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Abstract — The gain enhancement in a layered periodic pho-
tonic band gap structure containing active medium based on
GaAs n-i-p-i superlattices separated by AlGaAs layers is ana-
lyzed. The dependences of extinction coefficient and refractive
index on excitation level and wavelength are presented. Trans-
mission characteristics of a probe light versus excitation level
are calculated. It is shown that the threshold of generation can
be essentially reduced if the wavelength of probe light falls to
the band gap edge.
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1. Introduction

The interest in multilayer periodic structures forming a pho-
tonic band gap (PBG) is increasing because of their attrac-
tive application for controllable optical switches and other
various nonlinear optical devices [1, 2]. All nonlinear phe-
nomena are enhanced at the PBG edge due to strong de-
lay of the energy velocity and electric field concentration
within certain areas of PBG structures. Besides, the optical
gain can be enhanced at the band edge in one-dimensional
(1D) PBG structures due to the same reasons [3].

Fig. 1. 1D PBG structure with the GaAs n-i-p-i crystal layers.

In the present work, the possibilities to use of n-i-p-i su-
perlattices as optically controllable active layers in PBG
structures are investigated. We consider such a photonic
structure in the GaAs-AlGaAs system where the absorption
layers with optical controllable parameters are the GaAs
n-i-p-i crystal layers (see Fig. 1). In certain spectral range
the absorption in n-i-p-i layers disappears and the light am-
plification occurs. The gain coefficient in n-i-p-i layers de-
pends on the wavelength and the difference in the quasi-

Fermi levels ∆F . The model, where a pump, which can be
electrical or optical, excites uniformly all active layers, is
considered. Light transmission characteristics versus ∆F ,
which is assumed to be the same all over the active layers,
are calculated. As shown, the described photonic structures
with the n-i-p-i layers are attractive to make narrow-band
tunable radiation sources.

2. Dispersion characteristics
of n-i-p-i layers

We consider the optical properties of the GaAs-AlGaAs
photonic structures where the absorption layers are the
GaAs n-i-p-i crystal layers (Fig. 1). In particular, the active
n-i-p-i layers can be in the form of δ -doped semiconductor
superlattices. In this case, the donor and acceptor concen-
trations are assumed to be Na = Nd = 1020 cm�3, width of
doped n- and p-type regions dn = dp = 1 nm, thickness of
i-layers di = 8 nm. Under optical excitation, the concentra-
tion of charge carriers in the n-i-p-i layers increases. There-
with, the difference in the quasi-Fermi levels ∆F grows and
conditions of radiation absorption and refraction change
as well.
Dispersion characteristics of the n-i-p-i layers are shown in
Fig. 2. Dependencies of the extinction coefficient κ and
change in the refractive index ∆n at different wavelengths
λ on the excitation level ∆F have been calculated accord-
ing to the Kramers-Krönig relation taking into account the
transformation of the potential relief of the doping super-
lattice under optical or electric excitation. Effects of the
density state tails, screening of the impurity electrostatic
potential, and shrinkage of the energy band gap are in-
cluded too [4, 5]. The quantizied change in the refractive
index ∆n is related to the filling of the subband levels by
current carriers at the excitation of the layers. At definite
values of ∆F , the extinction coefficient κ becomes nega-
tive, i.e., light amplification occurs in the certain interval of
wavelengths. Here, the normalized parameter κ0(λ ) is the
initial extinction coefficient at the thermodynamic equilib-
rium (∆F = 0). The index of refraction of the n-i-p-i layers
is estimated as a sum of the quantity ∆n and the value of
the refractive index for the GaAs host material.
To find connection between ∆F and the exciting radiation
power P in the layers under uniform optical excitation of
the structure, the following approach is used. It is assumed
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Fig. 2. Dependencies (a) of the extinction coefficient κ and
(b) quantizied refractive index ∆n at different wavelengths λ on
the excitation level ∆F. 1 – κ0 = 9:50� 10�6, λ = 1500 nm,
2 – κ0 = 3:70� 10�5, λ = 1375 nm, 3 – κ0 = 1:68� 10�4, λ =
=1250nm, 4 – κ0=8:71�10�4, λ=1125nm, 5 – κ0= 4:60�10�3,
λ = 1000nm.

that the quantum yield at the excitation of the controllable
layers in the 1D PBG structure equals 1, i.e., every absorbed
quantum produces one electron-hole pair. Concentrations
of non-equilibrium carriers are found from the stationary
continuity equation that determines the simple relation be-
tween the excitation level ∆F and the generation rate at
the absorption of excitation quantum. The rate of the car-
rier generation per unit volume in a definite n-i-p-i layer is
equal to kP=hνexc, where k is the absorption coefficient and
hνexc is the energy of excitation quantum. The spectrum
of absorption k(λ ) is connected with the spectrum of the
extinction coefficient as k= 4πκ=λ .
The increase of the two-dimensional concentration of elec-
trons n versus the difference in the quasi-Fermi levels ∆F is

Fig. 3. Dependencies (a) of the electron concentration n and
(b) rate of excitation kP=hνexc on the quasi-Fermi level difference
∆F in the n-i-p-i layers of the photonic structure.

shown in Fig. 3a. Using the dependence n(∆F), from
the relation between kP=hνexc and ∆F , which is given in
Fig. 3b, one can evaluate the effective life-time of carri-
ers at the radiative recombination. For the n-i-p-i struc-
ture examined, values of the effective life-time of carriers
cover a wide range from 1 ms at a low-intensity excitation
to10 ns at the high excitation levels.

3. Gain in the PBG structure

The spectral range where the absorption coefficient in
n-i-p-i layers is negative at the high excitation levels can
be seen in Fig. 2a. The 40-period structure, whose param-
eters are taken in such a way as the PBG edge falls within
the region of maximal gain, was considered. Thicknesses
of GaAs and Al0:3Ga0:7As layers are d1 = 64:5 nm and
d2 = 72:9 nm, respectively.
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The transmission characteristics in a suitable spectral range
are presented in Fig. 4, where T is the amplitude transmis-
sion coefficient. The maxima of transmission peaks corre-
spond to the band edges, both of them are within the region
of negative absorption coefficients. Thus, the PBG struc-
ture with the active n-i-p-i layers allows considerably to

Fig. 4. Transmission coefficient jTj2 versus the wavelength λ for
the 40-period structure (curve 1, left Y-axis) and for the 1-period
structure (curve 2, right Y-axis), having the same optical thickness,
at ∆F = 1:348 eV.

Fig. 5. Surfaces of the transmission coefficient jTj2 versus the
wavelength λ in microns and difference in the quasi-Fermi levels
∆F for (a) the 40-period and (b) 1-period structures of the same
optical thickness.

enhance the light amplification and to reduce the necessary
level of excitation.
Next two-dimensional surfaces of the transmission jTj2 ver-
sus the difference in the quasi-Fermi levels ∆F and the
wavelength λ are presented for the 40-period (Fig. 5a) and
for the 1-period (Fig. 5b) structures. (One-period struc-
ture has the 2582 nm GaAs n-i-p-i layer and the 2916 nm
Al0:3Ga0:7As layer). One can see that the gain is achieved
for the 40-period structure exceeds in an order the gain in
1-period structure having the same optical length of ac-
tive medium. If the excitation level ∆F = 1:348 eV, that
corresponds to the peak of transmission jTj2 = 5 for the
1-period structure (Fig. 4), we obtain jTj2 � 80 for the
40-period structure at the wavelengths corresponding to the
band edges. The gain starts to rise markedly from some
a threshold level of excitation. This threshold level for the
1-period structure significantly exceeds the respective val-
ues for the 40-period structure.

4. Discussion

Thus, the results obtained show that 1D PBG structure with
the active n-i-p-i layers can be promising for creating minia-
turized light sources. The main advantage of the resonator
with active medium embedded into periodic multilayer is
caused by strong delay of the energy velocity in compari-
son with the energy velocity in a bulk material or in DFB
structure with a slight index modulation [6]. Compari-
son with one-period structure shows that application of the
multiperiod structure allows to reduce the resonator length
where threshold of generation can be achieved at the same
parameters of active medium and the excitation level. Thus,
a laser used the resonator considered can be alternative to
the DFB laser whose fabrication is too complicated, quite
expensive and low-reproducible.
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