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Abstract — Future IP QoS (quality of service) networks are

aiming at differentiating transfer quality of packets belong-

ing to different flows. For this purpose, a set of network ser-

vices (NS) with different QoS objectives is defined and imple-

mented in the network. To a NS a certain amount of network

resources, i.e. dedicated link capacity with associated buffer

size, is allocated. Moreover, the resources dedicated for one

NS are not available for other NSs. Traditional approach for

admission control algorithm corresponding to given NS takes

into account current traffic conditions inside considered NS.

This can lead to the situation, due to traffic fluctuations,

that temporary overloaded NS cannot use the spare band-

width from underloaded in this time other NSs. This paper

describes a conditional admission control algorithm (C-AC),

allowing us to admit new packet flow conditionally in the case

where no available capacity inside a given NS. For condi-

tionally accepted flow currently unused capacity, dedicated

to other NS, is allocated. This can be done only in the case

when QoS requirements for both the conditionally accepted

flow and the flows in progress are satisfied. The conditions

for effective using of C-AC algorithm are discussed in the pa-

per, like characteristics of NS borrowing and lending capac-

ity and their current traffic load. To show potential benefits

of the approach, exemplary numerical results are included,

corresponding to hypothetical NSs using REM (rate envelope

multiplexing) scheme.

Keywords — QoS IP network, conditional admission control.

1. Introduction

For the development of the future IP-based network, called

IP QoS, two network architectures are discussed by the

IETF: IntServ [4] and DiffServ [2, 3]. Despite that these ar-

chitectures differ in many points, each of them offers a pos-

sibility for defining a set of network services with different

QoS objectives. The NSs can be similar to these supported

by ATM, like CBR (constant bit rate) and VBR (variable

bit rate), or can be arranged for transferring packet stream

associated with specific application (like WWW – world

wide web). Implementation of a NS is possible thanks to

QoS mechanisms available in IP routers. These mecha-

nisms correspond to classification, policing, scheduling and

buffer management. The excellent example of a new NS for

IP network is the premium service for transmitting voice

traffic [6].

Each NS is designed to offer specific QoS objectives, usu-

ally expressed in terms of maximum allowed packet trans-

fer delay, packet transfer delay variation, packet loss ratio,

etc. A certain amount of network resources, i.e. dedicated

link capacity with associated buffer size, is assigned for

each NS. Access to this capacity can be assured e.g. by

setting appropriate weight value in the WFQ (weighted fair

queuing) packet scheduler in the output port of the router.

The maximum volume of traffic allowed inside a given NS

is controlled by appropriate admission algorithm. In the

case when there is not enough capacity available inside

a given NS, new flow request is simply blocked. Let us re-

mark that strict partitioning of network resources between

NSs limits multiplexing gain only to the capacity dedicated

for a single NS.

This paper describes a conditional admission control algo-

rithm (C-AC), allowing us to admit new packet flow con-

ditionally in the case where no available capacity inside

a given NS. For conditionally accepted flow currently un-

used capacity, dedicated to other NS, is allocated. This

can be done only in the case when QoS requirements

for both the conditionally accepted flow and the flows in

progress are satisfied. The conditions for effective using of

C-AC algorithm are discussed in the paper, like character-

istics of NS borrowing and lending capacity and current

traffic load. To show potential benefits of the approach, ex-

emplary numerical results are included, corresponding to

hypothetical NSs using REM multiplexing scheme.

The paper is organized as follows. Section 2 discusses

the implementation of differentiated NSs in IP networks.

Section 3 describes the proposed C-AC algorithm and dis-

cusses its application and implementation aspects. Numer-

ical examples are included in Section 4. Finally, Section 5

summarizes the paper.

2. Supporting differentiated NSs

in IP networks

Conditional admission control algorithm can be engaged in

the case when capacity of transmission link is strictly par-

titioned among a number of NSs. Each NS supports differ-

ent QoS requirements corresponding to the packet transfer

characteristics. The studied system with
�

NS is depicted
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in Fig. 1a. Dedicated capacity in the link is assigned for

each NS, adequate to the fixed value of the weight in the

WFQ scheduler. Exemplary link partitioning is shown in

Fig. 1b, where the
�
th NS has dedicated capacity equal

to ���������	� ( ��� – value of the weight for the
�
th NS,� ��

��������� �

, � -link capacity). The maximum allowed

carried traffic inside the
�
th NS is limited by the ��� value

(and the length of the associated buffer) and is controlled by

appropriate admission algorithm. The type of applied ad-

mission rules directly depends on the type of multiplexing

scheme assumed for the considered NS.

Fig. 1. Exemplary structure of the output port in the IP router

supporting � different NSs: (a) studies system; (b) exemplary

link partitioning.

We distinguish two types of multiplexing which are REM

and RSM (rate sharing multiplexing). Let us recall that the

REM scheme is dedicated for traffic with rigorous require-

ments with respect to packet delay characteristics. Usually,

for this scheme a small buffer is dedicated for absorbing

packets arriving to the system in the same time. On the

contrary, the RSM multiplexing scheme is for bursty traffic

and it requires relatively large buffer for absorbing traffic

fluctuations in time. The differences between these schemes

are important in the case of the discussed conditional ad-

mission.

The above system is in fact partitioned into N subsystems,

each corresponding to different NS. High overall link uti-

lization is reached only in the case the traffic load submitted

to each NS is heavy at the same time. However, assum-

ing that fluctuations in time of the traffic submitted for

a given NS follow a stochastic process, there is a chance

that a high percentage of new flows is blocked despite of

spare capacity on the link. Better link utilization (lower

flow request blocking) can be achieved by “borrowing” the

resources from the NS that is temporarily under-utilized to

the one that is actually overloaded. This requires chang-

ing the WFQ weights on the link, which has two serious

drawbacks:

�
Updating the values of weights in the WFQ sched-

uler in a dynamic way can cause uncontrolled traffic

oscillations [5].

�
Repartitioning of link resources may require adequate

changes on all the subsequent links in the network

(see Fig. 3). In a network based on the DiffServ ar-

chitecture [2], this affects the scalability of AC mech-

anism. In an ideal case AC can be applied locally,

taking into account traffic conditions in a particular

Edge Router [6].

Therefore, changing WFQ weights is an operation, which

can be performed in rather long time scale (e.g. hours).

Repartitioning of resources between the NSs in the whole

network can be done for example as a result of a long-

term analysis of the traffic demands. New weights can be

calculated in an off-line process of network reprovisioning,

based on the observed changes of the traffic matrix.

If the network should be able to react quickly to traffic

fluctuations in a shorter time scale, e.g. minutes, changing

WFQ weights is not a reasonable solution. Therefore, we

propose, so called conditional admission as a mechanism,

which could significantly decrease the probability of call

blocking in the case of short-time fluctuations of traffic

offered to the network.

3. Conditional admission control

The proposed C-AC assumes that in the case of blocking,

new flow can be accepted and submitted to other NS guar-

anteeing requested by this flow packet transfer quality. This

is illustrated in Fig. 2. The conditionally accepted flow is

submitted to the queue associated to other NS. It can take

place only when this NS is under light load and available

capacity is sufficient. It is obvious that the volume of avail-

able capacity limits the number of conditionally accepted

flows. The flow is turned back to its own NS when capac-

ity will be sufficient for its service. Anyway, the service

of the considered flow can be terminated successfully even

if the conditional status of this flow will not be changed.

Of course, the service of the conditionally admitted flows

is not always finished with success. This is due to the fact

that new flows from the NS lending the capacity can arrive

to the system. These flows are admitted with the highest

priority and, as a consequence, can interrupt the service of

the conditionally accepted flows.

Fig. 2. Illustration of the conditional admission. Conditionally

accepted new flow from the NS � borrows the capacity originally

dedicated to the NS � .

Effective application of the proposed C-AC scheme requires

satisfactory solutions for the following questions:
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� What about co-operation level of different NSs? It

means, which NS can lend/borrow capacity to/from

other NSs?

�
When co-operation of the NSs can give expected

profit?

� What about the implementation complexity level?

�
What is the level of risk that the conditionally ac-

cepted flow will be terminated before the proper

time?

3.1. Co-operating NSs

Basic requirement for co-operating NSs is that a flow “be-

longing” to a given NS can efficiently transfer its pack-

ets inside co-operating NS. Let us consider two NSs both

working under REM (or RSM) scheme. Furthermore, let

us assume that the first NS provides stronger QoS guaran-

tees than the second. In order to assure appropriate QoS,

the first NS has potential to lend the capacity to the sec-

ond NS without essential limitations. On the contrary,

the second NS can lend its resources only when it is

currently under very light traffic conditions. In the next

section, an example of co-operation between two NSs,

both using REM multiplexing scheme, is more deeply dis-

cussed.

The rules of the co-operation between two NSs with dif-

ferent multiplexing schemes, i.e. REM and RSM, are not

so clear. We can deduce that one NS can lend a limited

volume of its capacity only when current traffic load con-

ditions are rather low. Anyway, the detailed studies for

specific NSs are required.

3.2. Expected profit

The potential profit that we can reach from the application

of C-AC depends on the degree of the flow level (not the

packet level) traffic fluctuations inside the co-operated NSs.

It is obvious that no profit is possible when these NSs are

overloaded at the same time. Otherwise, one can expect

better traffic service when the traffic submitted to the con-

sidered NSs will alternate in time.

3.3. Risk assessment

The fundamental question is when conditional admission

of a new flow is reasonable? Let us recall that a flow

admitted in such a way can be terminated before the proper

time. Note, that the probability of such event depends on

the flow level traffic conditions and the current system state.

The decision whether a new flow is conditionally accepted

or not, should take into account the above probability. It is

reasonable to admit a new flow conditionally only when this

probability is relatively low, e.g. on the level comparable

to the flow blocking probability.

3.4. Complexity level

Two essential factors influence the complexity of C-AC

schema, which are:

�
Modifications to the packet handling mechanisms in

edge and core routers.

�
Additional complexity of AC and user-network sig-

naling.

A comparison of the proposed scheme with the method

based on changing the WFQ weights is presented in Fig. 3.

Consider a simple network, consisting of 2 links. Both links

are equally partitioned between NS � and NS � . Let us as-

sume, that NS � is temporary overloaded (marked as light

grey area) while NS � is at the same time underloaded.

Then, the call blocking is observed in NS � despite there

are unused resources in NS � .

Fig. 3. Comparison of two methods of adapting network re-

sources to fluctuating traffic load: changing WFQ weights (repro-

visioning) and conditional admission.

As it was stated before, two solutions are possible for in-

creasing the network utilization. One of them is to update

the WFQ weights for NS � to serve the higher load. These

weights must be adequately changed on all the consecutive

links. Otherwise, as it is depicted in the Fig. 3, the NS �

capacity on the first link (dark-grey area) is sufficient for

serving the submitted higher load (light-grey area), while

in the case of unchanged weights on the second link, an

overload for NS � is still observed. If we admit the excess

traffic from NS � conditionally, it must be served within ca-

pacity allocated for NS � on both links. In the framework of

DiffServ architecture, conditional acceptance requires only

marking the packets in the edge router with the code point

corresponding to the PHB (per-hop behaviour) associated

with NS � . Then, packets are served in the same way on all

subsequent routers in a given domain. Therefore, one can

conclude that WFQ weights can be changed as a result of

re-calculation process taking into account all links in the

network. This imposes a significant complexity level and

can be done only in a long time scale. On the contrary,

conditional admission applies modifications to the packet

marking locally at the edge router, not requiring changes in

the core network.
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Anyway, introducing conditional admission increases com-

plexity of the control algorithm and user-network signaling

implementation. This is caused by:
�

Conditionally accepted flow should submit its traffic

to another queue in the WFQ scheduler. If sufficient

capacity will become available to accept this flow in

the original NS, this flow should be switched to the

proper WFQ queue, loosing its status of a condition-

ally accepted flow.
� Conditionally accepted flow may be terminated be-

fore the proper time by the new flows arriving to

the NS, which lends its capacity to conditionally ac-

cepted flows.

4. Numerical example

In this section, the effectiveness of the proposed C-AC al-

gorithm will be illustrated by considering an exemplary

system with two NSs, say NS � and NS � , both working un-

der the REM multiplexing scheme.

Example 1. Co-operation of NSs designed for CBR

traffic

Consider a system with NS � and NS � , both designed for

serving CBR traffic and working under typical AC al-

gorithm (not C-AC). Guaranteed packet loss ratio (PLR)

by NS � is 
 ����� and by NS � is 
 ��� �
. The associated buffer

sizes, say � � and � � , for NS � and NS � are of 10 packets

each. The maximum allowed value of the link utilization

for the NS � , say � � , can be calculated by [1, 5]:

� � �
� � �

� � �	��

��������� ��� � (1)

The value of � � � � � ��� . Similarly, for NS � we calculate

� � � � � � 
 . (Notice that � � and � � do not depend on the

link capacity). The traffic submitted to the NS � (NS � ) and

corresponding to the flow (call) level follows Poissonian

process with parameter � � ( � � ) while the holding times are

negative-exponentially distributed with parameter � � ( � � ).

Additionally, each flow submitted to NS � or NS � requests

for the same amount of bandwidth, fixed to 1. The total

link capacity is 100.

Three scenarios are considered, which differ in link parti-

tioning between NS � and NS � . They are the following:

Scenario 1: NS � ��� � , NS � ��� � .
Scenario 2: NS � �! � , NS � �#" � .
Scenario 3: NS � ��" � , NS � �� � .
Furthermore, we investigate the system assuming that the

offered traffic (at the call/flow level) is such that the re-

sulting call/flow blocking probabilities for both NS � and

NS � are 
 �$� �
. Therefore, the corresponding to the consid-

ered scenarios values of the offered traffic to NS � and NS �

(calculated from Erlang formula), in the case when flow

holding times are 1 ( 
&%'� � � 
'%&� � � 
 ), are:

Scenario 1: � � � � " � � , � � � ��( �)� .
Scenario 2: � � �#"*� � � , � � � 
&� � " .
Scenario 3: � � � 
 � � � , � � �,+*" .

The admission regions for scenario 1 are depicted in Fig. 4.

The curve corresponding to typical AC shows that the max-

imum number of admitted flows from the NS � and NS �

Fig. 4. Scenario 1: admission regions for the C-AC and typical

AC for CBR traffic (CD – conditional admission; non-CD – typical

admission, -/. – level of risk).

Fig. 5. Scenario 1: blocking probability in NS � (a) and NS � (b)

versus the fluctuations of traffic offered to NS � and NS � for CBR

traffic.
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is 34 and 40, respectively (non-CD curve). Note that the

upper bounds with applied the C-AC algorithm are in this

case significantly greater. Now, the admission region is

limited by 68 flows for NS � and 80 flows for NS � (!).

Anyway, this result is too optimistic since this curve does

not take into account any level of risk, expressed by the

probability, say
���

(
����� �

), that a conditionally admitted

flow can be terminated before its proper finish time. The

remaining two curves from Fig. 4 (CD curves) show the

resulting admission regions in the cases when ��� � 
 � � �

and 
 �$��� . One can observe that the curve corresponding

to ��� � 
 �$� �
is very close to the upper bound curve. For

the case of ��� � 
 �$��� , we observe smaller admission re-

gion, but still significantly greater than this obtained by

typical AC. Summarizing, we can conclude that the C-AC

scheme can radically improve the admission region.

Figure 5 illustrates the effectiveness of the C-AC algo-

rithm when the offered traffic to the NS � and NS � devi-

ates from the assumed. Now, the call/flow arrival rates are

� � � � ���	� ��
 � � and � � � � � �	� � 
 � � . The factor

Fig. 6. Scenario 2 (a) and scenario 3 (b): admission regions

for the C-AC and typical AC for CBR traffic (explanations – see

Fig. 4).

� � ( � � ) expresses a bias coefficient of the offered traffic

to NS � (NS � ).

Let us recall that, when � � � �
% and � ��� �

%, the as-

sumed blocking probabilities (with typical AC) for NS � and

NS � are 
 ��� �
. The curves from Fig. 5 show that, thanks

to the C-AC algorithm, the call/flow blocking probabilities

for NS � are still below 
 �$� �
even when � � � 
 � % and

� � � �
%. As it was expected, more profit of using C-AC is

observed when � �
�
�
. For instance, when � � � � ��� %

and � � � " � %, call/flow blocking probability in NS � is

still below 
 ��� �
.

Figure 6 shows the obtained admission regions in scena-

rio 2 and 3. One can observe that for scenario 2 the C-AC

algorithm is more effective for flows submitted to NS �

than NS � . This is caused by the fact that in this case the ca-

pacity allocated for NS � is smaller than for NS � . Therefore,

one can expect that more NS � flows can be conditionally

accepted within NS � than in reverse.

In scenario 3 more capacity is allocated to NS � than NS � .

The obtained upper bound for admission region in the

case of NS � with the C-AC algorithm is now essentially

larger comparing to the system with typical AC. However,

the gained profit is now much less than expected. This is

caused by the fact that NS � provides more rigorous QoS

(at the packet level) than NS � . When NS � flow is con-

ditionally accepted to the capacity assigned for NS � , the

maximum link utilization in NS � must be decreased from

0.81 to 0.68.

Example 2. Co-operation of NSs designed for VBR and

CBR traffic

Co-operating NSs from example 1 were both designed for

CBR traffic, although with different target PLR. In this ex-

ample we consider the case when NS � and NS � serve VBR

and CBR traffic, respectively. Both NSs guarantee PLR

value not greater than 
 � ��� . VBR flows are characterized

by parameters of dual token bucket, e.g. peak bit rate (PBR)

and sustainable bit rate (SBR). For non-conditionally ac-

cepted flows, we use the AC algorithm based on calculation

of, so called, effective bandwidth, following Lindeberger

formula [1, 5]. Therefore, new flow can be admitted only if

the sum of effective bandwidths of all multiplexed flows is

not greater than the capacity assigned for NS � . In the NS �

case, AC is performed as in the example 1. Maximum link

utilization factor for NS � is � � � � ��� . For conditionally ac-

cepted flows, the rules for AC differ for both NS � and NS �

class. In the case when a flow originally submitted to NS �

is rejected and as a consequence is re-submitted to NS � , the

admission control takes into account only PBR values of

the flow in question as well as the flows being in progress

and served by NS � . The same rule is kept when flows are

conditionally accepted in NS � . The above algorithm seems

to be a bit restrictive, since at least theoretically more flows

could be admitted conditionally when effective bandwidth

for VBR flows instead of PBR was taken into account.

In the considered example, CBR flows submitted to NS �

request for 1 unit of link capacity, while VBR flows sub-

37



Marek Dąbrowski, Wojciech Burakowski, and Andrzej Bęben

mitted to NS � request for a certain amount of effective

bandwidth (EB), calculated assuming PBR � �
, SBR � 
 .

The total link capacity is 100. Three network scenarios

Fig. 7. Scenario 1: admission regions for the C-AC and typical

AC for VBR and CBR traffic (explanations – see Fig. 4).

Fig. 8. Scenario 1: blocking probability in NS � (a) and NS � (b)

versus the fluctuations of traffic offered to NS � and NS � for VBR

and CBR traffic.

are again considered, with the link partitioning as in exam-

ple 1. Therefore, a single VBR flow requires 1.6, 1.45 and

1.9 units of EB, in scenario 1, 2 and 3, respectively.

Furthermore, we investigate the system assuming that the

offered traffic (at the call/flow level) is such that the re-

sulting call/flow blocking probabilities for both NS � and

NS � are 
 �$� �
. Therefore, the corresponding to the consid-

ered scenarios values of the offered traffic to NS � and NS �

(calculated from Erlang formula), in the case when flow

holding times are 1 ( 
&%'� � � 
'%&� � � 
 ), are:

Scenario 1: � � � � �
, � � � � " � � .

Scenario 2: � � � " 

� � , � � � 
 � .
Scenario 3: � � � � �  , � � ��" � �) .
The admission regions for scenario 1 are depicted in Fig. 7.

The curve corresponding to typical AC shows that the max-

imum number of admitted flows from the NS � and NS �

Fig. 9. Scenario 2 (a) and scenario 3 (b): admission regions

for the C-AC and typical AC for VBR and CBR traffic (explana-

tions – see Fig. 4).
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is 31 and 34, respectively (non-CD curve). Note that, as

in example 1, the upper bounds with applied the C-AC al-

gorithm are in this case significantly greater. Now, the ad-

mission region is limited by 48 flows for NS � and 66 flows

for NS � . One can observe that, comparing to the scenario 1,

the possibility of shifting resources between NSs is now

limited. This is caused by the fact, that when CBR and

VBR flows are mixed, the admission rules take into ac-

count only values of PBR of submitted flows, which does

not allow for a multiplexing gain within VBR service. As

a consequence, CBR flows can be conditionally admitted

to the NS � only when it is under very low traffic con-

ditions.

Figure 8 illustrates the effectiveness of the C-AC algorithm

when the offered traffic to the NS � and NS � deviates from

the assumed. The presented curves show that, thanks to

the C-AC algorithm, the call/flow blocking probabilities

for NS � are still below 
 �$� �
even when � � � � � % and

� � � � � %. As it was expected, much less profit of using

C-AC is observed in the case of NS � . Now, � � can be

increased only when � � � � " � % and below.

Admission regions obtained in the case of scenario 2 and

scenario 3 are depicted in Fig. 9. One can observe, that

the risk related with conditional admission of CBR flows

within the capacity allocated for NS � is quite high in sce-

nario 2. This is caused by the fact that in this case the con-

ditional admission is allowed only when the current traffic

load carried by NS � is very low.

5. Conclusions

The concept of conditional admission of new calls/flows

was presented and discussed in the paper. The proposed

approach assumes that new flows, which would normally be

blocked, are conditionally accepted. This is possible by us-

ing spare at this moment capacity dedicated for other NSs.

The preliminary numerical results confirm that the pro-

posed approach is reasonable, leading to admitting larger

number of flows and higher overall resource utilization,

with a low probability that conditionally accepted flows will

be terminated before the proper finish time. The admission

regions for particular NSs can be, in some cases, radically

extended. The proposed conditional admission can be es-

pecially attractive for the QoS IP networks where network

resources are strictly partitioned between supported NSs.
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