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Abstract — In this paper we introduce and analyze a solu-
tion concept of the conditional minimax as a generalization of
the minimax solution concept extended to take into account
the number of services (the portion of demand) related to
the worst performances. Namely, for a specified portion of
demand we take into account the corresponding portion of
the maximum results and we consider their average as the
worst conditional mean to be minimized. We show that, sim-
ilar to the standard minimax approach, the minimization of
the worst conditional mean can be defined by a linear objec-
tive and a number of auxiliary linear inequalities. We report
some results of initial computational experience with the new
solution concept.
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1. Introduction

Resource allocation problems are concerned with the allo-
cation of limited resources among competing activities so
as to achieve the best overall performances. In this paper,
we focus on approaches that, while allocating resources,
attempt to provide an equal treatment of all the compet-
ing activities [8]. The problems of efficient and equitable
resource allocation arise in various systems which serve
many users, like in telecommunication systems among oth-
ers. Telecommunication networks are expected to satisfy
the increasing demand for traditional services as well as to
accommodate multimedia services. Hence, it becomes crit-
ical to allocate network resources, such as available band-
width, so as to provide high level performance of all ser-
vices at numerous destination nodes. The performance can
be measured in terms of expected delays to be equitably
minimized for all service demands.

The generic resource allocation problem may be stated as
follows. Each activity is measured by an individual perfor-
mance function that depends on the corresponding resource
level assigned to that activity. A smaller function value is
considered better, like the performance measured in terms
of expected delays. Models with an (aggregated) objec-
tive function that minimizes the mean (or simply the sum)
of individual performances are widely used to formulate
resource allocation problems, thus defining the so-called
minisum solution concept. This solution concept is primar-
ily concerned with the overall system efficiency. As based

on averaging, it often provides solution where low demand
services are discriminated in terms of delays. An alterna-
tive approach depends on the so-called minimax solution
concept, where the worst performance (maximum delay)
is minimized. The minimax approach is consistent with
Rawlsian [11] theory of justice, especially when addition-
ally regularized with the lexicographic order [9]. On the
other hand, allocating the resources to optimize the worst
performances may cause a large worsening of the overall
(mean) performances.
In this paper we introduce and analyze an alternative com-
promise solution concept of the conditional minimax. It is
a parametric generalization of the minimax solution con-
cept taking into account the number of services (the portion
of demand) related to the worst performances. Namely, for
a specified tolerance level (number of services k or por-
tion of demand β ) we take into account the entire group of
the k (β portion) maximum results and we consider their
average as the worst conditional mean to be minimized.
According to this definition the solution concept is based
on averaging restricted to the group of the worst results.
We show that, similar to the standard minimax approach,
the minimization of the worst conditional mean can be de-
fined by a linear objective and a number of auxiliary linear
inequalities.
Resource allocation models may be used to help to solve
two major types of telecommunication problems emerging
with exploding demand on multimedia services [2]. The
first type of problems is related to decision support for de-
signing robust and cost-effective fiber-optic networks [3].
The other field is traffic engineering which represents the
ability to optimize the use of network resources only by
means of efficient routing decisions [4]. In other words,
while the first group of problems deals with the network
engineering being related to the physical design of the net-
work, the second group is rather related to the software
design. The proposed solution approach is general enough
to be applicable for both types of problems. However, we
demonstrate it on straightforward problems related to the
traffic engineering.
The paper is organized as follows. In the next section we
introduce our generic resource allocation model and we
show how it can be used to express several traffic engi-
neering problems. In Section 3 the solution concept of the
conditional minimax is formally introduced and it is shown
that, similar to the standard minimax approach, the solu-
tion can be defined by a linear objective and a number of
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auxiliary linear inequalities. In Section 4 we report some
results of our initial computational experience with the new
solution concept.

2. The model

The generic resource allocation problem that we consider
may be stated as follows. There is given a set of m ser-
vices. There is also given a set Q of allocation patterns
(allocation decisions). For each service i a function fi(x)
of the allocation pattern x has been defined. This func-
tion, called the individual objective function, measures the
outcome (effect) yi = fi(x) of the allocation pattern for ser-
vice i. In applications, we consider, an outcome usually
expresses the delay. However, we emphasize to the reader
that we do not restrict our considerations to the case of out-
comes measured as delays. They can be measured (mod-
eled) as service time, service costs as well as in a more
subjective way. In typical formulations a smaller value of
the outcome (delay) means a better effect (higher service
quality or client satisfaction). Otherwise, the outcomes can
be replaced with their complements to some large number.
Therefore, without loss of generality, we can assume that
each individual outcome yi is to be minimized which results
in a multiple criteria minimization model.
The simplest services structure forms the uniform problem
where each service represents a single unit. Usually, one is
interested in putting into allocation model some additional
demand weights wi > 0 to represent the amount of demand
for the specific service. Integer weights can be interpreted
as numbers of unweighted identical services to be repeated
independently. For initial theoretical considerations we will
assume that the problem is transformed (disaggregated) to
the uniform one (that means all the demand weights are
equal to 1). Note that such a disaggregation is possible
for integer as well as rational demand weights, but it usu-
ally dramatically increases the problem size. Therefore, we
consider solution concepts which can be applied directly
to the weighted problem. For this purpose we will use the
normalized demand weights

w̄i = wi=
m

∑
j=1

wj for i = 1;2; : : : ;m (1)

rather than the original quantities wi . Note that, in the case
of uniform problem (all wi = 1), all the normalized weights
are given as w̄i = 1=m.
Telecommunication problems deal with routing of the data
traffic in an existing network or with designing the net-
work expansions to accommodate the traffic. Both type of
problems require the allocation of network resources (ca-
pacities or potential capacities). Let us consider a con-
nected network consisted of a node set N to represent var-
ious locations. Directed links ( j;k) 2 L � N�N are at-
tributed by the bandwidth/capacity coefficients bjk and the
delay/distance/cost coefficients cjk. Further, we consider
a set I = f1;2; : : : ;mg of m services. Each service is related

to some data traffic between two network nodes. Thus, the
service is described by a directed pair of nodes

�
s(i);d(i)

�
representing the source and the destination of the data traf-
fic, respectively. The amount of the data traffic related to
service i is described by the demand weight wi . The lat-
ter may be skipped in the case of uniform problem where
all the services generate the same amount of data traffic
(wi = 1 for all i).
Within a telecommunication network the data traffic is gen-
erated by a huge number of nodes exchanging data. In such
a network, a relatively small subset H � N of nodes are
chosen to serve as hubs which can be used as intermediate
switching points [1, 6]. Given a set of hubs, data traf-
fic generated by a service is sent from the source node to
a hub first. It can be then sent along communications link
between hubs, and finally reach the destination node along
a link from a hub. The hub-based network organization
allows the data traffic to be consolidated on the inter-hub
links.
While taking into account the hub-based network structure,
the main decisions to be made for the services organization
can be described with the assignment of a directed pair of
hubs

�
h0(i);h00(i)

�
to each service i. The data traffic for

service i is then implemented by sending from the source
s(i) to the hub h0(i) first, the use of the inter-hub connection
from h0(i) to h00(i) next, and the final sending from h00(i)
to the service destination d(i). The delay/distance of such
a data path is usually assumed to be defined as the sum
of several link delays cs(i);h0(i)+ch0(i);h00(i)+ch00(i);d(i). Note

that a single hub can be used is some cases
�
h0(i) = h00(i)

�
which may require a definition of the corresponding dummy
inter-hub links.
In the case of the demand weights for various services
there is no justification for a strict assignment of a single
path to the specific service since several units may be sent
along different paths. Therefore, the main decisions may be
modeled with variables xi jk

�
i 2 I ; j;k2 H

�
expressing the

amount of data traffic related to service i routed via hubs
hj and hk. To meet the problem requirements, the decision
variables xi jk have to satisfy the following constraints:

∑
j2H

∑
k2H

xi jk = wi for i 2 I ; (2)

∑
i2I

xi jk � bjk for j;k2 H; (3)

xi jk � 0 for i 2 I ; j;k2 H; (4)

where Eqs. (2) guarantee the routing of whole service
demands while inequalities (3) keep the data traffic within
the capacity limits. Note that taking into account the hub-
based network specificity we have considered the capacity
constraints only for the inter-hub links.
The unit performance measure (delay) of the service i may
be expressed with the following linear function:

fi(x) =
1
wi

∑
j ;k2H

�
cs(i); j +cjk +ck;d(i)

�
xi jk for i 2 I : (5)
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Hence, all the functions fi(x) need to be minimized. The
typical problems involving routing decisions are consid-
ered as dynamic and stochastic. Nevertheless, one may
analyze a straightforward static allocation problem related
to traffic engineering (routing) decisions within a telecom-
munication (or transportation) network. Such a problem
depends, simply, on minimization of criteria (5) subject to
constraints (2)–(4).
Similar model may be considered for the inter-hub band-
width allocation problem related to the network design is-
sues. Namely, one may minimize the same criteria (5) and
the same constraints (2)–(4), but the bandwidth bjk in con-
straints (3) need to be considered decision variables rather
than data parameters. Again, it is a straightforward network
design model but its analysis may be useful at some initial
phases of the design process.
In the above model we allow the services to be partitioned
in various portions of the demand and implemented with
possibly different routing. We believe that is acceptable for
most applications related to data transfer as the standard
data package is relatively extremely small when compar-
ing to the total amount of demand. Moreover, new rout-
ing protocols developed for the Internet services, like the
multi-protocol label switching, allow much flexibility in the
traffic engineering solutions [4]. Nevertheless, the prob-
lem (2)–(5) may be adapted to the requirement of a single
route assigned to each service, if necessary. For this pur-
pose, one needs to introduce binary decision variables xi jk
equal 1 when the inter-hub link (hj ;hk) is used to imple-
ment service i, and 0 otherwise. The constraints take then
the following form:

∑
j2H

∑
k2H

xi jk = 1 for i 2 I ;

∑
i2I

wixi jk � bjk for j;k2 H

and the resulting model is very close to the location prob-
lems [6, 10].
In problem (2)–(5) we have considered all the hubs as di-
rectly connected by the corresponding inter-hub links. In
telecommunication networks hubs are rather organized in
some network structure (architecture) which causes the ex-
istence of some interactions (common bandwidth limits)
between various inter-hub connections representing rather
paths (routes) than direct links. The modern telecommuni-
cation networks heavily use the architecture of a collection
of bidirectional rings (as in SONET standard [3]). Below
we specify in details such an allocation model where the
hubs are arranged in a cycle and the traffic engineering
problem needs to take into account the bidirectional ring-
loading issues. This type of models we will use in Section 5
to demonstrate some computational results.

Let us consider again a connected network consisted of
a node set N directed links ( j;k) 2 L � N�N which are
attributed by the bandwidth/capacity coefficients bjk and the
delay/distance/cost coefficients cjk. A set I = f1;2; : : : ;mg

of m services is considered. Each service is related to a di-
rected pair of nodes (s(i);d(i)) (the source and the des-
tination of the data traffic), and it requires the amount
wi of the data traffic (demand weight wi ). A relatively
small subset H � N of p nodes are chosen to serve as
hubs. Hubs h1, h2, : : : , hp�1, hp are arranged clockwise
in a cycle (ring). That means, there are p clockwise di-
rected inter-hub links: (h1;h2),(h2;h3), : : : , (hp�1;hp),
(hp;h1), and p counterclockwise directed inter-hub links:
(hp;hp�1),(hp�1;hp�2), : : : , (h2;h1), (h1;hp).
The main decisions may be modeled with variables x0i jk and
x00i jk (i 2 I ; j;k2H) expressing the amount of data traffic re-
lated to service i routed via hubs hj and hk using clockwise
or counterclockwise connection, respectively. To meet the
service demand requirements, the decision variables have
to satisfy the following constraints:

∑
j2H

∑
k2H

(x0i jk +x00i jk) = wi for i 2 I ; (6)

x0i jk ;x
00

i jk � 0 for i 2 I ; j;k2 H : (7)

Recall that there is a piece of data traffic which passes
trough a single hub not generating the ring traffic either
clockwise or counterclockwise. Namely, x0i j j + x00i j j for
j 2 H is the amount of such traffic and it could be rep-
resented by a single variable but we have accepted the re-
dundancy to keep the constraints (6) simpler.
To analyze the bandwidth (links capacity) allocation one
needs to accumulate the traffic load of specific links in the
ring. Let (l1; l2)2C denote a clockwise link in the ring, i.e.
l2 = l1+1 for l1 = 1; : : : ; p�1 or l2 = 1 for l1 = p. The link
is loaded with clockwise traffic from hub hj to hub hk for
j = 1; : : : ; l2�1 and k= l2; : : : ; p or k= 1; : : : ; j�1 as well
as (if l2 � p�1) for j = l2+1; : : : ; p and k= l2; : : : ; j�1.
Hence, the clockwise traffic of all the services generates
the following (clockwise) link load

z0l1;l2
=∑

i2I

"
l2�1

∑
j=1

� p

∑
k=l2

x0i jk +
j�1

∑
k=1

x0i jk
�
+

p

∑
j=l2+1

j�1

∑
k=l2

x0i jk

#
(8)

for each (l1; l2) 2 C. By symmetry, the counterclockwise
traffic of all the services generates the (counterclockwise)
link load

z00l1;l2
=∑

i2I

"
l2�1

∑
k=1

� p

∑
j=l2

x00i jk +
k�1

∑
j=1

x00i jk
�
+

p

∑
k=l2+1

k�1

∑
j=l2

x00i jk

#
(9)

for each (l1; l2) 2 C. Note that z00l1;l2
denotes, in fact, the

load of directed counterclockwise link (l2; l1). With com-
monly considered bidirectional capacity (bandwidth) limits
the link loads must satisfy the constraints

z0l1;l2
+z00l1;l2

� bl1;l2
for (l1; l2) 2C: (10)

In the case of independently considered separate single-
directional capacity limits, the latter needs to be replaced
with constraints

z0l1;l2
� b0l1;l2

and z00l1;l2
� b00l1;l2

for (l1; l2) 2C:
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The unit performance measure (delay) for the service i is
expressed with the following linear function:

fi(x) =
1
wi

∑ j ;k2H(cs(i); j +d0jk +ck;d(i))x
0

i jk +

+ 1
wi

∑ j ;k2H(cs(i); j +d00jk +ck;d(i))x
00

i jk ; (11)

where d0jk and d00jk denote the delays along the clockwise
and counterclockwise, respectively, paths from hj to hk in
the ring C. For instance, in the case of 1� j < k � p
one gets d0jk = cj ; j+1+ : : :+ck�1;k. Certainly, all the func-
tions fi(x) need to be minimized. Hence, a simple traffic
engineering problem with bidirectional ring loading issues
can be considered as multiple criteria minimization of (11)
subject to constraints (6)–(10).
The problem (6)–(11) may be adapted to the requirement
of a single inter-hub route assigned to each service, if nec-
essary. Let us assume that the data traffic related to ser-
vice i and routed via hubs hj and hk has to use either clock-
wise or counterclockwise connection without any splitting.
This requirement can be modeled by introducing binary
decision variables ri jk equal 1 when the clockwise connec-
tion from hj to hk is used to implement service i, and 0 for
the counterclockwise connection. The model needs to be
extended then with the constraints of the following form:

x0i jk �wiri jk and x0i jk �wi(1�ri jk) for i 2 I ; j;k2H :

One may also formulate a network design problem where
quantities bl1;l2

for (l1; l2) 2 C are considered as a set
of multiple criteria to be minimized subject to con-
straints (6)–(10) with possible upper limits on service de-
lays fi(x).

3. The solution concept

Assuming that the generic allocation problem has been dis-
aggregated to the unweighted form (all wi = 1), it may be
stated as the following multiple criteria minimization prob-
lem:

min ff(x) : x 2Qg ; (12)

where f = ( f1; : : : ; fm) is a vector of the individual objective
functions which measure the outcome (effect) yi = fi(x) of
the allocation pattern x for service i.
We do not assume any special form of the feasible set while
introducing the solution concepts. We rather allow the fea-
sible set to be a general, possibly discrete (nonconvex), set.
Similarly, we do not assume any special form of the indi-
vidual objective functions nor their special properties (like
convexity). Therefore, the solution concepts may be applied
to various allocation problems. Nevertheless, the solution
concepts, we consider, are implementable by a linear ob-
jective and a number of auxiliary linear inequalities. Thus
the solution concepts preserve a possible structure (LP or
convexity) of the allocation problem under analysis.
Most classical allocation studies focus on the minimization
of the mean (or total) outcome or the minimization of the

maximum (the worst) outcome. Both the corresponding
solution concepts are well defined for aggregated allocation
models using demand weights wi > 0. Exactly, for the
weighted allocation problem, the minisum solution concept
is defined by the minimization of the objective function
expressing the mean (average) outcome

µ(y) =
m

∑
i=1

w̄iyi

but it is also equivalent to the minimization of the total out-
come ∑m

i=1wiyi . The minimax solution concept is defined
by the minimization of the objective function representing
the maximum (worst) outcome

M(y) = max
i=1;::: ;m

yi

and it is not affected by the demand weights at all. Both
the classical solution concepts are represented with simple
aggregation of multiple criteria model (12). Namely, the
minisum approach simply use the weighted sum of criteria

min
n m

∑
i=1

w̄i fi(x) : x 2Q
o

(13)

while the minimax approach results in a problem

min
�

t : x 2Q; t � fi(x) for i = 1;2; : : : ;m
	

(14)

with only one auxiliary variable t and m inequalities to
define it.
Since the minisum approach is based on averaging, it often
provides solutions where low demand services related to
remote destinations are discriminated in terms of delays.
On the other hand, allocating the resources to optimize the
worst case may cause a large increase in the total delays thus
generating a substantial loss in the overall system efficiency.
This has led to a search for some compromise solution
concept.
A natural generalization of the maximum (worst) out-
come M(y) is the worst conditional mean defined as the
mean within the specified tolerance level (amount) of
the worst outcomes. For the simplest case of the un-
weighted allocation problem (12), one may simply de-
fine the worst conditional mean M k

m
(y) as the mean out-

come for the k worst-off services (or rather k=m portion
of the worst services). This can be mathematically for-
malized as follows. First, we introduce the ordering map
Θ : Rm ! Rm such that Θ(y) = (θ1(y);θ2(y); : : : ;θm(y)),
where θ1(y)� θ2(y)� �� � � θm(y) and there exists a per-
mutation τ of set I such that θi(y) = yτ(i) for i = 1;2; : : : ;m.
The use of ordered outcome vectors Θ(y) allows us to focus
on distributions of outcomes impartially. Next, the linear
cumulative map is applied to ordered outcome vectors to
get Θ̄(y) = (θ̄1(y); θ̄2(y); : : : ; θ̄m(y)) defined as

θ̄k(y) =
k

∑
i=1

θi(y); for k= 1;2; : : : ;m: (15)
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The coefficients of vector Θ̄(y) express, respectively: the
largest outcome, the total of the two largest outcomes, the
total of the three largest outcomes, etc. Hence, the worst
k=m–conditional mean M k

m
(y) is given as

M k
m
(y) =

1
k

θ̄k(y); for k= 1;2; : : : ;m: (16)

Note that for k = 1, M 1
m
(y) = θ̄1(y) = θ1(y) = M(y)

thus representing the maximum outcome, and for k = m,
M1(y) =

1
mθ̄m(y) = 1

m ∑m
i=1 θi(y) =

1
m ∑m

i=1 yi = µ(y) which
is the mean outcome. Except for these two limiting cases,
the definition (16) is hardly implementable due to the use
of the ordering operator. The following theorem shows that
the worst conditional mean can be found by minimization
of a scalar piecewise linear convex function.

Theorem 1. For any vector y2Rm the corresponding quan-
tity θ̄k(y) represents the minimum value of the (scalar) op-
timization:

θ̄k(y) = mint2R
1
m

m

∑
i=1

h
k(t�yi)++

+(m�k)(yi � t)+
i
+ k

m

m

∑
i=1

yi (17)

while t̄ = θk(y) is an optimal solution (argument) of the
above optimization.

Proof. First, we show that t̄ = θk(y) minimizes the func-
tion:

gk(t) =
m

∑
i=1

h
k(t�yi)++(m�k)(yi� t)+

i
: (18)

Note that gk(t) =
m

∑
i=1

h
k(t�θi(y))++(m�k)(θi(y)� t)+

i
.

Consider t = t̄ + δ with any δ 2 R (positive or negative).
For i = k+1; : : : ;m�

(t̄ +δ )�θi(y)
�
+
�
�
t̄�θi(y)

�
+
+δ

and �
θi(y)� (t̄+δ )

�
+
� 0 ;

while for i = 1; : : : ;k

(θi(y)� (t̄+δ ))+ � (θi(y)� t̄)+�δ

and �
(t̄ +δ )�θi(y)

�
+
� 0 :

Hence, one gets

k
m

∑
i=1

�
(t̄ +δ )�yi

�
+
� k

m

∑
i=1

(t̄�yi)++k(m�k)δ

and

(m�k)
m

∑
i=1

�
yi � (t̄ +δ )

�
+
� (m�k)

m

∑
i=1

(yi � t̄)++

� (m�k)kδ :

Thus finally, gk(t̄)� gk(t̄ +δ ) for all δ 2 R.

Further, calculating the minimal value of (18), we get:

gk

�
θk(y)

�
=

=
m

∑
i=1

h
k
�
θk(y)�yi

�
+
+
�
m�k

��
yi �θk(y)

�
+

i
=

= k
m

∑
i=k+1

�
θk(y)�θi(y)

�
� (m�k)

k

∑
i=1

�
θk(y)�θi(y)

�
=

= k
m

∑
i=1

�
θk(y)�θi(y)

�
�m

k

∑
i=1

�
θk(y)�θi(y)

�
=

= kmθk(y)�k
m

∑
i=1

θi(y)�mkθk(y)+m
k

∑
i=1

θi(y) =

= m
k

∑
i=1

θi(y)�k
m

∑
i=1

θi(y) = mθ̄k(y)�k
m

∑
i=1

yi :

Hence

θ̄k(y) =
1
m

gk

�
θk(y)

�
+

k
m

m

∑
i=1

yi =
1
m

min
t2R

gk(t)+
k
m

m

∑
i=1

yi

which completes the proof of (17).
It follows from Theorem 1 that, for a given vector y, the
value of θ̄k(y) may be found by solving the linear program:

θ̄k(y) = min
m

∑
i=1

� k
m

d�i +
m�k

m
d+i

�
+

k
m

m

∑
i=1

yi

subject to

d+i �d�i = yi � t; d+i ;d
�

i � 0 8i ;

where t is an unbounded variable representing a freely se-
lected target while nonnegative variables d+i and d�i rep-
resent, for several outcome values yi , their upside and
downside deviations from the selected target t, respectively.
Moreover, the target variable t takes the value of θk(y) at
the optimal solution. The linear program can be further
simplified by the elimination of variables d�i representing
the downside deviations. Hence, following (16), the worst
k=m–conditional mean M k

m
(y), for k= 1;2; : : : ;m, is given

by the following optimization:

M k
m
(y) = min

n
t +

1
k

m

∑
i=1

d+i : d+i � yi � t; d+i � 08i
o
:

(19)

This allows us to define the k=m–conditional minimax so-
lution for the unweighted allocation problem (12) as the
optimal solution to the optimization problem:

min
n

t +
1
k

m

∑
i=1

d+i : x 2Q; d+i � fi(x)� t; d+i � 0 8i
o

(20)

or simply

min
n

t +
1
k

m

∑
i=1

�
fi(x)� t

�+
: x 2Q

o
;

where (:)+ denotes the nonnegative part of a number.
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One may notice that formula (17) in Theorem 1 as well as
the subsequent optimization problems (19) or (20) defin-
ing the conditional minimax, all they are given directly on
outcomes yi without any use of the ordering operator Θ.
Thus, in the case of a weighted allocation problem, Theo-
rem 1 applied to the corresponding disaggregated problem
(with equal weights) results in formulas allowing us to reag-
gregate the outcomes related to the same services. Hence,
in the presence of demand weights wi > 0, for any real
tolerance level 0 < β � 1, there is well defined the worst
β –conditional mean

Mβ (y) = min
n

t +
1
β

m

∑
i=1

w̄id
+
i : d+i � yi � t; d+i � 0 8i

o
;

where w̄i denote the normalized weights (1). This allows
us to define the β –conditional minimax solution for the
weighted allocation problem as the optimal solution to the
following problem:

min
n

t +
1
β

m

∑
i=1

w̄id
+
i : x 2Q; d+i � fi(x)� t; d+i � 0 8i

o
:

(21)

Note that (21) uses m+ 1 auxiliary variables and m in-
equalities to define minimization of the worst conditional
mean. When the tolerance level β tends to 0, then all
the deviational variables d+i are forced to 0. Therefore,
the limiting problem of the standard minimax optimization
takes the simpler form (14). On the other hand, for β = 1,
problem (21) takes the form

min
n m

∑
i=1

w̄i(d
+
i + t) : x 2Q; d+i + t � fi(x); d+i � 0 8i

o
;

which can be simplified to the standard minisum optimiza-
tion (13).
The cumulative ordered outcomes (15), used to introduce
the worst conditional mean, are closely related with the
Pigou-Dalton theory of inequality measurement [12] and
the Lorenz curves. Assume that the allocation problem (12)
is transformed (disaggregated) into the unweighted one
(that means all the demand weights are equal to 1). Vector
Θ̄(y)

�
exactly 1

mΘ̄(y)
�

can be viewed graphically with the
curve connecting point (0,0) and points (i=m; θ̄i(y)=m) for
i = 1;2; : : : ;m. Graphs of vectors Θ̄(y) take the form of
unnormalized concave curves, the (upper) absolute Lorenz
curves.
The absolute Lorenz curves defines the relation (partial or-
der) of the equitable dominance. The equitable dominance
is originally defined by axioms of efficiency, impartiality
and the Pigou-Dalton principle of transfers [7, 10]. Never-
theless, due to the results of the majorization theory [7], it
can be expressed with inequalities on the absolute Lorenz
curves. Exactly, outcome vector y0 2Y equitably dominates
y00 2Y, if and only if θ̄i(y

0)� θ̄i(y
00) for all i 2 I where at

least one strict inequality holds. We say that an allocation
pattern x 2Q is equitably efficient (is an equitably efficient
solution of the multiple criteria problem (12)), if and only
if there does not exist any x0 2Q such that f(x0) equitably

dominates f(x). Note that with the relation of equitable
dominance an outcome vector of small unequal outcomes
may be preferred to an outcome vector with large equal out-
comes. Each equitably efficient solution is also an efficient
solution but not vice verse.

Fig. 1. Absolute Lorenz curve and the worst conditional means.

Recall that the worst conditional mean is defined as
M k

m
(y)= θ̄k(y)=k while vector 1

mΘ̄(y) can be viewed graph-

ically with the upper absolute Lorenz curve connecting
point (0,0) and points (i=m; θ̄i(y)=m) for i = 1;2; : : : ;m.
Hence, as shown in Fig. 1, the worst conditional mean
represents the projection of the point of the Lorenz curve
onto the vertical line at point 1 (i = m). This also demon-
strates that for any given outcome vector y, the worst con-
ditional mean Mβ (y) is monotonic (nonincreasing), when
considered as a function of β , i.e. 0 < β 0 � β 00 � 1 im-
plies Mβ 0(y)�Mβ 00(y). Further, since the worst conditional
mean Mβ (y) is a quantity proportional to the value of the
absolute Lorenz curve at a specific point β , comparison of
the worst conditional means (for the same given β ) is con-
sistent with the equitable dominance. Exactly, this leads to
the following assertion.

Theorem 2. Except for allocation patterns with identical
the worst conditional means Mβ (y), every allocation pattern

x 2Q that is minimal for Mβ
�
f(x)

�
is an equitably efficient

solution of the allocation problem (12).

4. Computational results

In this section we report some results of our initial compu-
tational experience with the conditional minimax solution
concept applied to traffic engineering problems. We have
solved randomly generated problems following the formula-
tion from Section 2. Thus, our analysis is limited to a simple
allocation model where the hubs are arranged in a ring and
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the traffic engineering problem needs to take into account
the bidirectional ring-loading issues.
Our computational tests are based on the randomly gener-
ated problems (6)–(11). The generation procedure works
as follows. First, a ring with a given number of hubs is
built. The clockwise and counterclockwise inter-hub links
are distinguished. The delays for these links are generated
as random integers uniformly distributed between 5 and 10.
Having the ring defined, a given number of services is ran-
domly generated. For each service i, the source node s(i)
as well as the destination node d(i) are linked to uniquely
selected hub each. The pair of hubs for the given service
is chosen randomly from all hubs in the ring, excluding the
case of the source node and the destination node attached to
the same hub. The delays of links between the source or the
destination nodes and their respective hubs in the ring are
randomly generated as integers uniformly distributed be-
tween 10 and 20. Finally, the demands wi for the services
are generated as random integers uniformly distributed be-
tween 1 and 100. All the inter-hub links are assumed to
have the same bandwidth. The bandwidth value is defined
as a result of the following procedure. We start with initial
bandwidth defined as ∑m

i=1wi to guarantee the feasibility
(solvability) of the generated problem. Further, we try to
reduce the bandwidth still preserving the feasibility. For
this purpose, 8 steps of the bisection procedure is applied
whereas the current bandwidth is decreased or increased
depending on the feasibility of the problem. This allows us
to built nontrivial feasible bidirectional ring-loading prob-
lems.
The solution concept of conditional minimax provides
a compromise between the minimax and the minisum ap-
proaches. Table 1 shows the quality of this compromise. It
provides average percentage distribution of delays for con-
ditional minimax solutions obtained by varying tolerance
level β in the objective Mβ . Distribution is calculated as an

Table 1
Average distributions of delays for 100 random problems

β Average percentage of delays for β–conditional minimax solutions
20 30 40 50 60 70 80 90 100 110 120 130 140

0.1 2.3 9.0 9.3 8.3 10.5 12.2 12.8 15.9 16.3 3.4 0.0
0.2 2.1 8.9 8.8 8.4 10.0 10.9 16.3 15.8 15.8 2.9 0.0
0.3 2.3 8.6 7.9 7.6 11.5 14.5 15.3 16.8 11.7 3.3 0.3 0.1
0.4 2.3 8.6 8.4 7.9 11.8 15.4 14.3 16.6 10.7 3.5 0.5 0.1
0.5 2.3 8.6 9.0 8.3 12.8 15.7 13.9 14.2 10.6 4.1 0.5 0.1
0.6 2.3 8.6 10.7 8.9 12.3 15.4 12.9 13.1 9.9 5.1 0.6 0.2
0.7 2.3 9.2 11.3 11.3 12.3 14.2 10.3 11.1 11.2 5.2 1.1 0.2 0.2
0.8 2.3 10.1 11.9 12.2 12.9 11.9 8.7 11.3 11.2 5.7 1.3 0.2 0.2
0.9 2.3 10.6 13.4 11.0 11.9 12.2 8.3 10.9 11.9 5.8 1.1 0.4 0.2
1.0 2.3 10.8 13.6 10.8 11.6 12.2 8.3 10.4 12.3 5.9 0.9 0.6 0.2

average of 100 randomly generated problems with 20 hubs
and 8 services. Resulting delays are partitioned into clus-
ters of range ten: [20;30), [30;40) etc. Each row repre-
sents average distribution for a particular tolerance level β .
Exactly, each field gives the percentage of delays within
a given range in 100 optimal solutions. It is clear that per-
centage of low delays increases with β (left columns). On
the other hand, for small values of the tolerance level β ,

the percentage of large delays is forced to zero. With β in-
creasing, large delays begin to occur, first incidentally like
delays over 120 for β = 0:1 or 0.2 (resulting in average
percentage below 0.1%), next with a raising percentage.
The main properties of the conditional minimax solution
concepts are visible in averages for 100 problems. Never-
theless, a single problem allows us to demonstrate much
better the differences among the solutions. Therefore, we
have selected and analyzed in details one of the randomly
generated problems. Table 2 shows the resulting distribu-
tions of delays for four various conditional minimax solu-
tion concepts applied to this sample problem. One may
notice that the distributions of delays are significantly dif-
ferent despite their means are quite close.

Table 2
Distributions of delays for a sample problem

β Percentage distribution of delays µ M

30 40 50 60 70 80 100 120

0:1 22.3 0.2 5.1 22.6 16.7 33.0 65.64 85.35
0:4 22.3 0.2 5.1 50.9 21.4 66.00 85.35
0:7 22.3 0.2 39.3 16.7 21.4 65.43 101.74
1:0 22.3 34.4 5.1 16.7 21.4 64.46 124.86

The distributions of delays generated by several solutions
from Table 2 are also presented graphically. In Fig. 2, for
each of four distributions of delays the values of all the
worst conditional means are shown as functions of the tol-
erance level. This results in four curves, each starting from

Fig. 2. Curves of the worst conditional means.

the corresponding maximum delay and reaching the mean
delay when the tolerance level tends to 1. One may notice
that among our four solutions the 0:4-conditional minimax
has the smallest worst conditional mean for tolerance levels
between 0.21 and 0.6 as well as it remains an alternative
optimal solution to the minimax solution for smaller toler-
ance levels.
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Figure 3 shows the absolute Lorenz curves built for the dis-
tributions of delays for our four conditional minimax solu-
tions of the sample problem. One might notice from Ta-
ble 2 that the 0:4–conditional minimax generates the same
maximum delay as the 0:1-conditional minimax while its
mean is greater than that of the latter. Hence, while dealing
with only two criteria of the maximum delay and the mean
delay, the 0:4-conditional minimax solution is dominated.

Fig. 3. Absolute Lorenz curves for the sample problem.

Nevertheless, as shown with the absolute Lorenz curves,
it is equitably nondominated and the minimization of the
worst conditional mean with the tolerance level β between
0.21 and 0.6 points out this solution as optimal.

Table 3
Average solution times for the 0.5-conditional minimax

Hubs Number of services (m)
p 50 100 200 500
50 0.10 0.40 0.60 3.20

100 0.40 0.60 1.40 5.40
200 0.40 1.20 2.40 11.00
500 1.20 3.40 6.40 38.60

We tested solution times for different number of services
m and number of hubs p. For each specified size pa-
rameters we generated randomly 5 problems (6)–(11). The
0:5-conditional minimax solutions were then found. All
computations were performed on a PC with the Pen-
tium 200 MHz processor employing the CPLEX 6.0 pack-
age [5]. The results are presented in Table 3. Every re-

ported time is an average of 5 results (in seconds) for prob-
lems of the given size. One may notice that even problems
with 500 hubs were solved very fast.

5. Concluding remarks

Resource allocation problems are concerned with the al-
location of limited resources among competing services
or other activities so as to achieve the best overall per-
formances. In various systems which serve many users,
like in telecommunication systems, there is a need to al-
locate resources equitably among the competing services.
In this paper we have developed an equitable solution con-
cept of the conditional minimax. Although similar to the
standard minimax approach, the conditional minimax takes
into account the amount of services related to the worst
performances. For a specified tolerance level (portion of
services amount) β we take into account the entire group
of the β portion maximum results and we consider their
average as the worst conditional mean to be minimized.
According to this definition the solution concept is based
on averaging restricted to the group of the worst perfor-
mances defined by the tolerance level. Hence, by the se-
lection of the tolerance level various equitable preferences
may be modeled.
The solution concept of the conditional minimax, similar
to the standard minimax approach, can be defined by op-
timization of a linear objective and a number of auxiliary
linear inequalities. Therefore, the concept may be effec-
tively applied to various resource allocation problems. Our
initial computational experiments with the conditional min-
imax applied to a straightforward traffic engineering model
(restricted to a single ring bidirectional loading) confirm
the theoretical properties of the solution concept. Bidi-
rectional ring loading problems containing up 500 hubs
were solved very fast with the general purpose LP solver.
Nevertheless, many specific large-scale allocation models
(especially discrete ones) may need some specialized ex-
act or approximate algorithms. Thus, further research on
computational aspects of the conditional minimax solution
concept is necessary.
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