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Abstract — Secure communication generally begins with
a connection establishment phase in which messages are ex-
changed by client and server protocol software to generate,
share, and use secret data or keys. This message exchange
is referred to as an authentication or key distribution crypto-
graphic protocol. CAPSL is a formal language for specifying
cryptographic protocols. It is also useful for addressing the
correctness of the protocols on an abstract level, rather than
the strength of the underlying cryptographic algorithms. We
outline the design principles of CAPSL and its integrated spec-
ification and analysis environment. Protocols for secure group
management are essential in applications that are concerned
with confidential authenticated communication among coali-
tion members, authenticated group decisions, or the secure
administration of group membership and access control. We
will also discuss our progress on designing a new extension of
CAPSL for multicast protocols, called MuCAPSL.

Keywords — CAPSL, MuCAPSL, cryptographic protocol spec-
ification, cryptographic protocol analysis, secure group commu-
nication, multicast.

1. Introduction

In computer networks, cryptography is used to protect pri-
vate messages and to authenticate the source and content
of messages. The range of applications of cryptographic
techniques is enormous, including banking, electronic com-
merce, protection of personal and medical data, trade se-
crets, and government and military uses. Cryptography
supports secure access to World-Wide-Web servers, virtual
private networks, and other services over the Internet.
Secure communication generally begins with a connection
establishment phase in which messages are exchanged by
client and server protocol software to generate, share, and
use secret data or keys. This message exchange is referred
to as an authentication or key distribution protocol. A few
such protocols have been put forward by standards bodies,
and others are in common use, such as SSL for secur-
ing web page accesses, but new protocols are continually
being designed. The perpetual need to design new proto-
cols is due to new technology – cryptographic algorithms,
computer hardware, network architectures – and new appli-
cations, with special goals such as digital cash, voting or
contract signing.
The principal topic of this paper is the design of a formal
language, CAPSL, for specifying cryptographic protocols,
and how this language plays a role in the analysis of their
correctness. CAPSL is useful for addressing the correct-
ness of the protocols on an abstract level, rather than the
strength of the underlying cryptographic algorithms. We
will also discuss our progress on designing a new exten-
sion of CAPSL for multicast protocols, called MuCAPSL.

1.1. Protocol vulnerabilities

Protocols can be analyzed under the assumption of ideal
encryption: that is, ciphertext can be decrypted only with
the help of the proper key, and ciphertext for a chosen plain-
text cannot be generated without the help of the proper key.
These assumptions distinguish formal models, with which
we are concerned, from computational models, which apply
probabilistic and computational complexity reasoning, and
from cryptanalysis. We assume that the reader is aware of
the distinction between public-key encryption, in which an
encrypting key is publicized and the corresponding decryp-
tion key is kept private, and symmetric-key encryption, for
which the two parties share a common secret key.
Cryptographic protocols are designed to defend against
hackers or other adversaries who may have the ability to in-
tercept and modify messages on the network. The attacker
may also have a legitimate user identity on the network,
or (almost the same thing) may have compromised the se-
cret key of some legitimate user in order to masquerade as
that user. Protocol designers also consider attacks in which
some secret keys that have been in long-term use, or which
were used in the past, may have become compromised due
to cryptanalysis, and the protocol should be designed so
that such compromised keys cannot be re-introduced or
used to compromise new keys. This concept of a worst-
case, powerful attacker originated in a paper by Dolev and
Yao [15]. Attacks perpetrated by a Dolev-Yao attacker are
called active, message-modification, or sometimes man-in-
the-middle attacks.
Here is a well-known example of an authentication proto-
col, showing how such protocols are expressed in textbooks
and papers. We will also show how this protocol is vulner-
able to a Dolev-Yao attacker:

A! B : fA;NagPB
B! A : fNa;NbgPA
A! B : fNbgPB

This particular protocol is supposed to establish a session
between principals A and B in such a way that each prin-
cipal authenticates the identity of the other principal, and
they share two session-specific secrets Na and Nb. This
protocol was proposed by Needham and Schroeder in [27].
What is shown here is actually not the entire protocol, but
just the handshake that comes after an earlier part in which
the necessary public keys are exchanged. We will refer to
this protocol as “NSPK.”
The bracketed term fA;NagPB represents the encryption of
the concatenation of A and Na using the public key of B. It
is assumed here that A has previously obtained B’s public
key and that only B has the corresponding secret key, and
vice versa for B. The message fields Na and Nb are nonces,
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meaning that they are fresh, in the sense that they have not
been used before by the principal that originates them. If
they are large enough and randomly generated, they could
be used as keys to encrypt subsequent messages.
The security claim of this protocol is that A has given Na

directly only to B, because only B could have decrypted
the message in which Na was introduced. Similarly for B
and Nb. The protocol also provides entity authentication,
i.e., evidence that the other principal is currently actively
participating in the protocol, because it includes acknowl-
edgments from B and A containing the nonces they re-
ceived.
This abstract message-list style of protocol presentation
is often called an “Alice-and-Bob” specification, from the
conventional names given to the parties represented by A
and B.
There is an active attack on the Needham-Schroeder pro-
tocol, found by Lowe [19]. Lowe’s attack is illustrated in
Fig. 1.

Fig. 1. Lowe’s attack.

In this figure, the center column represents the intruder
playing two roles. One role is as himself, principal X,
responding to A in the left-hand session of the protocol.
The intruder is also masquerading as A in the right-hand
session of the protocol, indicated with (A) in parentheses.
There is a security breach in the right-hand session, because
B ends up believing he has been talking to A, and that Nb
is shared only with A.

1.2. Formal methods

The existence of active attacks led to the development of
methods to detect them. Several approaches have been
developed, such as specially designed goal-directed state
search tools [21, 22] to find attacks, applications of general-

purpose specification and verification tools [5, 18, 30] to
perform inductive proofs of correctness, specially designed
logics of belief [2, 16] to prove authentication properties,
and applications of model-checking tools [9, 19, 33], also
to search for attacks. These are some of the earliest or
most influential papers, and by now the literature is quite
extensive.
These tools and their successors have been effective, but it
is difficult for analysts other than their developers to apply
them. One reason for this difficulty is that the protocols
must be respecified for each technique, and it is not easy
to transform the published description of the protocol into
the required formal system.
Some tool developers began work on translators or com-
pilers that would perform the transformation automatically.
The input to any such translator still requires a formally de-
fined language, but it can be made similar to Alice-and-Bob
specifications. This is the CAPSL approach. The origins
of CAPSL were at the 1996 Isaac Newton Institute Pro-
gramme on Computer Security, Cryptology, and Coding
Theory at Cambridge University.
This approach was also taken by ISL, supporting an ap-
plication of HOL to an extension of the GNY logic [6];
Casper [20], for the application of FDR using a CSP
model-checking approach; and Carlsen’s “Standard Nota-
tion” [7], which was translated to per-process CKT5 spec-
ifications [4].

1.3. The CAPSL approach

The CAPSL language and supporting tools are still under
development. This document discusses the design concepts
of the language, including the strategy by which CAPSL
can be adapted for use by various protocol analysis tools.
The basis of this strategy is the use of an intermediate
language, CIL, that is close to the state-transition repre-
sentation used by almost all of these tools. CIL serves
two purposes: to help define the semantics of CAPSL, and
to act as an interface through which protocols specified in
CAPSL can be analyzed using a variety of tools.
CAPSL is parsed and translated to CIL, and there are dif-
ferent translators, called connectors, from CIL to whatever
form is required for each tool. The translator from CAPSL
to CIL can deal with the universal aspects of input language
processing, such as parsing, type checking, and unraveling
a message-list protocol description into the underlying sep-
arate processes. Connectors deal with the semantics and
requirements of individual tools. This overall plan is sum-
marized in diagram shown on Fig. 2.

Fig. 2. CAPSL translation.
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An overview of the CAPSL and CIL environment was given
in [11]. The reference report specifying CAPSL is [13], and
there is also a web site with CAPSL information [25].

2. CAPSL overview

The acronym “CAPSL” stands for “Common Authentica-
tion Protocol Specification Language.” A CAPSL specifi-
cation is made up of three kinds of modules: TYPESPEC,
PROTOCOL, and ENVIRONMENT specifications, usually
in that order. Typespecs declare cryptographic operators,
hash functions, and other operations axiomatically as ab-
stract data types. Specifications for the most popular op-
erators, representing the abstract features of cryptosystems
like DES, RSA, and Diffie-Hellman, are included in a stan-
dard “prelude” file of typespecs supplied with the CAPSL
environment.
Environment specifications are optional; they are used
to set up particular network scenarios for the benefit of
search tools. We will not discuss environment specifications
here.
The core of a protocol specification is a message section
containing an Alice-and-Bob specification of the proto-
col.
An important part of the protocol specification is a state-
ment of its security objectives. There is a GOALS sec-
tion for this purpose, which may include secrecy and au-
thentication statements. Initial assumptions are also speci-
fied formally and placed in a section prior to the message
list.
Here is a protocol specification for NSPK:

PROTOCOL NSPK;
VARIABLES

A,B: PKUser;
Na,Nb: Nonce, CRYPTO;

ASSUMPTIONS
HOLDS A: B;

MESSAGES
1. A -> B: {A,Na}pk(B);
2. B -> A: {Na,Nb}pk(A);
3. A -> B: {Nb}pk(B);

GOALS
SECRET Na
SECRET Nb;
PRECEDES A: B | Na;
PRECEDES B: A | Nb;

END;

Note that declarations may contain property keywords, such
as CRYPTO, having some semantic significance. CRYPTO
for the variables Na and Nb means that their values are
not guessable (by an attacker). This is significant during
analysis, for the attacker model. A variable of type Nonce is
assumed by default to have the property FRESH, meaning
that values chosen for it have not been used before by the
same principal. A nonce is not necessarily CRYPTO, since
sequence numbers, i.e., numbers that are increased by one,
are FRESH and guessable.

The HOLDS declaration states that the process executing
on behalf of A has been initialized with the principal B cho-
sen as the responder. If the HOLDS assumption is omitted,
the CAPSL translator will complain that the sender of the
first message does not know the receiver address. By con-
vention, principals always hold themselves.

2.1. Key lookup

Note that the public keys PA and PB in NSPK have been re-
placed by function calls pk(A) and pk(B). While A could
have been initialized with PB, B needs a table lookup, rep-
resented by pk(A), to find PA, since B does not know in
advance who will request a connection.
Declaration of key lookup functions is one of the main
uses of the abstract type specifications in CAPSL. Such
functions are defined for different subtypes of Principal.
They embody the kind of long-term key memory a certain
kind of principal is assumed to have.
The function pk is defined on principals of type PKUser,
assumed to have such a table. Principals of type PKUser
also have a function sk to look up their own corresponding
private key. Thus, there is a typespec as follows:

TYPESPEC PPK;
TYPES PKUser: Principal;
FUNCTIONS

sk(PKUser): Pkey, PRIVATE;
pk(PKUser): Pkey;

VARIABLES
X: Field;
P: PKUser;

AXIOMS
{{X}sk(P)}pk(P) = X;
{{X}pk(P)}sk(P) = X;
INVERT {X}pk(P): X | sk(P);
INVERT {X}sk(P): X | pk(P);

END;

The typespec name, in this case PPK, is distinct from
the name of the type or types declared in it. Typespec
names are used in IMPORTS statements, when necessary.
Presently the CAPSL translator does not import typespecs
by name; it simply accepts whatever typespecs are provided
in its input stream, in order, and requires that a symbol be
declared before it is used. Declarations are global, includ-
ing those of dummy variables used in axioms.
Functions in type specifications are public by default, mean-
ing that both honest principals and the attacker may com-
pute them. However, some functions, like sk, deliver long-
term secrets such as private keys. These are declared using
the keyword “PRIVATE”. The first argument of such func-
tions identifies the principal privileged to hold the function
value.
There are two kinds of axioms: equational axioms and
INVERT axioms. Equational axioms specify the declared
functions for the use of theorem provers or term rewriting
systems, and also for the use of human readers of the speci-
fication, to determine whether the declared abstractions are
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suitable as a model for the “real” functions in the protocol.
The INVERT axioms are used by the CAPSL translator to
determine implementability of a protocol, which will be
discussed later.
There are other typespecs in the prelude for principals hold-
ing long-term shared symmetric keys, and still others can
be added by CAPSL users as needed.

2.2. Goals

Presently two kinds of security goals are supported: SE-
CRET and PRECEDES. A goal SECRET K; means that
protocol variable K should not be obtainable by the at-
tacker (unless the attacker is acting overtly as one of the
legitimate principals in a particular protocol session).
A goal PRECEDES A: B | K, N; means that when a prin-
cipal B reaches the final state of a protocol session, there
must be some session of principal A (not necessarily in its
final state) that agrees with B on the values of A;B;K and
N (or any other variables listed after the j, if any). This
security goal is meant to represent a fairly general kind of
authentication, and it corresponds roughly to formalizations
of authentication used by Schneider [34] and Lowe [20].

2.3. Concatenation

A sequence of fields may be concatenated into a single
longer field, usually for the purpose of having them en-
crypted together. Curly brackets f , g and square brackets
[ , ] denote different kinds of concatenation, which are rep-
resented by different functions, cat and con respectively.
cat is associative and con is not.
Both cat and con are binary. Longer concatenations are
parsed under the assumption that right association is in-
tended. Thus, [a;b;c] is parsed as [a; [b;c]].
Associativity of concatenation matters when we try to de-
compose a concatenation. In particular, the first component
of a cat term is extracted by first, and that of a con term
by head. It is easy to characterize head with the axiom
head(con(X,Y)) = X. But first(cat(X;Y)) could be
either X or first(X), depending on whether or not X is
itself a cat term.
To deal with this question we differentiate between atomic
fields, which form the subtype Atom of Field, and those
fields that are expressible as a concatenation of smaller
fields. The first component of a cat concatenation is the
first atomic component. Most types are subtypes of Atom.
Another feature of associative concatenation is that a mes-
sage A -> B: {C,D}K can be received by B only if either
(1) C is held by B or (2) C is atomic. If C is neither held
or atomic, B cannot parse the concatenation from left to
right – it won’t know where C stops and D begins.

2.4. Other language features

CAPSL has additional syntax to make it more expressive,
more concise, and to help resolve ambiguity.

Variables can be introduced to precompute expressions.
Suppose, for example, a certain symmetric key K is com-
puted as a hash of other variable values. We can write an
equation that looks like an assignment statement:

K = sha(fNa,A,Kabg);

This equation can be placed in the MESSAGES section be-
fore a message containing the first use of K. Alternatively,
it can be placed in a prior DENOTES section, like a dec-
laration, and it will automatically be used when needed.
(This is done with a preprocessing step in the CAPSL trans-
lator.) If K is computed in two different ways by different
principals (this might happen, for example, when comput-
ing a Diffie-Hellman shared key), each DENOTES equation
can be labelled by the principal allowed to use it, e.g.,

K = sha(fNa,A,Kabg):A;

Another useful feature is the % syntax introduced by Lowe
in Casper [20]. A message might be computed with an
expression by the sender, but handled by the receiver as
a black box. The sender of a term X%Y views it as X but
the receiver sees it as Y. Consider the statements:

A -> B: {X}pk(C)%Y;
B -> C: Y%{X}pk(C);

While A and C understand the message as an encryption,
B merely forwards it.
Message sections may also invoke a subprotocol (specified
separately as a protocol) using an INCLUDE statement, and
make tests using equations to either abort the protocol on
a failed test or to choose between IF-THEN branches.
It is one of the characteristics of CAPSL as a specifica-
tion language that protocol variables receive a value only
once, and are not changed after they have been initialized
or computed or received. This means that an equation like
K = sk(B); can be unambiguously identified as either an
assignment statement (if K is not defined but B is), a test
(if K and B are both defined), or a mistake.

3. The intermediate language CIL

The CAPSL intermediate language (CIL) is designed to
make the translation to tool-specific representations as easy
as possible. Fortunately, the protocol specifications re-
quired for most protocol analysis tools have considerable
structural similarity. They generally specify a protocol
with state-transition rules for communicating processes.
CIL uses multiset term rewriting rules that permit state
changes to be presented concisely, and in a way that closely
matches the requirements of analysis tools. This approach
was influenced by an analysis example using Maude, by
Denker, Meseguer, and Talcott, presented at a LICS ’98
workshop [14], and by Mitchell’s multiset rewriting (MSR)
formulation, presented at a Computer Aided Verification
workshop in 1998, and also later, in more detail, in [8].
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3.1. The MSR model

In the MSR model, the current global state of a network is
a multiset containing “facts” representing the current state
of some processes engaging in the protocol, and some mes-
sages in transit. The network is a multiset simply because
it is possible that many copies of the same process state or
message might be present simultaneously due to multiple
concurrent protocol sessions.
An MSR rule for a state transition in which A handles the
exchange

B -> A: {K}pk(A);
A -> B: {A,Na}K;

might have the abstract form:

Ai(A;B);M(fKgpk(A))�!

(9Na)Ai+1(A;B;K;Na);M(fA;NagK) :

Here, “A” is being used both to name a role in the protocol,
with states Ai , and as a dummy variable in the rule. The ar-
guments of a state fact are the variables (identified by their
positions rather than their names) held by the process. The
first argument is always the principal running the process.
Message facts are of the form M( ). The parameter of the
message fact holds the content of the message.
In this rule, A in state i decrypts the received message (on
the left), adds K to its memory list for the next state i+1,
generates a nonce Na, and replies with fAgK . The message
facts in this rule show only the content of a message, not
its source and destination “header.” By convention, facts
appearing on the left but not on the right are removed from
the multiset when the rule is executed.
The existential quantifier in the MSR rule has more than its
ordinary logical meaning: it asserts that any value chosen
for the variable is a fresh value. This is like a skolemiza-
tion step when a new constant is chosen to instantiate an
existentially quantified variable for proof purposes.
Note that two CAPSL messages have been used to pro-
duce a single MSR rule. We could have written two MSR
rules for A, one to receive the first message and one to
send the second, but then the two rules can be combined.
The CAPSL translator actually does this; it processes one
message at a time, producing receive-only and send-only
rules, and then combines compatible pairs in an optimiza-
tion step [12].

3.2. CIL vs. MSR

CIL is a variant of MSR. CIL represents state facts in the
form

state(roleA,i,terms(A,B))

and messages in the form

msg(B,A,ped(pk(A),K)).

Syntactically, these are simply function-term presentations
of an abstract syntax tree. Lower-case symbols are node
labels, usually function names, and upper-case symbols

are variables. Note that the functional representation of
fKgpk(A) is ped(pk(A),K), and that the CIL version of
a message does include the source and destination princi-
pals.
For the sake of readability, we will continue to use the MSR
rather than the CIL form of rules for subsequent explana-
tions.
Another difference between MSR and CIL is that the CIL
output of the CAPSL translator includes additional infor-
mation that is potentially useful for analysis tools, such as
a symbol table containing the type signatures of all variable
and function names.

3.3. Goals

Presently, goal declarations are translated more or less lit-
erally from the CAPSL form to the CIL form, for later
use by tool connectors. It is possible to do more, because
goals that are security invariants can be converted to MSR
and CIL rules that recognize insecure states of the mul-
tiset and trigger a “violation” fact. This approach is not
difficult to apply manually in a protocol-specific way, but
it is is not so easy to set up a general goal translation ap-
proach that works for all protocols, even when we restrict
the goals to the SECRET and PRECEDES goals in CAPSL.
We are investigating general ways to translate goals for fu-
ture implementation in the translator. In particular, we have
found that secrecy goals can be represented with the help
of “spell” facts and additional rules as described in [26].

3.4. Implementability

Suppose that a protocol has the messages

A -> B: fXgpk(A);
B -> A: X;

The transition rule for B could be generated mindlessly as:

B0(B);M(fXgpk(A))�! B1(B;X);M(X) :

One problem with this rule is that B is actually incapable
of decrypting the received message to obtain X. That is,
the protocol is unimplementable.
The CAPSL translator checks whether a protocol is im-
plementable. In doing so, it deduces what the receiver of
a message must do to accept the message, and it also deter-
mines whether the sender of a message has the necessary
data to construct the message.
Recall that in the MSR notation, a state fact Ai(y) has a se-
quence y of terms embodying the memory of the process.
In particular, y1 is the principal for which the process is
run. Most of the terms in y are associated implicitly with
protocol variables.
A term t is computable from y by A if

1) t 2 y (sometimes it is convenient to treat y as a set),
or

2) t = f (x) is a functional term whose arguments are
computable from y by A;
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and in the second case we check that if f is private, then
x1 = A.
Thus, sk(B) is computable by B from fBg but not by A 6= B.
A message M(t) can be sent from a state Ai(y) if t is
computable by y1 from y plus any nonces generated in the
state transition rule. If z is the sequence of those nonces,
the next state is Ai+1(y;z).
Receivability is more complicated. When a message is
encrypted, the receiver must also be able to decrypt it.
This is where the INVERT axioms for encryption and other
operations come in.
Consider a current state Ai(y) and let y1 = A. A message
term m is receivable if m is a variable, or m is computable
by A, or m= f (x) and for each xj , either xj is computable
by A or

1) INVERT f (x) : xj j w and

2) w is computable by A, and

3) xj is receivable.

In each instance of the last case, xj is learned by A, and
if the sequence of all learned terms is z, the next state is
Ai+1(y;z):
The definition above does not allow a message to be
receivable if some message fields must be learned be-
fore decrypting other fields. For example, the message
A -> B: K, fXgK; would not be receivable if K was not
already held by B. We can handle this message by rewrit-
ing it as a pair of messages, with content K and fXgK
respectively. In fact, this is unnecessary because CAPSL
uses a modified receivability algorithm that acts as though
such a rewriting had been done. Our algorithm does not
presently allow for fields to be sent in reverse order, e.g.,
A -> B: fXgK,K;.

3.5. Connectors

Connectors translate from CIL to some input representa-
tion needed by a protocol analysis tool. Connectors have
been written for PVS (SRI’s verification environment, used
for inductive protocol verification [28, 32], Maude [10],
Athena [24], and the NRL Protocol Analyzer. The con-
nectors we have written have been in Java, and make use
of common connector support classes for parsing CIL and
maintaining an internal tree-structured data representation.

4. Secure multicast

Protocols for secure group management are essential in
applications that are concerned with confidential authenti-
cated communication among coalition members, authenti-
cated group decisions, or the secure administration of group
membership and access control. A variety of new proto-
cols and frameworks have been designed to create multicast
groups on a network and support secure group communi-
cation (e.g., GDOI [3], GSAKMP [17]. Some existing key

exchange protocols for secure communication have been
extended to the group setting (e.g., Group Diffie-Hellman
GDH [35] and its authenticated form A-GDH [1].
There have been only a few results on the formal analysis of
group management protocols (e.g., Pereira and Quisquater
analyzed A-GDH [31] and Meadows discovered security
flaws in early versions of GDOI [23]. The analysis of
group management protocols poses new challenges for for-
mal analysis techniques. New language features and models
are necessary to appropriately capture the concepts of such
protocols. Moreover, analysis techniques and tools have to
be revised and extended.
Multicast CAPSL (MuCAPSL) is an extension of CAPSL
affecting all aspects of the environment, from the language
and underlying model to analysis techniques and tools.
MuCAPSL and its supporting tools are in an early stage
of development.

4.1. New MuCAPSL language features

MuCAPSL permits the specification of protocols for se-
cure multicast. The language includes features such as
a high-level organization of protocols into suites, a sep-
aration of roles for each agent within a protocol, group
attributes to capture modifiable persistent state information
of group members, and variable-length data structures such
as arrays and sequences that are being used as fields in mes-
sages or state variables of agents.
In a group setting an agent usually engages in a variety
of protocols: to initially set up the group, to distribute
new group keys, and to add or delete members. Protocols
that conceptually belong together are placed in a protocol
suite. Within a protocol suite several protocols, typespecs,
or environments can be specified. All declarations on the
top level of a protocol suite apply to all protocols within
the suite. We also refer to the protocols within a suite as
tasks. A typical suite has the form:

SUITE MyGroupMgmt;

TYPESPEC MyGroup;
TYPE MyGroupAgent: GroupMember;
...
END;

PROTOCOL KeyDist;
...
END KeyDist;

PROTOCOL AddMember;
...
End AddMember;

...

END MyGroupMgmt;

In the typespec MyGroup we define the type MyGroup-
Agent for group members of our example. This type is
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a subtype of the more general type GroupMember for spec-
ifying members of groups.
In a CAPSL typespec we can define principal subtypes and
associate immutable or long-term data with a principal by
declaring functions. Transient data of principals, associ-
ated with a session, is specified via protocol variables. In
MuCAPSL, group members store mutable, persistent data
in so-called attributes. Attributes are shared by different
sessions of protocols in a suite and persist between pro-
tocol sessions. They are specified in typespecs of group
members. There are two functions associated with a group
member that jointly serve as a unique identifier: owner
of type Principal to identify the associated principal (e.g.,
“Alice”), and gid of type Group to identify the associated
group (e.g., “Manager” or “Employee”). This way, a princi-
pal can be member of several groups. We introduce a new
type GroupMember as the default type for group members
in the following specification:

TYPESPEC GROUPMEMBER;
TYPE GroupMember;
FUNCTIONS

owner(GroupMember): Principal;
gid(GroupMember): Group;

END;

Note that we also introduced a type Group to capture group
identities. In a user-defined group member typespec, the
ranges of the functions may be overwritten to subtypes of
Principal and Group, respectively.
We will illustrate the use of type specifications for group
members using the following simple group attribute struc-
ture. Assume a group consisting of N members M1; :::MN
pairwise sharing long-term symmetric keys. We take ad-
vantage of the existing typespec for mutual symmetric key
nodes (MSKN) in the CAPSL prelude. It defines a subtype
Node of Principal and a function msk(Node;Node) with
range Skey. Within a group, members are identified by
position number (a natural number), which is a changeable
attribute due to members leaving the group or new members
joining. At any given time, the leader is the member with
position 1. Each member stores a short-term group key Kg,
addresses of all group members Mbs (defined as an array
type, a new parameterized type in the MuCAPSL prelude),
and current group size N. Here is the full typespec:

TYPESPEC MyGroup;
TYPE MyGroupAgent: GroupMember;
FUNCTIONS owner(MyGroupAgent): Node;
ATTRIBUTES(MyGroupAgent);

Pos: Nat;
Kg: Skey, CRYPTO;
Mbs: Array[Principal];
N: Nat;

END;

Attributes are associated with a group member. The type
of group member is specified after the ATTRIBUTES key-
word, and should be one of the types (if there are more than

one) declared in the typespec. Attributes are like protocol
variables because their values may change during execution
of protocols, but they are different because a group mem-
ber state always has values for all of the attributes, though
initially, some of them may have an explicit “undefined”
value.
We illustrate role-based task specifications of multicast pro-
tocols with the help of the key distribution protocol. The
leader of the group initiates the key distribution protocol
whenever a member has been added to or deleted from
the group. We distinguish two main roles in the key dis-
tribution: the role of the leader M1 and the role of other
members of the group Mi .
Figure 3 roughly illustrates the message flow of the agent
in role M1. M1 broadcasts the new group key to the en-
tire group (illustrated in Fig. 3 by the square around the
role Mi . A unicast message to a member in role Mi would
be depicted by leaving the square out). The member uses
a sequence field (denoted by < ::: >) that includes N�1
copies of the new group key, each encrypted with one of
the shared keys. The other group members acknowledge
the receipt of the group key by each sending a message
that contains their position and a nonce encrypted with the
group key. The leader collects all responses. We do not
specify a specific role from which the leader receives the
responses (the lower arrow is not connected to a sending
role). This is done intentionally since the leader is not able
to reliably check from the addresses who was sending the
message since those addresses are easy to fake. The iter-
ation is indicated by a square that contains the condition
i 2 2::N expressing that M1 receives messages of the form
i;fNcigKg until it has collected one for each i (possibly out
of order).

Fig. 3. Key distribution protocol – role M1.

The separation of roles is also reflected in the protocol
specifications. The following shows part of the key distri-
bution protocol, with two roles. The group member playing
a role is referred to by the variable implicitly declared in
the ROLE statement. The associated principal and group
could be derived from this variable via the functions owner
and gid:

PROTOCOL KeyDist;

ROLE M1: MyGroupAgent;
VARIABLES i: Nat, FREE;
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Nc: Array[Nonce];
ASSUMPTIONS Pos=1;

owner(M1)=Mbs(1);
MESSAGES

New Kg;
-> : <{Kg}msk(Mbs(1),Mbs(i))|i=2..N>;
FOR i IN 2..N DO

<- : i, {Nc(i)}Kg;
OD;

END;

ROLE Mi: MyGroupAgent;
ASSUMPTIONS Pos > 1;
MESSAGES ...
END;

END KeyDist;

Note that the above protocol specification does not refer
to the specific senders or receivers of multicast messages.
The sender is implicitly the principal playing the role, and
the receiver of a multicast message is implicitly the whole
group. Recipients of unicast messages can be specified.
The scope of protocol variables that are defined with the
attribute FREE is the statement in which the variable is
bound to a range of values. For instance, in the statement

FOR i IN 2..N DO
<- : i, {Nc(i)}Kg;

OD;

the scope of i is the FOR-loop. Agents do not store the
values of free variables in their protocol state or member
state.
Attributes of the principal playing the role, such as Kg,
can be modified within the protocol. For notational conve-
nience, we refer to attributes in the short form Kg instead of
the more comprehensive form Kg(M1), since we know that
the attributes are associated with M1. Note that we need
a “New” operator to generate new nonce values. Constructs
to express loops or other iterative behavior are necessary to
deal with dynamically changing group membership or the
need to combine responses from a multicast.
Language features that have not been presented in the cur-
rent example but have been identified as necessary in the
design of MuCAPSL include a syntactical distinction for as-
signment and tests of group attributes, new built-in crypto-
graphic operators such as a group version of Diffie-Hellman
encryption, secret sharing, and threshold encryption.

4.2. New MuCIL features

Hand in hand with the extension of the language goes the
extension of the underlying semantic model CIL. In MuCIL
new “customized” facts for group member states, protocol
states, and multicast messages are introduced. All facts
are boolean predicates defined in a functional way that as-
sert either the presence of a group member in the network
(member(:::)) or the existence of an agent in a specific state

of a protocol (state(:::)) or the presence of a multicast mes-
sage in the network (mmsg(:::)).
The group member state fact looks as follows:

member(owner,gid,terms(attributes))

The first parameter refers to the principal that is the member
of the group (owner), the second parameter identifies the
group (gid). The third parameter is the list of attributes that
is specified for the particular group agent. For the above de-
fined group member type MyGroupAgent, the group mem-
ber state fact is

member(M,G,terms(Pos,Kg,Mbs,N));

with variables of the following types: M : Principal, G :
Group, Pos: Nat, Kg : Skey, Mbs: Array(Principal), and
N : Nat.
The protocol state fact of CIL is also extended by a refer-
ence to the group identity. Moreover, since there may be
several protocols in a suite, the role identifier is composed
of the role variable name and the protocol identifier. Thus,
a state fact for the group member in role M1 of the key
distribution protocol looks as follows:

state(M1,G,roleM1KeyDist,i,terms(...));

with a variable M1 : Principal.
The multicast message fact mmsg(m) is simplified compared
to CIL since the only parameter it holds is the message con-
tent. This is motivated by the fact that sender and receiver
addresses in messages do not make a difference from the
viewpoint of security analysis since an active attacker can
always change addresses. Nevertheless, it may be useful
to have this information for purposes such as generating
prototypes and the like.
A typical (conditional) rewrite rule in MuCIL contains
a member state fact, a protocol state fact and a multicast
message fact on both sides. While MSR rules are normally
interpreted to delete the left-side facts from the multiset,
for MuCIL our convention is to retain message facts im-
plicitly (without repeating them on the right) since they are
usually multicast. This is not a real difference, because the
attacker can duplicate messages anyway.
The first action and the multicast message of role M1 in the
key distribution protocol are represented by the following
MuCIL statement:

member(M1,G,terms(1, ,Mbs,N)),

state(M1,G,roleM1KeyDist,0,terms()) �!

(9 Kg) member(M1,G,terms(1,Kg,Mbs,N)),

state(M1,G,roleM1KeyDist,1,terms());

mmsg(map(lambda(X,ped(msk(Mbs(1),X),Kg)),

proj(Mbs,2,N)))

We do not have a full MSR-style version of MuCIL, but
in the above rule we have used some symbols like �! for
readability that would not appear in the pure functional
form of MuCIL. The underscore in the member fact refers
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to a possibly undefined variable, and the actual MuCIL
would put in a new variable identifier of an extended type
that permits the undefined value.
The rule states that the position of the agent needs to
be 1, and the group size and the array variable Mbs that
holds the other member’s addresses need to be defined.
The higher-order map and lambda constructs are typical
functional language constructs as found, for example, in
ML [29]. lambda(x;u) denotes the function mapping x to
u, and map( f ; l) returns the list of all elements f (x), where
x ranges over the elements of l . The projection operator
proj and the lambda operator, in conjunction with the map
operator, allows us to define an array whose elements are
Kg encrypted with each member of the sequence of shared
keys.
An instance of a multiset of facts is depicted in Fig. 4.

Fig. 4. A multiset of facts.

4.3. Analysing multicast protocols – preliminary results

We have some preliminary experimentation results in us-
ing the Maude model checker for the group Diffie-Hellman
protocol (GDH) [35], an extension of the Diffie-Hellman
key agreement scheme to an arbitrary group size. The au-
thors of that paper suggest three different protocols that are
each optimized with respect to certain protocol complexity
such as number of rounds, number of messages, sizes of
messages, etc. We analyzed the key distribution protocol
GDH.2 as an example since it incorporates unicast mes-
sages addressed to a particular agent as well as multicast
messages addressed to the group.
The group key in GDH.2 is computed from contributions
of each group member. For this purpose, each agent has
a nonce Ni . The group key is the exponentiation base a
raised to the product of all nonces Πi=1::nNi of group mem-
bers. The exponentiation base is known to every agent,
whereas the individual nonces are secret to the particular

group members. In a message exchange, agents communi-
cate partial key values, that keep their secret and still allow
other group members to compute a shared group key.
Agents that engage in a GDH protocol are identified by
a natural number i. They also keep the current group size n.
In GDH.2 we distinguish three roles: M1;Mi ;Mn. M1 is the
role of the group member who initiates the key distribution.
This group member is characterized by the identification
number 1. The agent in role Mn is the “last” member of
the group, the one whose identification number equals the
group size. All other members are agents in role Mi .
Figure 5 illustrates the communication between group
members for a group of size 4. The agent in role M1
sends out an array consisting of the exponentiation base a
and aN1 to its neighbor M2 (an agent in role Mi ). Every
agent in role Mi receives such an array, multiplies each ar-
ray element with its own nonce as well as copies the last
array element of the received message in its outgoing mes-
sage. This way, the length of arrays sent between group
members always equals the identification number of the re-
ceiving agent. This “upflow” phase of GDH.2 consists of
unicast messages. Finally, the last group member receives
an array of length n from which it computes the group
key by raising the last array element to the power of Nn.
Moreover, Mn replies in a multicast to the group with an
array of partial key values (“downflow” phase) that include
its nonce Nn. The other group member can compute the
group key from this multicast message by raising the ap-
propriate array element to the power of their nonce.

Fig. 5. Overview: group Diffie-Hellman key distribution.

The intent of this protocol is that all group members share
a group key. We specified GDH.2 using MuCAPSL and
manually translated MuCAPSL into MuCIL. The MuCIL
representation was the basis for an analysis using the Maude
model checker. In order to deal with MuCIL representa-
tions we added arrays, lambda-expressions and undefined

24



CAPSL and MuCAPSL

values support to the Maude model checker [10, 14]. The
Maude model checker has a strategy for state space explo-
ration that computes all possible runs of the protocol for
a given initial state. Since most protocols have an infinite
state space, Maude’s search strategy has a user-definable
parameter to limit the state space investigated. The strat-
egy searches for states that violate any of the defined goals.
In the case of GDH.2 we declared the following goal of
the protocol: all group members agree on the group key
after they have finished a run of the key distribution pro-
tocol.

We implemented a limited attacker that has the capacity of
misdelivery but does not reconstruct messages. In particu-
lar, it is possible that messages are delayed, not delivered or
delivered several times. We found a state where the leader
got the wrong group key. The attack can be generalized to
all group members. This is due to ambiguity in the format
of GDH.2 messages. The attack is illustrated in Fig. 6 (for
a three-member group).

Fig. 6. An attack for GDH.2.

GDH.2 as proposed in [35] does not specify whether group
members check the content of messages they receive. In
fact, in a correct protocol run, a group member cannot de-
cide from its local memory whether a received message
has the right content. In the attack the message that mem-
ber M1 sent out in the upflow, will be delivered to M1 in
the downflow. Assuming that the agents do not check the
content of the message, M1 computes the group key aN1 .
The other members receive and send messages as specified
in GDH.2 and therefore compute the group key aN1N2N3 .
Group member M1 has not only been tricked into accept-
ing a wrong group key, but also it uses a group key that is
known to the attacker. We would like to stress that GDH.2
was not designed to defeat an active attacker.

5. Conclusion

CAPSL, CIL and the translation between them are designed
to address important goals in cryptographic protocol spec-
ification for analysis purposes. With a common specifica-
tion language, it becomes possible to harness the combined
power of many tools for protocol analysis in a practical
way. The components of the CAPSL environment include
transportable software for translation of CAPSL to CIL,
and connectors to adapt CIL to the input languages of var-
ious analysis tools. This software is still under develop-
ment.
With CAPSL, one can express protocols in the simplest
accepted message-list form. Type specifications in CAPSL
and their use for introducing new operators and subtypes
bring an expanding class of protocols within reach. CAPSL
clarifies what used to be the most awkward aspect of ab-
stract protocol specification, the distinction between short-
term session data and the long-term data associated with
persistent entities. This was done by applying the general
type specification mechanism, together with the novel con-
cepts of private functions and invertibility axioms. In the
MSR model, session data is held in state memory.
We have begun to broaden the applicability of CAPSL fur-
ther with the extension to MuCAPSL for multicast pro-
tocols. Protocols that conceptually belong together are
grouped into protocol suites. Separation of roles within
a protocol was introduced to deal with the concurrent asyn-
chronous operation of protocol processes due to multi-
cast transmission and responses. Message handling within
groups is supported by new language constructs for itera-
tion and variable-length data structures.
MuCAPSL is built upon the concepts of CAPSL for type
specifications. We added attributes for mutable persistent
data. Sequence and array type specifications come along
with the new computational operators. On the semantic
level, MuCIL has group-member state memory to hold mu-
table persistent group state attributes. Another extension in
MuCIL is the role identifier that uniquely identifies the task
and protocol.
The intermediate languages CIL and MuCIL were cho-
sen with an eye toward a clear analysis-level modeling
semantics and a universal pattern-matching transition rule
style that lends itself both to model checking and induc-
tive proof techniques. We have developed techniques for
inductive protocol proof using PVS and model checking
using Maude. In our experiments, we have confirmed that
CIL output is a good match for the specification needs of
these tools. We are currently investigating security goals
for multicast protocols, and we are also developing analysis
techniques and tools for MuCAPSL.
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