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Abstract — The decision problems are considered when the
prior probabilistic information about the state of nature and
decision maker’s utility function are imprecisely defined. In
such a case the risks (or the expected utility) of considered de-
cisions are also imprecisely defined. We propose two-step pro-
cedure for finding the optimal decision. First, we order possi-
ble decisions using the λλλ -average ranking method by Campos
and Gonzalez [1]. Then we use possibilistic possibility of dom-
inance and necessity of strict dominance indices proposed by
Dubois and Prade [3] for the comparison of consequences of
the most promising solutions.

Keywords — optimal decisions, imprecise information, fuzzy
risks, possibility indices.

1. Introduction

In decision making we deal with uncertainties related to
an unknown state of nature. The behaviour of a decision
maker may be described as a kind of game between him and
a fictitious player who may be called “nature” or “chance”.
Decisions made by a decision maker are rational if they
are derived from his knowledge about nature’s behaviour
and the knowledge of the consequences of his decisions.
Mathematical theories of decision making are known for
more than fifty years and are based on probabilistic mod-
els of nature’s behaviour and utility functions. Their basic
ideas and main results were published in a famous book by
Raiffa and Schlaifer [6] that has been recently republished
by J. Wiley & Sons. In the classical models of decision
making it is assumed that the decision maker knows the
joint probability distribution of all possible states of the
nature and all possible results of experiments which pro-
vide him with some knowledge about the actual state of the
nature. Moreover, it is assumed that there exists a precisely
defined utility function which assigns decision maker’s util-
ity related to all possible pairs: decision and state of the
nature. These premises have been recently relaxed by as-
suming that some parameters of decision models may be
defined only with a certain degree of precision. As a con-
sequence of such more general assumptions we arrive at
mathematical models of imprecise risks.
In this paper we present some results obtained under the
assumption of the existence of imprecisely defined risks.
In Section 2 we present a mathematical model of decision
making in the presence of imprecisely defined probabilistic
prior information about the possible states of the nature and
imprecisely defined utility functions. A lack of the preci-
sion we describe in the language of the fuzzy sets theory.

We propose to find the best decisions by the defuzzification
of imprecisely defined expected risks. For this purpose we
propose the use of the defuzzification method proposed by
Campos and Gonzalez [1]. This method allows the user to
take into account his attitude, i.e. his level of optimism (or
pessimism). In Section 3 we propose a possibilistic method
for the comparison of different decisions. By applying this
method we provide the user with addition information about
the real differences between the consequences of his deci-
sions. In this comparison we take into account the impact
of imprecise input information on the decision making.

2. Mathematical model and the choice
of optimal decisions

There exist different methods for modelling decisions. In
this paper we adopt the approach described in a general
form by Raiffa and Schlaifer [6]. The model proposed
by Raiffa and Schlaifer consists of two parts: one part is
dedicated to the choice of the final decision, and the second
part is dedicated to the choice of the experiment whose
ultimate goal is to provide the decision maker with some
information about the actual state of nature. According to
this model the decision maker can specify the following
data defining his decision problem:

1. Space of terminal decisions (acts): A= fag.

2. State space: Θ = fθg.

3. Family of experiments: E = feg.

4. Sample space: Z = fzg.

5. Utility function: u(�; �; �; �;) on E�Z�A�Θ.

The decision maker evaluates an utility u(e;z;a;θ ) of mak-
ing a particular experiment e, obtaining the result of this
experiment z, taking a decision a in the case when the
true state of nature is θ . In order to find appropriate (hope-
fully optimal) decisions the decision maker has also to spec-
ify a joint probability measure Pθ ;z(�; �je) for a Cartesian
product Θ�Z. The knowledge of this probability measure
means that we know the joint probability distribution of
observation z in an experiment e when the random state
of nature is described by θ . Knowing this joint probabil-
ity distribution we can calculate some important marginal
and conditional probability distributions. In particular, for
a given experiment e we are usually interested in three dis-
tributions:
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1. The marginal distribution on the state space Θ de-
scribing our prior information about possible states
of nature. We assume that this distribution does not
depend on e.

2. The conditional distribution on the sample space Z
for a given state of nature θ .

3. The conditional distribution on the state space Θ for
a given result of the experiment z describing our pos-
terior information about possible states of nature.

Note, that we may know only these particular distributions
as their knowledge is equivalent to the knowledge of the
joint probability distribution on Θ�Z.
Let us consider the simplest case of the general model when
there is no experiment e. In such a case the only informa-
tion we need is the probability distribution π(θ ) defined
on the state space Θ. We call this distribution the prior
distribution of the parameter (parameters) describing the
unknown state of nature. If we know the utility function
u(a;θ ) defined on A�Θ we may calculate the expected
utility assigned to a particular action (decision) a from the
simple formula

u(a) =
Z

Θ

u(a; θ )π(θ )dθ : (1)

If we use a loss function L(a;θ ) for the description of po-
tential consequences of taking decision a we may calculate
the expected loss (usually called a risk) from an equivalent
formula

ρ(a) =
Z

Θ

L(a;θ )π(θ )dθ : (2)

Having the expected utilities for all possible decisions
we can find the optimal one which is related to the max-
imal expected utility (or the minimal risk). This proce-
dure is in principle very simple. However, in many practical
cases (when the number of possible decisions is sufficiently
large) it may require the use of sophisticated optimisation
methods.
When the decision maker has an additional informa-
tion about the state of nature in a form of observations
z= (z1;z2; : : : ;zn) of a random vector described by a prob-
ability distribution f (z;θ ) we may calculate the expected
utility assigned to a particular action (decision) a from a for-
mula

u(a;z) =
Z

Θ

u(a;θ )g(θ jz)dθ ; (3)

where

g(θ jz) =
f (zjθ )π(θ )R

Θ
f (zjθ )π(θ )dθ

(4)

is the posterior distribution of the parameter θ which de-
scribes the state of nature. In such a case the expected
utility attributed to each decision is calculated from

u(ajz) =
Z

Θ

u(a;θ )g(θ jz)dθ ; (5)

and the respective risk from the formula

ρ(ajz) =
Z

Θ

L(a;θ )g(θ jz)dθ : (6)

The procedure for finding the optimal decision is exactly
the same as in the case described previously.
Suppose now that the prior distribution π(θ ) and the loss
(or utility) L(a;θ ) are functions of parameters ζ and ψ , re-
spectively, and that these parameters are known only impre-
cisely. Let us assume that our imprecise knowledge about
possible values of ζ and ψ is represented by fuzzy sets eζ
and eψ , respectively. A fuzzy set eX is defined using the
membership function µ

eX
(x) which in the considered con-

text of this paper describes the grade of possibility that
a fuzzy parameter, say eX, has a specified value of x. Each
fuzzy set may be also represented by its α-cuts defined as
ordinary sets

Xα =
�

x2 R : µ
eX
(x)� α

	
; 0� α � 1: (7)

From the representation theorem for fuzzy sets we know
that each membership function may be equivalently ex-
pressed as

µ
eX
(x) = sup

�
αI

eXα (x) : α 2 [0;1]
	
: (8)

Now let us assume that imprecisely known parameters ζ
and ψ are represented by their α-cuts, and that these
α-cuts are given in a form of closed intervals

�
ζ α

L ; ζ α
U

�
and

�
ψα

L ; ψα
U

�
, respectively. The knowledge of these α-cuts

let us calculate fuzzy equivalents of the expected utility or
the expected loss (risk). To make the presentation sim-
ple we assume that decision are based exclusively on the
knowledge of the prior distribution π(θ ) and the loss func-
tion L(a;θ ). As these functions are the functions of im-
precise fuzzy parameters, they are also fuzzy, and may be
denoted as eπ(θ ; eζ ) and eL(a;θ ; eψ), respectively.
Now, let us rewrite formula (2) as

eρ(a) = Z

Θ

eL(a;θ ; eζ )eπ(θ ; eψ)dθ : (9)

The risk calculated from formula (9) is now an impre-
cisely defined fuzzy number whose membership function
may be calculated using Zadeh’s extension principle (see
Klir and Yuan [5], or any other textbook on fuzzy sets for
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a reference). It is easy to show that the fuzzy risk eρ(a) is
now represented by its α-cuts

�
ρα

L ;ρα
U

�
, where

ρα
L = inf

ζ2
�

ζ α
L ;ζ α

U

�
ψ2
�

ψα
L ;ψα

U

�
eρ(a) (10)

and

ρα
U = sup

ζ2
�

ζ α
L ;ζ α

U

�
ψ2
�

ψα
L ;ψα

U

�
eρ(a): (11)

Thus, for every possible decision a we may find a fuzzy
risk eρ(a) or a fuzzy expected utility eu(a) which may
be calculated in the same way. Moreover, if there ex-
ists an additional information in the form of observations
z = (z1;z2; : : : ;zn) we may use exactly the same proce-
dure in order to fuzzify the expected utility given by for-
mula (5) and the risk given by formula (6). Note how-
ever, that in this case the respective calculations (especially
for the fuzzy posterior distribution) may be much more
complicated.
In contrast to the non-fuzzy (crisp) case the univocal op-
timal solution of the decision problem for imprecisely de-
fined input parameters does not exist. It stems from the fact
that fuzzy sets are not naturally ordered. Thus, in general,
it is not possible to indicate the decision with lowest risk
(or the highest expected utility). In order to do this we
must apply one of the many proposed in literature ranking
methods.
There are many methods for ranking fuzzy numbers that
are based on different defuzzification methods. Gil and
Lopez-Diaz [4] have noticed that the λ -average ranking
method proposed by Campos and Gonzalez [1] is espe-
cially useful in decision making. Let eX be a fuzzy number
(fuzzy set) described by the set of its α-cuts

�
Xα

L ;X
α
U

�
,

and S be an additive measure on [0;1]. Moreover, assume
that the support of eX is a closed interval. The λ -average
value of such a fuzzy number eX is defined by Campos and
Gonzalez [1] as

Vλ
S (eX) =

1Z

0

�
λXα

U +(1�λ )Xα
L

�
dS(α) ; λ 2 [0;1] : (12)

In the case of continuous membership functions the inte-
gral in formula (12) is calculated with respect to dα . Thus,
the λ -average value of eX can be viewed as its defuzzified
value.
The parameter λ in (12) is a subjective degree of deci-
sion maker’s optimism (pessimism). In the case of fuzzy
risks λ = 0 reflects his highest optimism as the minimal
values of all α-cuts (representing the lowest possible risks)
are taken into consideration. On the other hand, by tak-
ing λ = 1 the decision maker demonstrates his total pes-
simism, as only the maximal values of all α-cuts (repre-

senting the highest possible risks) are considered. In the
case of fuzzy expected utilities the situation is reversed,
i.e. λ = 1 represents decision maker’s optimism, and λ = 0
reflects his total pessimism. If the decision maker takes
λ = 0:5 his attitude may described as neutral. Thus, by
varying the value of λ the decision maker is able to take
into account the level of his optimism (pessimism) which
may arise e.g. from having some additional information
that has not been reflected in the prior distribution. Some
interesting features of the λ -average ranking method have
been discussed in Gil and Lopez-Diaz [4].
Having a simple ranking method given by formula (12) we
may calculate defuzzified values of fuzzy risks (expected
utilities) related to all considered decisions. The optimal
decision has the lowest defuzzified risk (or the highest de-
fuzzified expected utility). Moreover, the decision maker
can order all considered decisions with respect to their risks
(or expected utilities).

3. Possibilistic analysis
of optimal decisions

The procedure described in the previous section allows the
decision maker to find the optimal decision. It has to be
noted, however, that the ranking method gives only a partial
information about the differences between competitive de-
cisions. Therefore, we claim that it is necessary to perform
an additional analysis that provides the decision maker with
an additional information about the considered decisions.
Such an analysis is especially interesting when the conse-
quences of different decisions are similar, and when other
decision maker’s preferences, not reflected in the optimisa-
tion model, exist. To analyse the consequences of different
decisions we propose to use the methodology known from
the theory of possibility, namely the possibility of domi-
nance and necessity of strict dominance indices proposed
by Dubois and Prade [3].
For two fuzzy numbers eA and eB the possibility of domi-
nance (PD) index is calculated from the formula

PD= Poss(eA� eB) = sup
x;y:x�y

min
�

µ
eA
(x); µ

eB
(y)
	
: (13)

The PD index gives the measure of possibility that the
fuzzy number eA is not smaller than the fuzzy number eB.
Positive value of this index tells the decision maker that
there exists even slightly evidence that the relation eA� eB
is true.
The degree of conviction that the relation eA> eB is true is
reflected by the necessity of strict dominance (NSD) index
defined as

NSD= Ness(eA> eB) =
= 1� sup

x;y:x�y
min

�
µ
eA
(x); µ

eB
(y)
	
=1�Poss(eB� eA): (14)
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The NSD index gives the measure of necessity that the
fuzzy number eA greater than the fuzzy number eB. Positive
value of this index tells the decision maker that there exists
rather strong evidence that the relation eA> eB is true.
According to Cutell and Montero [2] we may use the PD
and NSD indices to evaluate mutual relationship between
two considered decisions. Let us describe the evaluation
procedure for two decisions a1 and a2 with associated
fuzzy risks eρ(a1) and eρ(a2), respectively. The value of
NSD= Nec

�eρ(a1)> eρ(a2)
�

indicates that extend decision
a1 is inferior in comparison to decision a2. On the other
hand, 1�PD= 1�Poss

�eρ(a1) � eρ(a2)
�

indicates that ex-
tend decision a1 might be considered superior in compar-
ison to decision a2. If instead of fuzzy risks we com-
pare fuzzy expected utilities the conclusions are reversed,
i.e. the value of NSD�Nec

�eu (a1) > eu (a2)
�

indicates
that extend decision a1 is superior in comparison to deci-
sion a2, etc. The value of PD�NSDmay be viewed upon
as the measure of indifference between the consequences
of the considered decisions.
If the decision maker has the ordered sequence of his
possible decisions he should always consider a possibil-
ity of performing pairwise comparisons between the best
two (or more) competitive solutions. High values of the
indifference indices reveal that the consequences of con-
sidered decisions are rather insignificant due to the lack
of precision of the optimisation model. In such a case
the decision maker may use some additional criteria for
choosing an appropriate decision. This is also the signal
that it is advisable to make the optimisation model more
precise.

4. Decisions with two possible
outcomes – a numerical example

Let us consider the simplest situation when each action
from a set of alternatives fa1; : : : ;aMg leads to two possi-
ble outcomes w(m); m=1; : : : ;M and v(m); m=1; : : : ;M, re-
spectively. The outcome w(m) appears with probability p(m),
m= 1; : : : ;M, and the outcome v(m) appears with probabil-
ity 1�p(m). Suppose that the expected outcome is equiva-
lent to the expected utility. Thus the expected utility asso-
ciated with the action am is given by

u(m) = p(m)w(m) +
�
1� p(m)

�
v(m); m= 1; : : : ;M : (15)

In this way, the optimal action is a such one which max-
imises Eq. (15) when the outcomes are given in terms of
profits or minimises Eq. (15) when outcomes are expressed
in terms of losses.
Let us assume that all information about the outcomes
and respective probabilities are imprecise and are given
by fuzzy numbers described by a trapezoidal membership
functions. In general, any trapezoidal membership func-

tion of a fuzzy number eX = eX(xl ;x0;l ;x0;r ;xr) is described
by the following formula:

µ
eX
(x) =

8>>>>>>>>><
>>>>>>>>>:

0 x� xl
x�xl

x0;l �xl
xl < x� x0;l

1 x0;l < x� x0;r
xr �x

xr �x0;r
x0;r < x� xr

0 x> xr

: (16)

The α-cuts of the fuzzy number described by the mem-
bership function given by formula (16) have the following
form:

�
xl +α(x0;l �xl ); xr �α(xr �x0;r)

�
.

Denote by ew(m); m= 1; : : : ;M, and ev(m); m= 1; : : : ;M the
fuzzy counterparts of the crisp outcomes w(m) and v(m), re-
spectively. Moreover, let ep(m); m= 1; : : : ;M be the fuzzy
counterpart of the crisp probability p(m). Assume now,
that for each α-cut we have w(m)

0;l
> v(m)

0;r
. It means that

despite their imprecision both possible outcomes are sepa-
rated. When this assumption does not hold we have either
to assume that the outcomes are interactive in a special
way or to assume that they are indistinguishable to some
extent. In both cases, this leads to severe complication of
the optimisation procedure.
Now, we can define a fuzzy expected utility as follows

eu(m) = ep(m) ew(m) +(1� ep(m))ev(m); m= 1; : : : ;M : (17)

Using the extension principle of Zadeh we can find the
membership function of the fuzzy expected utility eu(m),
m= 1; : : : ;M. In further calculations in order to simplify
the notation we omit the upper index (m) that indicates
the undertaken action. Denote by

�
ul (α);ur(α)

�
the α-cut

of eu. By simple calculations we can show that

ul (α) = pl wl +(1� pl)vl +α
�
(p0;l � pl)wl +

+pl (w0;l�wl )�(p0;l�pl )vl +(1�pl)(v0;l�vl )
�
+

+α2
�
(p0;l�pl )(w0;l�wl )�(p0;l�pl )(v0;l�vl )

�
(18)

and

ur(α) = prwr +(1� pr)vr +α
�
(pr � p0;r)vr +

�(1� pr)(vr �vr;0)�pr(wr �w0;r)+(pr � p0;r)wr
�
+

+α2
�
(pr�p0;r)(wr�w0;r)�(pr�p0;r)(vr�v0;r)

�
: (19)

The λ -average value of eu calculated from formula (12) is
now given by

Vλ (eu) = λ
h1

2
(vr+v0;r)+

1
3

�
pr(wr�vr)+

+p0;r(w0;r�v0;r)
�
+

1
6

�
pr(w0;r�v0;r)+p0;r(wr�vr)

�i
+

+(1�λ )
h1

2
(vl+v0;l )+

1
3

�
pl (wl�vl )+p0;l (w0;l�v0;l )

�
+

+
1
6

�
pl (w0;l�v0;l)+ p0;l(wl�vl )

�i
: (20)
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Having λ -average values of the fuzzy expected utilities for
all considered actions we can find the optimal one that has
the maximal value of Vλ�eu(m)

�
.

Let us assume that all considered actions are numbered
in such a way that Vλ �eu(1)

�
� Vλ �eu(2)

�
� : : :Vλ �eu(M)

�
.

The next step of the possibilistic analysis consists in the
comparison of fuzzy expected utilities eu(1) and eu(2). The
analysis of Eq. (14) shows that NSD

�eu(1) > eu(2)
�
> 0

if the relation holds u(2)
r (1) < u(1)

l
(1). In such a case

NSD
�eu(1) > eu(2)

�
= 1�α�, where α� is the solution of

the equation

u(2)
r (α) = u(1)

l
(α) : (21)

Let

x1 = pl wl +(1� pl)vl ; (22)

x2 = (p0;l � pl )wl + pl(w0;l �wl )+

�(p0;l � pl)vl +(1� pl)(v0;l �vl) ; (23)

x3 = (p0;l � pl)(w0;l �wl)� (p0;l � pl)(v0;l �vl) ; (24)

y1 = prwr +(1� pr)vr ; (25)

y2 = (pr � p0;r)vr � (1� pr)(vr �vr;0)+

�pr(wr �w0;r)+(pr � p0;r)wr ; (26)

y3 = (pr � p0;r)(wr �w0;r)� (pr � p0;r) ; (27)

A1 = x1�y1 ; (28)

A2 = x2�y2 ; (29)

A3 = x3�y3 : (30)

Hence, the solution of Eq. (21) is given by

α� =

8><
>:

�A2+
q

A2
2�4A1A3

2A3
if A3 6= 0

�A1=A2 if a3 = 0

: (31)

To illustrate these theoretical results let us consider a nu-
merical example. Suppose, that there are four possible

actions described by the following sets of their fuzzy pa-
rameters:

– action a1:
ep(1) = ep(1)(0:2;0:25;0:3;0:35),ew(1) = ew(1)(80;90;100;110),ev(1) = ev(1)(20;25;30;35);

– action a2:
ep(2) = ep(2)(0:2;0:25;0:25;0:25),ew(2) = ew(2)(60;70;80;90),ev(2) = ev(2)(15;20;20;25);

– action a3:
ep(3) = ep(3)(0:2;0:25;0:25;0:3),ew(3) = ew(3)(60;70;80;90),ev(3) = ev(3)(�10;20;20;25);

– action a4:
ep(4) = ep(4)(0:2;0:2;0:2;0:4),ew(4) = ew(4)(30;60;60;70),
ev(4) = ev(4)(�10;0;10;20).

The expected utilities associated with each action are given
as fuzzy numbers whose λ -averages calculated according
to Eq. (20) are the following (for λ = 0:5, i.e. for a neutral
decision maker):

Vλ�eu(1)
�
= 46:33; Vλ�eu(2)�= 33:17;

Vλ�eu(3)
�
= 29:06; Vλ�eu(4)�= 17:5:

Thus, action a1 is visibly better than the others. However,
if we compare the fuzzy utility of a1 with the fuzzy utility
of the second best action a2 we arrive at the following re-
sults. For a1 from Eqs. (21)–(24) we get: x1 = 32, x2 = 9,
x3 = 0:25, and for a2 from Eqs. (25)–(27) we get: y1 =
= 41:25, y2 =�6:25, y3 = 0. Hence, from Eqs. (28)–(30)
we get: A1 = �9:25, A2 = 15:25, A3 = 0:25. Thus, from
Eq. (31) we obtain α� = 0:6, and the necessity of strict
dominance index is the following NSD

�eu(1) > eu(2)
�
= 0:4.

It means that there exists only limited necessity that a1 is
better than a2, and – to some extent – their results are indis-
tinguishable. This is especially true, when the parameters
of the decision model come from different sources.

5. Conclusions

In the paper we present a generalisation of a classical Bayes
decision model. In this generalised model we assume that
all input parameters describing prior probabilities, costs,
and statistical data may be expressed in an imprecise way.
If we apply a fuzzy description of those vague data we ar-
rive at fuzzy risks or fuzzy expected utilities associated with
each possible action (decision). Unfortunately, a method for
an unique ordering of fuzzy numbers does not exist. There-
fore, we propose to use the defuzzification method of Cam-
pos and Gonzalez [1] in order to find two possibly best ac-
tions. Imprecise consequences of these decisions we com-
pare using possibility and necessity indices. This approach
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gives us a better insight in the process of decision mak-
ing. We illustrate the proposed procedure with a numerical
example when each action (decision) may result with two
possible outcomes.
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