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Abstract — In this paper, we present a new approach for
capacitance matrix calculation of lossy multilayer VLSI in-
terconnects based on quasi-static analysis and Fourier pro-
jection technique. The formulation is independent from the
position of the interconnect conductors and number of lay-
ers in the structure, and is especially adequate to model 2D
and 3D layered structures with planar boundaries. Thanks
to the quasi-static algorithms considered for the capacitance
analysis and the expansions in terms of convergent Fourier
series the tool is reliable and very efficient; results can be ob-
tained with relatively little programming effort. The validity
of the technique is verified by comparing its results with on-
surface MEI method, moment method for total charges in the
structure, and CAD-oriented equivalent-circuit methodology,
respectively.

Keywords — lossy IC interconnect, Fourier projection method,
line capacitance.

1. Introduction

Calculation of the capacitance matrix in multilayer IC in-
terconnects is a well-known problem that can be solved
by many analytical and numerical techniques [1–9]. Often
these procedures were based on the integral equation for-
mulation, differential equation formulation, or have been
the results of extensive numerical simulations using ade-
quate empirical corrections.
This letter proposes a new and more general formulation
for computation of capacitance matrix of the most common
2D interconnect structures using quasi-static analysis and
Fourier projection approach.

2. Background of the method

In the formulation, 2D L-layered interconnect structures
with planar boundaries are considered. Each layer is linear,
homogeneous, and isotropic, and has permittivity ε(l) and
conductivity σ (l), where l = 1; : : : ; L. For lossy medium
the complex permittivity is ε (l) = ε(l)� jσ=ω . The point
charge source is located along y = 0; x = xs and z= zs,
respectively (see Fig. 1).

Fig. 1. Geometry of a layered structure for multilayer Green’s
function determination.

Inside each layer l and excluding the source point layer, the
potential function ϕ(l) satisfies

∇2ϕ(l) = 0 (1)

and the induction vector DDD(l) is obtained from

DDD(l) =�ε(l)∇ϕ(l) : (2)

Here, the problem is solved by developing each potential
ϕ(l) as a Fourier series. In the source layer, the general
solution to Eq. (1) can be written as

ϕ(s)(xf ; yf ; zf ) = ϕP(xf ; yf ; zf )+ϕH(xf ; yf ; zf ) ; (3)

where ϕP is the source term given by

ϕP(xf ; yf ; zf ) =
Q

4πε(s)
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and
ϕH(xf ; yf ; zf ) = ∑

n;m�0

�
C(s)

nmexp(Knmzf )+

+D(s)
nmexp(�Knmzf )

�
cos(knxf )cos(kmyf ) ; (5)

where kn=nπ=a, km=mπ=b, Knm=(k2
n+k2

m)
1
2 , (xf ; yf ; zf )

are field point coordinates, and a and b are dimensions of
the structures in x and y direction.
Considering Eq. (2), DDD(s) is given by

DDD(s)(xf ; yf ; zf ) =DDDP(xf ; yf ; zf )+DDDH(xf ; yf ; zf ) (6)

with

DDDP(xf ; yf ; zf ) =
Q
4π
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In the other layers, the solutions are

ϕ(l)(xf ; yf ; zf ) = ∑
n;m�0
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The potential function distribution ϕ(l) and the normal
component of electric induction vector DDD(l) are expressed
by series expansions in terms of solutions of the Laplace
Eq. (1). One such expansion is written down for each ho-
mogeneous region of the layered structure in Fig. 1. The ex-
pansion coefficients C(l)

nm and D(l)
nm of the different series are

related to each other and to the charge density distribution
on the interconnect conductors via boundary conditions.
Then, coefficients C(l)

nm and D(l)
nm are determined recursively.

In this way we have found the multilayer Green’s function
G(rrr f ; rrrs) of the problem. By deriving the Green’s function
over a multilayer dielectric region and allowing evaluation
of potential distribution in any layer, we can place intercon-
nect conductors anywhere in the multilayer structure, and
therefore solve for the capacitance per unit length matrix
for an arbitrary number of conductors.

3. Capacitance matrix calculation

In the following the complex capacitance calculation pro-
cedure will be treated in more detail. In an equivalent
circuit, the value of a capacitance is the ratio of the free
charge associated with a voltage difference between two in-
terconnect conductors or between a interconnect conductor
and the reference (e.g. the ground plane or the point at
infinity), and that voltage difference. The values of these
capacitances are known as network capacitances.
According to the equivalent source principle for the elec-
tromagnetic field, we can replace the rectangular conduc-
tor (c) (see Fig. 2a) with a piece of surface charge den-
sity distribution σc(rrrs) around the surface Sc, as shown in
Fig. 2b. Using a Green’s function of the medium G(rrrp; rrrs)
that incorporates all boundary conditions in the structure in
Fig. 2b (see Sec. 2), the voltage at any point rrrp is generated
by the charge density σc(rrrs) on all conductors (c=1; : : : ; N)

V(rrrp) =
N

∑
c=1

I
(c)

σc(rrrs)G(rrrp; rrrs)dSc : (11)

Element Cc j of the capacitance matrix [C] may be calcu-
lated as the charge Qc per unit length on conductor (c)
when the voltage on conductor ( j) is 1 and 0 V on all
other conductors. The charge per unit length on conductor
(c) is the integral of the surface charge density σc(rrrs) over
the circumference of conductor (c): Qc =

H
(c)σc(rrrs)dSc.

The charge distribution on every conductor (c) may be
approximated by a number Nb of well-chosen basis func-
tions σc;r=1; :::;Nb

(rrrs) along the contour of the conductor:

σc(rrrs =
Nb

∑
r=1

Wc; r σc; r(rrrs). The problem has been reduced

to the computation of the discrete charge constants
fWc=1:::N; r=1:::Nb

g. As the result we obtain a series of si-
multaneous equations and represent them as follows:

N

∑
c=1

Nb

∑
r=1

Wc; r pj jc;rjt =Vj=1:::N ; (12)
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Fig. 2. Geometry of a layered structure with (a) embedded con-
ductors, and (b) charge density distribution on the discretized sur-
face of the conductors.

where Vj=1:::N is the voltage on any conductor ( j), with

pj jc;rjt =

H
( j)

H
(c)σ j ;t(rrr j)G(rrr j ; rrrc)σc; r(rrrc)dSc dSjH

( j)σ j ;t(rrr j)dSj
(13)

as potential coefficients of the Galerkin matrix. Solving
the matrix Eq. (12) on a computer, we can determine the
constants fWc; rg and then the capacitance per unit length
Cc j can be obtained in the form:

Cc j =Qc(Vj =1; Vc6= j =0)=
Nb

∑
r=1

Wc; r

I
(c)

σc; r(rrrc)dSc: (14)

The lossy semiconducting substrate is taken into account
by the complex permittivity

εcs= εs� j
σ
ω

; (15)

where εs is the permittivity and σ conductivity of the semi-
conducting substrate (silicon).
Due to the quasi-TEM character of the electromagnetic
fields in the examined structure the frequency dependent

distributed admittance per unit length Y can be calculated
as

Y = G+ jωC= jω
Q

∆V
; (16)

where Q is the total charge per unit length, ∆V denote the
voltage difference between the conductors, G is the con-
ductance per unit length (losses) and C is the capacitance
per unit length.

4. Discussion of the results

In this section we apply the new procedure to calculate
some examples. In these examples we use multilayer IC in-
terconnects whose strip conductors are infinitely thin (zero-
thickness) or of rectangular cross-section and very thick (as
usually in on-chip interconnets).

Example 1. Let us consider the system of four strip
conductors embedded in a two-layered dielectric region
with structure as shown in Fig. 3, where the conductors
are numbered from left to right and upper to lower as
1, 2, 3 and 4, respectively. Numerical values for the ca-

Fig. 3. Geometry of the structure from example with four strips
(W/H1 = S/H1 = H2/H1 = 1/3, H3/H1 = 2/3, εr1= 5 and εr2= 1).

Table 1
Capacitance matrix of the structure of Fig. 3

Capacitance
[pF/m]

MoM [5, 7] MEI [1] This letter

C11 70.158 69.514 70.158

C12 –12.842 –12.832 –12.839

C13 –12.960 –13.110 –12.967

C14 –22.240 –23.014 –22.230

C22 87.327 87.028 87.227

C23 –54.195 –55.462 –54.234

C24 –4.052 –3.988 –4.049

C33 133.935 128.86 128.50

C34 –14.16 –14.93 –14.21

C44 135.70 141.31 135.94
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pacitance matrix elements, generated by the proposed ap-
proach (the moment method has been used) and by the on-
surface MEI procedure [1] and the moment method with
total charge in structure [5, 8], respectively, are given in
Table 1. Note that the discrepancies between the values
generated by our approach and one by [5, 8] are practically
smaller than 0.2% over a wide range of physical dimensions
and material parameters (all treated cases are not reported
in this letter).

Example 2. In order to prove the validity of the given
approach self and mutual shunt admittance per unit length
(capacitance and conductance per unit length) calculated
using our procedure are compared with the results of the
full-wave analysis (spectral domain approach) in conjunc-
tion with equivalent circuit modeling technique [9]. In
Fig. 4, an asymmetric coupled interconnect structure is de-
picted with the following electrical and geometrical param-
eters:

tSi = 500 µm; tox = 2 µm; w1 = 4 µm; w2 = 1 µm;

T1 = T2 = 1 µm; εsi = 11:8;

ρSi = 0:01 Ωcm; εox = 3:9 and s= 4 µm:

Fig. 4. Asymmetric coupled interconnects on lossy silicon sub-
strate.

Figure 5a shows the variation in the distributed self and
mutual capacitance per unit length C11(ω), C22(ω), and
C12(ω), as a function of frequency. Similarly, Fig. 5b shows
the variation of the distributed self and mutual conductance
per unit length G11(ω), G12(ω), and G22(ω) as a func-
tion of frequency. The solid lines are computed using the
new multilayer Green’s function procedure and the dashed
lines are the results from the equivalent-circuit model ap-
proach [9]. It is observed that the values of the self and
mutual capacitance and conductance per unit length, re-
spectively, are in good agreement with those of [9]. As
expected, the lossy silicon semiconducting substrate has
significant impact on the frequency-dependence of the ca-
pacitance and conductance per unit length as compared to
the lossless or low loss dielectric substrate.

Fig. 5. (a) Self and mutual capacitance per unit length of asym-
metric coupled interconnects on lossy silicon substrate; (b) self
and mutual conductance per unit length of asymmetric coupled
interconnects on lossy silicon substrate.

5. Conclusion

In this paper, we have discussed a technique for capacitance
matrix extraction over a multilayer Si substrate. We derived
the appropriate Green’s function using quasi-static analysis
and Fourier projection method. The potential function and
electric induction vector components are defined as series
expansions in terms of the Laplace equation which are pe-
riodic in the direction parallel to the plane of interconnect
conductors. The proposed semi-analytical procedure allows
us: first, to assess in an analytical and simple way the inte-
gral equations of the problem, and second, to obtain a fast
convergence of the numerical results due to the averaging
technique used in the Galerkin approach which leads to
better accuracy in the numerical calculations. This method
results in a very simple formulation of the problem that
is well suited for computer solutions with relatively little
programming effort.
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