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Abstract — In a radio communication channel wave pa-
rameters fluctuate randomly. The signal envelope undergoes
deep fades. When binary information is transmitted through
such a channel, fading causes random variation of proba-
bilities of error associated with the detection of individual
elementary signals, which produces a clustering of errors.
The paper presents an analytical description of the proba-
bility of bit error in the channel with very slow Rician fading
and Gaussian noise for noncoherent and coherent detection.
Digital systems employing error detection or error correc-
tion coding are generally based on the transmission of blocks
of NNN sequential bits. Expressions are given for the probabil-
ity of nnn errors occurring in NNN bits (weighted spectrum of er-
rors) and the probability of more than nnn errors in a block
of NNN bits (block error probability) for noncoherent frequency
shift keying (NCFSK). Also the calculations are presented
graphically.

Keywords — Rician fading channels, multipath propagation, bit
error probability, stream of errors, weighted spectrum of errors,
block error probability.

1. Introduction

Transmission of signal in digital radio communication sys-
tems takes place in the presence of random additive and
random multiplicative disturbances; the multiplicative dis-
turbances called ordinary as fading. We assume that the
additive disturbances are represented by white Gaussian
noise with zero mean value. The fading is considered
as nonfrequency selective. This is valid for most cases
of mobile data communications with moderate bit rates.
The fading process is assumed to be stationary and slowly
varying compared with the N bits duration; it is constant
during data block duration. We assume that the fading is
described by the Rician distribution. It is one of the double-
parameter distribution of the signal envelope allowing to
describe propagation conditions existing in radio channel
in greater detail than a simpler and more frequently ap-
plied single parameter Rayleigh distribution. The Rayleigh
and Rician distribution are only special case solutions of
the random vector problem. The Nakagami distribution
provides a more general solution.
The Rician distribution is an analytical model sufficient for
a channel where the useful signal s(t) is a sum of the sta-
tionary diffuse Gausssian signal x(t)= ax cos[ω0t+ϕx(t)]

with zero mean value and the direct harmonic signal
A cos0 t, i.e.:

s(t) = A cosω0t +ax cos
�
ω0t +ϕx(t)

�
=

= r cos
�
ω0 t +ϕs(t)

�
: (1)

The Rician model covers the superposition of a random
Rayleigh signal with the fixed nonrandom signal. The
Rician distribution can also be closely approximated by
the Nakagami distribution. The Rician fading model ap-
plies in microcellular and satellite radio communication
channels.
In radio communication channel radio waves parameters
fluctuate randomly. Data transmission from and to mo-
bile terminals suffers from fading effects caused by mul-
tipath propagation. The signal envelope undergoes deep
fades. When binary information is transmitted through such
a channel, fading causes random variation of probabilities
of error associated with the detection of individual elemen-
tary signals. Deep fades cause bursts of bit errors in the
transmitted data, i.e. errors in digital transmission over fad-
ing channels occur in bursts. In digital communication an
important quantity is the bit error probability.
This paper presents an expression for the average probabil-
ity of bit error for binary transmission in Rician channel
with noncoherent frequency shift keying (NCFSK), differ-
entially coherent phase shift keying (DPSK), coherent fre-
quency shift keying (CFSK) and coherent phase shift key-
ing (CPSK). Formulas for the average weighted spectrum of
errors and the average block error probability for NCFSK
are also presented.

2. Average probability of bit error

The static bit error probability for several common binary
modulation schemes with optimum detection of nonfading
signals in Gaussian noise is given by the formula

Ps(ρ) =

8><
>:

exp(�αρ)
2

for NCFSK, DPSK

erfc(
pαρ)
2

for CFSK, CPSK
(2)

where: ρ is the instantaneous signal-to-noise power ratio
(SNR), erfc(

p
x) denotes the error function [4], α = 0:5 for

NCFSK, CFSK and α = 1 for DPSK, CPSK.
Since in the Eq. (2) the argument of the error function
appears in the lower limit of the integral, it is analytically
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difficult to perform averages of this equation. Another form
for static bit error probability is presented in [2]:

Ps(ρ) =
(aρ)b

Γ(b)

Π=2Z

0

cosϕ
(sinϕ)2b+1 exp

� �aρ
sin2 ϕ

�
dϕ ; (3)

where a and b are the coefficients which depend on the
particular form of modulation and detection, i.e. a = b =
= 0:5 for CFSK, a= 0:5, b= 1 for NCFSK, a= 1, b= 0:5
for CPSK, a= b= 1 for DPSK.
Assuming Rician fading, the envelope r of the useful sig-
nal s(t), described by Eq. (1), has the probability density
function:

p(r) =
r

σ2
x

exp

�
� r2+A2

2σ2
x

�
I0

�
Ar
σ2

x

�
; r � 0; (4)

where: A is the envelope of the direct component of the
useful signal s(t), σ2

x is the variance of the diffused com-
ponent x(t) of the useful signal s(t), I0(α) is the zero order
modified Bessel function of the first kind [4].
Probability density function of the square of the envelope
r(t) of the useful signal is given by the formula:

p(r2) =
1

2σ2
x

exp

�
� r2+A2

2σ2
x

�
I0

�
Ar
σ2

x

�
; r � 0: (5)

The average value of the square of the envelope r(t) can
be written as

E(r2) = A2+2σ2
x ; (6)

where E(x) denotes the expected value of the argument.

From Eq. (5) we can describe the distribution of random
variable, which represents ρ defined as the instantaneous
ratio power of the useful signal to average power N0 of
the additive Gaussian noise, i.e. the instantaneous signal-
to-noise power ratio:

ρ =
r2

2N0
: (7)

The probability density function of ρ in Rician channel is
denoted by the formula:

p(ρ)=
N0

σ2
x

exp

�
�2N0ρ+A2

2σ2
x

�
I0

 
A
p

2N0 ρ
σ2

x

!
; ρ � 0:

(8)

With sufficiently slow fading, the average probability of bit
error PD(A; σx; N0), i.e. the dynamic probability of bit error,
equals to Ps(ρ) averaged over the distribution of SNR ρ :

PD(A; σx; N0) =

∞Z

0

Ps(ρ) p(ρ)dρ = E [Ps(ρ)] : (9)

Inserting Eqs. (2) and (8) into (9) gives the average prob-
ability of bit error in Rician channel [5]:

PD(A; σx; N0) =
1

2Γ(b)
exp

��A2

2σ2
x

�
�

�
∞

∑
k=0

�
A2

2σ2
x

�k Γ(b+k+1)
(k!)2 Bg(k+1; b) ; (10)

where: Γ(b) is the gamma function [4], g =
N0

aσ2
x +N0

and

Bg(x; y) is the incomplete beta function [4].
Let us introduce additional factors, which describe Rician
channel and can be defined as

ρ1 =
A2

2σ2
x

; ρ2 =
σ2

x

N0
; ρ3 =

A2

2N0
= ρ1ρ2 : (11)

Then, the expected value of the SNR ρ we can express as

E(ρ) = ρ0 = ρ3+ρ2 : (12)

In literature the factor ρ1 (direct signal to diffused sig-
nal power ratio) sometimes is denoted as K and ρ0 (aver-
age SNR) is denoted as Γ [1].
In the end, the formula for the average probability of bit
error in Rician channel can be written as

PD(ρ1; ρ2) =

=
1

2Γ(b)
exp(�ρ1)

∞

∑
k=0

ρk
1

Γ(b+k+1)
(k!)2 Bg1(k+1;b) ; (13)

where g1= 1
aρ2+1 or using the relation (12)

PD(ρ1; ρ0) =
1

2Γ(b)
exp
�
�ρ1

�
�

�
∞

∑
k=0

ρk
1

Γ(b+k+1)
(k!)2 Bg2(k+1; b) ; (14)

where g2=
1+ρ1

aρ0+1+ρ1
.

The error-rate formulas (10), (13), (14) are valid for four
principal cases of binary modulation in Rician channels.
The result over a Rayleigh channel can be obtained from
our results when A= 0. However, in the border case when
ρ2 = 0, we have the formula for bit error probability in
channel without fading. Figure 1 presents the average bit
error probability for binary NCFSK modulation in Rician
channel as a function of ρ0 for various values ρ1.
For detection in the noncoherent systems (when b= 1) the
formula for the average probability of bit error in Rician
channel can be expressed as

PD(A; σx; N0) =
N0

2(ασ2
x +N0)

exp

� �A2α
2(ασ2

x +N0)

�
(15)

or

PD(ρ1;ρ2) =
1

2(α ρ2+1)
exp

�
� αρ1ρ2

αρ2+1

�
(16)
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Fig. 1. The average bit error probability for NCFSK in channel
with Rician fading: 1 – ρ1 = �10; 2 – ρ1 = 0; 3 – ρ1 = 5;
4 – ρ1 = 7; 5 – ρ1 = 10; 6 – ρ1 = 12; 7 – ρ1 = 16 (all values
in dB).

and after using the relation (12) we can rewrite it as

PD(ρ1;ρ0) =
1+ρ1

2(αρ0+ρ1+1)
exp

�
� αρ1ρ0

αρ0+ρ1+1

�
(17)

where α = 0:5 for NCFSK and α = 1 for DPSK.

3. Average weighted spectrum
of errors

In case of digital transmission over a fading channel, time
variation causes the change of bit error probability with
the effect of clustering errors in the received signal. For-
ward error correction is often used to break up the clus-
tering [3, 7, 8]. Digital systems employing error detection
or error correction coding are generally based on the trans-
mission of blocks of N bits. The average probability of
bit error specified by Eq. (10) neither describes the num-
ber of errors nor their placement in the stream of errors.
In a communication system which transmits data in blocks
on N bits the probability of n errors in a block and the prob-
ability of more than n errors in a block are an important
quantities which describe the stream of errors in channel
with fading.

The weighted spectrum of errors, i.e., the probability
of n errors occurring in a transmission of N bits, for inde-
pendent bit errors is given by the binomial distribution

P(LN = n) =

�
N
n

�
Pn

s (ρ) [1�Ps(ρ)]N�n

n= 0; 1; : : : ; N :

(18)

The average probability of n errors in a block of N bits
(average weighted spectrum of errors) is denoted as [5, 6]

PD(LN = n) =
∞R
0

P(LN = n)p(ρ)dρ =

=

�
N
n

�N�n

∑
j=0

�
N�n

j

�
(�1) jE

�
Pj+n

s (ρ)
�
: (19)

The average in Eq. (19) is formed over the instantaneous
SNR ρ which has the probability density function p(ρ)
described by Eq. (8).

Assuming that the Rician fading is very slow, nonselective
and independent, then the instantaneous SNR remains the
same over a block of N bits. For noncoherent FSK in chan-
nel with Rician fading the average weighted spectrum of
errors is given by

PD(LN = n) = 2

�
N
n

�
N0

N�n

∑
i=0

�
N�n

i

�
(�1)i�

�
�

1
2

�i+n 1
(n+i)σ2

x +2N0
exp

 
�A2(n+i)

2
�
σ2

x (n+i)+2N0

�
!

: (20)

Using the relations (11) and (12) we can rewrite for-
mula (20) as

PD(LN = n) = 2

�
N
n

�N�n

∑
i=0

�
N�n

i

�
(�1)i

�
1
2

�i+n

�

� 1+ρ1

(n+i)ρ0+2(1+ρ1)
exp

� �ρ1ρ0(n+i)

ρ0(n+i)+2(1+ρ1)

�
: (21)

Equation (21) has been used to calculate the average proba-
bility of n errors in N bits. Figure 2 shows the PD(LN = n)
for N = 30 and for various values of ρ1 and ρ0 ; the values
of ρ1 and ρ0 are as taken as PD(ρ1;ρ0) = 10�3.

Additional, Fig. 3 shows the average weighted spectrum of
errors in N bits for NCFSK for different values of N, ρ1
and ρ0.

The probability PD(LN = n) takes into account only the
total number of errors and disregards their distribution. It
is useful only for the performance evaluation of random
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Fig. 2. Average probability of n errors in N= 30 bits for NCFSK:
1 – ρ1 = 0, ρ0 = 43; 2 – ρ1 = 1, ρ0 = 38; 3 – ρ1 = 5, ρ0 = 23;
4 – ρ1 = 7, ρ0 = 19; 5 – ρ1 = 16, ρ0 = 13 (all values in dB).

Fig. 3. Average probability of n errors in N bits for NCFSK;
solid line N = 48, dot line N = 30: 1 – ρ1 = 0, ρ0 = 43;
2 – ρ1 = 10, ρ0 = 28; 3 – ρ1 = 12, ρ0 = 20; 4 – ρ1 = 16,
ρ0 = 13 (all values in dB).

error-correcting codes. It cannot be used for burst-error-
correcting codes. If the random error-correcting code is
used, with the code capable of correcting up to n ran-
dom errors, then the probability of correct decoding is
n
∑

i=0
PD(LN = i).

4. Average block error probability

When the system with burst-error correcting code is used
the probability of correct decoding cannot be expressed
only in terms of PD(LN = n). The burst-error-correction
code can correct all error vectors with length less than or
equal to n. In this case the important quantity is the average
probability of more than n errors in a block of N bits, i.e.,
average block error probability. It is denoted by

PD(LN > n) =

= 1�
n

∑
i=0

�
N
i

� ∞Z

0

Pi
s(ρ) [1�Ps(ρ)]N�i p(ρ)dρ =

= 1�
n

∑
i=0

�
N
i

�N�i

∑
j=0

�
N� i

j

�
(�1) jE

�
Pj+i

s (ρ)
�
: (22)

Thus, from Eqs. (22), (2), (8), the average block error
probability for NCFSK we can expressed as

PD(LN > n) = 1�2N0

n

∑
j=0

�
N
j

�N� j

∑
i=0

�
N� j

i

�
(�1)i�

�
�

1
2

�i+j 1
( j+i)σ2

x +2N0
exp

� �A2( j+i)
2[σ2

x ( j+i)+2N0]

�
(23)

or in the form

PD(LN > n)=1�2
n

∑
j=0

�
N
j

�N�j

∑
i=0

�
N� j

i

�
(�1)i

�
1
2

�i+j

�

� 1+ρ1

( j+i)ρ0+2(1+ρ1)
exp

� �ρ1ρ0( j+i)

ρ0( j+i)+2(1+ρ1)

�
: (24)

Figure 4 shows the average block error probability
PD(L30 > 0) for NCFSK, i.e., the probability of at least
one error in N = 30 bits.
When we plotted the expression (4) presented in refer-
ences [1] for D = 1, i.e. for no diversity case, we become
the same result as is shown in Fig. 4.
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Fig. 4. Average block error probability PD(L30> 0) for NCFSK
and N = 30: 1 – ρ1 = 1; 2 – ρ1 = 5; 3 – ρ1 = 7; 4 – ρ1 = 10;
5 – ρ1 = 12; 6 – ρ1 = 14 (all values in dB).

Fig. 5. Average block error probability PD(L30> n) for NCFSK
and N = 30: 1 – ρ1 = 0, n= 0; 2 – ρ1 = 0, n= 1; 3 – ρ1 = 0,
n= 4; 4 – ρ1 = 5, n= 0; 5 – ρ1 = 5, n= 1; 6 – ρ1 = 5, n= 4;
7 – ρ1 = 10, n = 0; 8 – ρ1 = 10, n = 1; 9 – ρ1 = 10, n = 4
(all values in dB).

Also Fig. 5 shows the average block error probability
PD(L30 > 0) in a block of N = 30 bits for NCFSK and
for various values of ρ1 and n.

5. Conclusion

The presented equations are valid for nonselective, very
slow and independent Rician fading. Since the presented
expressions include results for the cases of Rayleigh fad-
ing and no fading, they can be widely used to evaluate
the performance of error control techniques for mobile
radio.
Presented results can be useful for error detection or error
correction coding. In a communication system that trans-
mits data in blocks of N bits an important quantity is the
probability of more than n errors in block. If a simple au-
tomatic repeat request scheme is used, the throughput can
be determined from PD(LN > 0), i.e. from the probabil-
ity of at least one error in blocks. However, if the use of
forward error correction is to be investigated, the knowl-
edge of PD(LN > n) is required. In case of error detection
a block is received correctly only if all N bits are received
without error.
In Figs. 1 – 5 numerical results are presented, the influence
of fading for error detection is presented. The obtained ex-
pression can easily be programmed using standard mathe-
matical software package such as Mathcad.
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