree

As discussed above, each node in the search tree can be
represented as a bit string of length n. To examine all the
(�S4)-rules that can be applied to a node (i.e all the � for-
mulae in that node), we need to store the index to the
last � formula that has been examined, requiring one more
byte.

5.3. The stack

Nodes are stored in a stack so that other branches in the
search tree can be generated from the current branch, and
so that a new node can be checked for duplication. This
requires searching through all nodes in the stack, and also
pushing and popping from the stack.
There are several possible implementations for the stack.
The first two options store the stack as an array of bytes,
and do not need extra memory for pointers. Since multidi-
mensional arrays are not supported, access to elements of
the stack will require some extra computations.
The upper bound of the size of the stack is known as seen
above. Thus the stack can be allocated at the beginning of
the procedure. We then need not worry about the growth of
the stack. However, this is not a practical method, since the
stack rarely grows to its theoretical upper bound size. Also,
the limited amount of memory on the card will restrict the
size of the input formulae. For example, with 512 bytes, the
length of the formula will be less than 16, i.e. 163=2 bits =
= 512bytes. Allocating more than the card’s RAM is possi-
ble, however it involves swapping to and from the EEPROM
and will slow down the proof procedure. Consequently, the
card reader usually cannot wait for the card and will throw
an exception.
Another way to implement the stack is to pre-allocate
a small stack, and gradually increase its size by a large step
when it becomes full. This ensures that the memory is
used more effectively. However it still contains redundancy
since it allocates more space than required each time it be-
comes full. Thus the longer formulae will result in larger
redundancy. It also involves a lot of copying each time the
stack grows.
The stack can also be implemented as a one way link list.
Each node in the search tree is an element of the list. This
requires extra memory for a pointer to the next element.
However this extra memory becomes insignificant for long

formulae. There is no redundancy. With this approach, the
program has been tested for formulae of length up to 120.

6. Implementation

The program consists of two packages: card and client.
The client package contains the classes for parsing the
formula and converting it into NNF. Parsing is done
by using Javacup (version 1.0j). We need a scanner
(scanner.java) and a specification (parser.cup) for
the formula, and Javacup automatically creates the parser.
There is also a card proxy which manages the interactions
with the card on behalf of the users. The class for testing
is also in this package. Note that all of these operations are
done off-board on a terminal (PC).
The card package contains an interface and two classes that
are downloaded onto the card. These are classes prover
and State, and the interface proverInterface. The in-
terface proverInterface provides access to the services
offered by the prover. These include loading the formula
onto the card and proving. The interface also defines con-
stants that are used by the prover, and are also used in
the parsing and converting procedures. The class prover
contains the codes for the proving procedure. The prover
object that is loaded onto the card reserves enough space to
hold the longest formula. When the formula is put onto the
card, it is stored in the object. The user then must explicitly
call the prove procedures. The prove method reads the
formula from the object, performs simplifications and then
starts looking for a model for the formula. (Note that there
is a separation between loading the formula and proving.
This is due to the fact that loading is rather complicated,
and it is discussed in the next paragraph).
Despite the limitations of the card, the prover is able to
work for a number of long formulae. Tests have been con-
ducted for formulae of length up to 120. Passing the input
to the card and storing input in the card then requires greater
care because communication with the card is not simple.
There is an upper-bound for the amount of data that can
be transfered in one transmission (approaching 64K is not
recommended). Long formulae therefore need to be bro-
ken into small pieces. Here, the input arrays are split into
pieces of length 32 bytes and each piece is passed sepa-
rately to the card, together with its length and position in
the original array. Thus the maximum amount of data in
one transmission is 34 bytes (one byte for the length and
one for the position).
Since the inputs to the prove method are not ready in one
pass, they need to be stored in the object prover, requiring
the reservation of space for the longest input. Note that this
also implies more time is required for copying the input
from EEPROM to RAM in the prove procedure.

7. Results

This section shows the average time spent on the card in
proving randomly generated formulae of various lengths
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Fig. 4. Time vs formulae length.

(from 20 to 120). As can be seen, the time increases with
the length of the formulae since longer formulae generally
require more stack space, and require more arithmetic op-
erations in the calculations (Fig. 4).

8. Conclusions and further work

We have shown that even modal logic S4can be handled on
a Java card. Thus transitive modal logics are not necessarily
beyond the scope of Java cards. We now need to invent or
explore appropriate logics of permissions and obligations
to allow us to capture basic security notions like “trust”.
This is the subject of further work.
Another method for loop checking is to keep track of cer-
tain formula using a history mechanism [20]. We intend to
investigate whether such a history mechanism can be easily
used in CardS4.
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Research Scholarship.

References

[1] M. Abadi, “Secrecy by typing in security protocols”, J. ACM, vol. 46,
no. 5, pp. 749–786, 1999.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A calculus for
access control in distributed systems”, ACM Trans. Program. Lang.
Syst., vol. 15, no. 4, pp. 706–734, 1993.

[3] M. Abadi and A. D. Gordon, “A calculus for cryptographic proto-
cols: the spi calculus”, in Fourth ACM Conference on Computer
and Communications Security. ACM Press, 1997.

[4] M. Burrows, M. Abadi, and R. Needham, “A logic of authentica-
tion”, ACM Trans. Comput. Syst., vol. 8, pp. 18–36, 1990.

[5] P. Boury and N. El Kadhi, “Static analysis of Java cryptographic
applets”, in ECOOP’2001 Workshop on Formal Techniques for Java
Programs. Tech. Rep., FernUniversität Hagen, 2001. [Online]. Avail-
able: http://www.informatik.fernuni-hagen.de/import/pi5/
workshops/ecoop2001 papers.html.
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