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Abstract — In this work we shall be concerned with inter-
active multiple criteria decision making methods. We show
how on the technical level the class of reference point methods
can be reduced to the class of weight methods. Though meth-
ods from these two classes represent two different interactive
decision making paradigms, the equivalence observed opens
a way for a joint implementation of a pair of methods each rep-
resenting a different class. This would establish a firm ground
for systematic comparison of both classes of methods as well
as for hybrid schemes mixing decisional tools specific for
each class.

Keywords — multiple criteria decision making, weight methods,
reference point methods.

1. Introduction

A rough taxonomy of interactive multiple criteria deci-
sion making (MCDM) methods distinguishes three ma-
jor classes, namely weight methods, reference point meth-
ods, and constraint methods. All methods of these classes
amount to a partial, decision maker (DM) guided search of
the set of efficient decisions. The trichotomy is based on
which elements are manipulated to capture DM’s prefer-
ences: weights, reference points, or constraints. In this
presentation we shall confine ourselves to the first two
classes, which are believed to capture DM’s preferences
in a favourable manner.
In weight methods the DM articulates his partial prefer-
ences pointing to preferred decisions in pairwise compar-
isons. Partial preferences are translated next into relations
expressed in terms of weights. In some methods weights
are provided explicitly by the DM. In reference point meth-
ods the DM articulates his preferences by pointing to ref-
erence points which can be any elements of the space of
criteria.
In weight methods the set of weights is systematically
searched and reduced according to DM articulated pref-
erences. The volume of the set of weights is a natural
measure of progress and convergence of the decision mak-
ing process. Reference point methods lack such a systemic
convergence indicator.
The purpose of this paper is to show that in technical terms
reference point methods can be reduced to weight methods.
With such an interpretation provided it is possible to im-
plement methods of these two classes in the same technical

framework. This would establish a firm ground for system-
atic comparison of both classes of methods as well as for
hybrid schemes mixing decisional tools specific for each
class. Moreover, a convergence indicator is then available
for either class of methods.
The plan of the paper is as follows. In Section 2 we recall
all the relevant definitions and formulations. In Section 3
we recall characterizations of the set of properly efficient
decisions, namely the characterization by weight manipula-
tions and the characterization by reference point manipula-
tions, and in Section 4 we recall how these characterizations
are used in the two classes of MCDM methods considered.
In Section 5 we show that under a restriction of reference
point methods, weight methods and reference point meth-
ods are technically equivalent. In Section 6 we discuss
practical significance of such an equivalence. Section 7
concludes.

2. Preliminaries

In the multiple criteria decision making framework a deci-
sion problem is formalized as follows:

choose “the most preferred” vector f (x); x2 X0 � X ;
(1)

where X is the space of decisions, X0 is the set of fea-
sible decisions, f : X ! R

k is the criteria map, where
f = ( f1; :::; fk) and fl : X ! R ; l = 1; :::;k; are criteria
functions. We assume that all criteria are of the type “bet-
ter if more”.
From the algorithmic point of view the above problem is
ill-defined. As long as we do not know what “the most
preferred” means precisely we are not in a position to pro-
pose a problem solving method. The only source of sup-
plementary information to those already given in (1) can
be the decision maker (DM). The underlying assumption
of MCDM is that this information cannot be acquired from
the DM at once.
A formal model for MCDM is offered by the vector opti-
mization problem, namely

vmax f (x) ; x2 X0 � X ; (2)

where vmax stands for the identification of all efficient de-
cisions of X0. This problem is well-defined which means
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that under minor assumptions, satisfied in practical prob-
lems, the solution to (2) always exists.
Decisions are represented by their criteria values. With this
in mind, from now on we shall be dealing with elements
f (x) of set f (X0) and for the sake of simplicity we shall
use the notation

y= f (x) and Z = f (X0) :

Elements of set Z we shall call outcomes. Under this con-
vention, for given feasible decision x, yl = fl (x) is the value
of l th component of outcome y= f (x) : Thus, yl is the value
of l th criterion.
All properties of decisions we shall need throughout this
paper can be defined in terms of outcomes. The notation
x; X0; f (x); f (X0) has to be used only when one is to op-
erationalize an implicit (i.e. in the form of constraints)
feasible decision representation.
The element ŷ representing the hypothetical decision which
maximizes all objective functions, called utopian element,
is calculated as

ŷl = maxy2Z yl ; l = 1; :::;k:

Definition 1. The outcome ȳ 2 Z is efficient if yl � ȳl ;
l = 1; :::;k; y2 Z; implies y= ȳ:

For clarity of presentation and without loss of generality,
in this paper we confine ourselves exclusively to a subset
of efficient outcomes, namely to properly efficient out-
comes.

Definition 2 [3]. The outcome y2 Z is properly efficient if
it is efficient and there exists a finite number M > 0 such
that for each i we have

yi �yi

yj �yj
�M

for some j such that yj < yj ; whenever y2 Z and yi > yi :

The set of all properly efficient outcomes we shall denote
by P. The distinction between efficient and properly effi-
cient outcomes, important in formal considerations, is of lit-
tle importance in practical MCDM problems. It is enough
to recall that in the case set Z is polyhedral or finite all
efficient outcomes are properly efficient.

3. Pareto set characterizations

A corner stone for every interactive MCDM method is the
ability to derive properly efficient outcomes. Every prop-
erly efficient outcome should be potentially derivable. The
so-called characterizations of P are useful for this purpose.
Bellow we recall two types of characterizations prized for
their generality and therefore often exploited in MCDM
methods, namely:

– the characterization by weight manipulations,

– the characterization by reference point manipulations.

Any of the above characterizations represents a parametric
family of optimization problems.

3.1. Characterization by weight manipulations

The idea of characterizing the Pareto set by weight ma-
nipulations consists in constructing a surrogate objective
function parameterized by k parameters – weights. A sur-
rogate objective function when maximized (or minimized –
depending on the surrogate objective function form) over
Z yields properly efficient outcome of vector optimization
problem (2) (cf. Fig. 1). By changing weights and solving
the resulting optimization problems one derives different
properly efficient outcomes.

Fig. 1. Contours of a surrogate objective function and the prop-
erly efficient outcome “corresponding” to the selected vector of
weights.

Below we shall make use of a selected element of the cri-
teria space denoted y� and defined as

y�l = ŷl + ε ; l = 1; :::;k;

where ε is any positive number and ŷ is the utopian element
defined in the previous chapter.

Sufficient condition for proper efficiency. An outcome
which solves the optimization problem

min
y2Z

max
l

λl ((y
�

l �yl )+ρek(y��y)) ; (3)

or the problem

min
y2Z

max
l

λl (y
�

l �yl )+ρek(y��y) ; (4)

where λl >0; l = 1; :::;k, ρ > 0, and ek is the k-dimensional
row vector with all components equal to one, is properly
efficient [1, 4, 11–13].
The surrogate functions (3) and (4) are the most general
forms of functions used in weight manipulation methods.
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3.2. The characterization by reference point
manipulations

The idea of characterizing the Pareto set by reference point
manipulations consists in constructing a surrogate objective
function parameterized by an element y of Rk. A surrogate
objective function when minimized over Z yields a prop-
erly efficient outcome of vector optimization problem (2)
(cf. Fig. 2). By changing reference points and solving the
resulting optimization problems one derives different prop-
erly efficient outcomes.

Fig. 2. Contours of a surrogate objective function and the prop-
erly efficient outcome “corresponding” to the selected reference
point.

A continuous function sȳ(y) : Rk ! R; where ȳ 2 Rk,
(ȳ – a reference point), is called an achievement function. In
the context of this paper it is required that an achievement
function is ε-strongly increasing [10].

We define the following optimization problem:

min
y2Z

sȳ(y) : (5)

Let outcome y̆ be a solution of problem (5), i.e.

y̆= argmin
y2Z

sȳ(y) :

Sufficient condition for proper efficiency. If sȳ is ε-strongly
increasing, then outcome y̆ is properly efficient [10].
Functions (3) and (4) for each λ ; λl > 0; l = 1; :::;k;
are ε-strongly increasing; they both are achievement func-
tions with ȳ = y� : Various other forms of achievement
functions exists but for the properties required achievement
functions (3) and (4) posses the simplest form.

4. Methods

4.1. Weight methods

In weight methods ([2, 8, 9, 14] to name just a few, the
reader is referred to e.g. [7] for a more complete list of

references) the DM articulates his preferences by pointing
(directly or indirectly) to a vector of weights. Then a prop-
erly efficient outcome which “corresponds” to the selected
vector of weights is determined with the help of a sur-
rogate objective function (cf. Section 3.1). The notion of
correspondance is intuitively explained in Fig. 1. By ma-
nipulating weights the DM is able to determine a subset
of P set and from this subset select the most preferred
outcome.
In that manner the set of weights is systematically searched
and reduced. Search can be organized in the form of weight
cuts (the Zionts-Wallenius method and the Dell-Karwan
method) or weight zooming (the Tchebycheff method by
Steuer). Reductions of the set of weights give rise to a nat-
ural stopping rule: search is terminated if the set of weights
is so small that outcomes corresponding to weights from
this set differ insignificantly. Other usual stopping rules
such as limit of the elapsed time or limit of iterations are
of purely technical nature.

4.1.1. Weight cut methods

In weight cut methods it is assumed that the surrogate ob-
jective function used approximates locally DM’s implicit
utility function. With such an assumption in place a pair
of outcomes subjected to DM’s evaluation yields a weight
cut. With the surrogate function (3) and with two out-
comes ya; yb we have

max
l

λl ((y
�

l �ya
l )+ρek(y��ya))< max

l
λl ((y

�

l �yb
l )+

+ρek(y��yb)) (6)

if the DM prefers ya to yb, and

max
l

λl ((y
�

l�ya
l )+ρek(y��ya))> max

l
λl ((y

�

l �yb
l )+

+ρek(y��yb)) (7)

otherwise.

The cut (6) or (7) reduces the set of vectors λ . Vectors λ
from the reduced set are selected and problem (3) is solved
to derive elements of P for successive DM evaluations.

4.1.2. The Tchebycheff method

The so-called Tchebycheff method exploits problem (3) to
determine properly efficient outcomes (in the original ver-
sion of the method ρ = 0).
The method consists of the following operations: select-
ing a number of vectors λ ; λl > 0; l = 1; :::;k; and then,
iteratively:
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– solving problem (3) for all selected λ to derive
a number of properly efficient outcomes,

– selecting by the DM the most preferred outcome ỹ;

– selecting a number of vectors λ ; λl > 0; l = 1; :::;k;
in a neighborhood of λ̃ corresponding to the most
preferred outcome ỹ.

The above process has an effect of “zooming” in the set
of weights in a quest for weights which yield a sequence
of increasingly (or at least non decreasingly) preferred
outcomes.

4.2. Reference point methods

In the simplest version of reference point methods the DM
articulates his preferences by pointing to a reference point.
The reference point can be an outcome, i.e. an element
of Z ; or any other element of Rk : Then a properly efficient
outcome which “corresponds” to the reference point and the
achievement function used (cf. Section 3.2) is determined.
The notion of correspondence is intuitively explained in
Fig. 2. By manipulating reference points the DM is able to
determine a subset of P set and from this subset select the
most preferred outcome.

Fig. 3. Contours of a surrogate objective function and the prop-
erly efficient outcome “corresponding” to the selected pair of
reservation-aspiration points.

A variant of reference point methods admits also DM point-
ing to a pair of reference points; a point yres called a reser-
vation point and a point yasp, yasp2 yres+ int(Rk

+
), called an

aspiration point, where int(�) denotes the interior of a set.
It is quite natural to assume that yres2 Z and yasp =2 Z pro-
vided such points are easily identifiable. In general, the
condition yasp2 yres+ int(Rk

+) is sufficient. It is possible
then to construct an achievement function such that an out-
come y which minimizes that function over Z is an element
of P farthest from the reservation point and at the same time

closest to the aspiration point. One such an achievement
function is the function (3), where

λl =
1

yasp
l

�yres
l

; l = 1; :::;k:

This is schematically illustrated in Fig. 3.
In reference point methods no explicit evaluations (compar-
isons) of outcomes take place.

5. Weight versus reference point
methods

5.1. Weight versus reference point methods –
methodological level

On the methodological level weight methods and reference
point methods represent two entirely different decision mak-
ing paradigms.
In weight methods it is assumed (assumption A), often im-
plicitly, that at each iteration of the interactive decision
making process the DM is able to express his partial pref-
erences by pointing to a preferred outcome (and hence de-
cision) from a handful of outcomes presented to him. Then
his preference is translated into relations in terms of vec-
tors λ .
In reference point methods it is assumed (assumption B)
that at each iteration of an interactive decision making pro-
cess the DM is able to express his partial preferences by
pointing to a reference point representing his preferred de-
cisional pattern, or, as in the variant of the reference point
methods, by pointing to a pair of reservation-aspiration
points.
There is no decisive evidence which assumption is better
justified. Quite evidently assumption A is better justified
than assumption B when the DM posses some analytical
capabilities. In turn, assumption B seems to be better jus-
tified than assumption A when the DM acts intuitively and
tends to present his preferences in a holistic manner. Point-
ing to a reference point is a holistic form of expressing
preferences.

5.2. Weight versus reference point methods – technical
level

Let us observe that in weight methods selecting at each
iteration a vector λ > 0 amounts in fact to selecting a half-
line starting from y� along which the apexes of the con-
tours of the function (3) lie (cf. Fig. 1). This line has the
form

s= y�� tτ;

where t > 0 and τ = (τ1; :::;τk); τl =
1
λl
; l = 1; :::;k. In

course of iterations one gets a “fan” of half-lines all starting
at y� (Fig. 4).
In reference point methods the DM specifies at each itera-
tion a reference point yre f , what amounts in fact to selecting
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(recall we have assumed that (3) is the achievement func-
tion) a half-line starting from yre f , i.e.

s0 = yre f � tτ;

where t > 0 and τ = (τ1; :::;τk); τl =
1
λl
; l = 1; :::;k. In

course of iterations one gets a “forest” of parallel half-lines
(the vector λ is fixed) (Fig. 5).

Fig. 4. A fan-type interactive decision making process.

Fig. 5. A forest-type interactive decision making process.

Fig. 6. A maze-type interactive decision making process.

In the variant of reference point methods the DM specifies
at each iteration a reservation point yres and an aspiration
point yasp, what amounts in fact to selecting (recall we have
assumed that (3) is the achievement function) a half-line
starting from yasp and passing through yres, i.e.

s00 = yasp� tτ;

where t > 0 and τ = (τ1; :::;τk); τl =
1

yasp
l

�yres
l
; l = 1; :::;k.

In course of iterations one gets a “maze” of half-lines
(Fig. 6).
Table 1 summarizes the mechanics of the methods.

Table 1
Mechanics of considered interactive

decision making methods

Methods
Decisional item

fixed to be selected
Weight methods y� τ
Reference point methods τ yre f

Reference point methods – the variant � yres
; yasp

From Table 1 we see that though weight methods and refer-
ence point methods represent totally different decision mak-
ing (searching) methodologies, technically they are very
similar. Indeed, in each method to proceed to the next
iteration, i.e. to derive a subsequent trial outcome, a com-
bination of two decisional items is required: either two
elements of Rk or a direction and an element of Rk. The
methods differ in presence or absence of fixed items and
in which item is an active toll to search over the set of
efficient outcomes.

Fig. 7. Aspiration points take the role of y� in appropriately
constrained set Z.

The most flexible method is the variant of reference point
methods since no decisional item is fixed a priori. Let
us note, however, that a great extent of flexibility is not
necessarily always plausible.
We can make weight methods and the variant of reference
point methods technically equivalent with the following re-
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striction of the latter. Let us assume yasp= y�, i.e. the
aspiration point is fixed. Then DM changes only reserva-
tion points what amounts in fact to selecting a half-line
starting from y� and passing through yres; i.e.

s000 = y�� tτ;

where t > 0; and τ = (τ1; :::;τk); τl =
1

y�l �yres
l
; l = 1; :::;k.

If it is the case, we can say that both methods rely on
a direction selection mechanism.
Let us observe that y� plays the same role to Z as yasp(yre f )
to the set

Z\fyjyl � yasp
l

� ε; l = 1; :::;kg

(Z\fyjyl � yre f
l
� ε; l = 1; :::;kg) ;

where ε > 0 is the value we used in Section 3 to define y�

(cf. Fig. 7).
To decide if the proposed restriction of the variant of ref-
erence point methods is methodologically justified a vast
practical experience with applications of these methods is
required and this is lacking. At this stage we can only note
that the technical equivalence of weight methods and the
variant of reference point methods we have just shown has
some interesting practical consequences.

6. Discussion

There are two major practical consequences of the technical
equivalence of weight methods and the variant of reference
point methods.
The first consequence is that with the equivalence shown
two methods, one representing the class of weight methods
and other representing the class of reference point meth-
ods, can be implemented jointly with the same computing
(optimizing) software and an interface admitting the DM to
select which of these two methods he would like to work.
This would establish a firm ground for systematic compar-
ison of these methods in the same technical environment.
This also would open a way for some hybrid type decision
processes mixing elements of the two methods.
The second consequence is as follows. In weight methods
the principle of weight set reduction gives rise to a natural
convergence measure. Namely, convergence can be con-
trolled (and a stopping rule invoked) basing on the “vol-
ume” of sets of weights resulting from subsequent reduc-
tions. In general, reference point methods do not incur
a similar natural convergence measure.
Only by the simple modification proposed above the variant
of reference point methods acquires this property. Indeed,
any two outcomes from two subsequent iterations give rise
to a cut (6) or (7) and in consequence to a reduction of
the set of weights. Though the DM would have to answer
questions “which of two outcomes do you prefer?” those
are kind of technical questions of no influence on the course
of the decision process, which relies in, we recall, selecting
a reservation point with the aspiration point fixed at y�.

7. Concluding remarks

The fact that weight methods and the variant of reference
point methods can be realized in the same technical frame-
work has an important practical consequence. Namely, as
shown in companion papers of the author [5, 6], with weight
methods it is possible to calculate bounds, lower and up-
per, on values of criteria (outcome components) prior to
explicitly decision determining. This possibility is of ut-
most practical importance for applications of MCDM meth-
ods because using bounds instead of exact values one can
avoid determining decisions explicitly and hence solving
optimization problems. Since, as shown above, weight and
the variant of reference point methods can be reduced to
(and implemented in) the same technical framework realiz-
ing a “fan” type decisional process, reference point meth-
ods also enjoy this property. This aspect will be a topic for
further research.
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