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Abstract — Reflective and transmitting properties of several
layers of double-periodic arrays are studied. In the arrays,
elements are conducting inclusions of various shapes. It is
shown that in these structures all the phenomena recently
found in dense wire grids with periodical defects (so-called
photonic band gap structures) can be observed and ex-
plained in simple terms of inter-layer and inclusion reso-
nances. Frequency-selective (with two and more stop bands)
and polarization transformation properties of these arrays are
demonstrated.
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1. Introduction

In recent years, much attention has been given to so-called
photonic band gap (PBG) materials. Full band gaps for
electromagnetic waves of arbitrary polarization and prop-
agation direction have been found in many 3D periodic
structures. These results stimulated renewed interest to 2D
and even 1D periodic structures in the microwave regime.
Some new applications have been recently proposed [1�3].
A very interesting behavior has been observed in a sys-
tem which is intermediate between bulk 3D periodic media
and 2D regular arrays, see [4]. A relatively thin layer of
conducting wire mesh has been investigated. Experimen-
tal results of [4] lead to the following observations: 1) in
a regular periodic structures, the layer is highly reflective
at low frequencies and rather transparent at high frequen-
cies; 2) there is a sharp cut-off boundary between the two
regimes; 3) if the wires are cut periodically (mesh with
defects), transmission peaks appear in the low-frequency
band of high reflectivity.
These phenomena were explained in [4] in terms of an
effective dielectric constant. The cut-off frequency is iden-
tified as that similar to the plasma frequency for electrons
flowing in the mesh. Regular 3D wire meshes with cubic
cells were considered in papers [5, 6]. Here, the phenom-
ena in regular structures have been explained in terms of
the effective mass of electrons moving in conducting wires.
However, these simple models fail if the system is studied
in a wide frequency range. When the characteristic sizes
become comparable to the wavelength (which is the most
interesting case where photonic band gaps exist), the sys-
tem is spatially dispersive. More complicated constitutive
relations are needed to model spatial dispersion [7, 8]. We

show that similar phenomena can be found in much simpler
systems formed of a few parallel planar layers of conduct-
ing resonant inclusions, and explained in a very simple and
physically clear way.
Let us start from an observation (made already in [4]) that
in the low frequency regime the cell structure is not im-
portant. And indeed, phenomena 1 and 2 have been also
observed in [5, 6] in 3D arrays of parallel conducting wires.
Phenomenon 1 can be explained very simply just noticing
that at low frequencies when the period of the grid is much
smaller than the wavelength, the wire grid behaves as a con-
ductor. On the other hand, when the frequency is high and
the period is large compared to the wavelength, the grid is
quite transparent for electromagnetic waves. These proper-
ties can be modeled for wire grids in terms of the averaged
induced current [9]. Sharp cut-off between the two regimes
is there because of the finite thickness of the structure and
periodicity in the normal direction. Finally, if the wires in
each layer are periodically cut (introducing defects), new
resonances of high transmission appear. The resonance
frequencies correspond to the condition that the length of
conducting sections equals one or several half-wavelengths.
If the section length is large enough (sparse defects), these
resonances appear in the low frequency stopband.
We explore properties of periodical structures of several
layers of metal elements of various forms in detail and
show that indeed all the properties observed in [4] can be
found in these arrays. These structures can find practical
applications in polarization-selective filters (very sharp res-
onances due to screening the internal layers of the structure,
polarization sensitivity or polarization transformation due
to the inclusion shape).

2. Operator of electromagnetic wave
scattering by double-periodic arrays

Let us consider the incidence of a plane electromagnetic
wave Ei = Pexp(ik i � r) on an infinite double-periodic ar-
ray in the plane z= 0. Incident and scattered electromag-
netic fields can be conveniently represented using transverse
to Ozaxis components of TE- and TM-wave sets. Consider
in the beginning the incidence of a wave having transverse
component of the electric field in the form

Ei
t (r) =ψψψ(p)

m0n0
(ρρρ)exp(�iΓm0n0z); (1)
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where index t denotes transverse to Oz axis components
of the electric field, p= 1 corresponds to TE-waves, and
p= 2 corresponds to TM-waves,

ψψψ(1)
mn(ρρρ) =

1p
Q

χχχmn�ez

χmn
eiχχχ�ρρρ ; ψψψ(2)

mn(ρρρ) =
1p
Q

χχχmn

χmn
eiχχχ �ρρρ

(2)

are vector harmonics; χχχmn = ex(ki
x� 2πm=dx) + ey(ki

y +

�2πn=dy); Γmn=
p

k2� χ2
mn; ρρρ = exx+eyy; Q= dxdy; dx

and dy are the array periods along Ox and Oy axes, respec-
tively. The corresponding reflected field we write as

Er
t (r) =

2

∑
q=1

∞

∑
m=�∞

∞

∑
n=�∞

a(pq)
mn (χχχm0n0)ψψψ (q)

mn(ρρρ)exp(iΓmnz) :

(3)

If the set of partial waves

Ei
t(r) =

2

∑
p=1

∞

∑
m0=�∞

∞

∑
n0=�∞

q(p)
m0n0

ψψψ(p)
m0n0

(ρρρ)exp(�iΓm0n0z) (4)

is incident upon an array, the reflected field may be repre-
sented in the form

Er
t (r) =

2

∑
q=1

∞

∑
m=�∞

∞

∑
n=�∞

b(q)mnψψψ
(q)
mn(ρρρ)exp(iΓmnz): (5)

Let us define an operator of scattering by a double-periodic
grating as an operator which connects coefficients b(q)mn of
the reflected field and the coefficients q(p)

m0n0
of the incident

field:

b(q)mn=
2

∑
p=1

∞

∑
m0=�∞

∞

∑
n0=�∞

a(pq)
mn (χχχm0n0)q

(p)
m0n0

(6)

or, in short operator notation, b= rq; where r is the operator
of reflection. Coefficients a(pq)

mn (χχχm0n0) may be found by
using any known method of the analysis of electromagnetic
wave scattering by single double-periodic arrays. Method
of moments may be used particularly in the cases of wave
scattering by arrays of thin strips [10�12].
Let us consider the incidence of a plane electromagnetic
wave with the frequency that is below the lowest of the so-
called sliding frequencies, i.e. the frequency values which
divide frequency regions corresponding to propagating or
evanescent spatial partial waves. Further, only the ampli-
tudes of propagating waves will be important, i.e., we will
consider characteristics of the reflected fields at positions
spaced from the array plane so that the influence of non-
propagating partial waves can be neglected. Operator of
reflection in this case may be defined approximately by ex-
pression b(q) = ∑2

p=1a(pq)q(p), where the lower indices are
omitted for shortness, they are all equal to zero. All the
statements formulated above regarding operator of reflec-
tion are correct also for operator of transmission t.

3. Operators of reflection
and transmission for a system
of a finite number of arrays

The structure is assumed to be equidistant and to consist
of identical arrays. The field in each gap between planar
arrays may be represented in the form of a set of partial
TE- and TM-waves. The amplitudes of the transverse com-
ponents of the partial waves are denoted as following: q for
the incident field, r(n)q for the reflected field, t(n)q for the
transmitted field, and A(n�1), B(n�1) for the fields in the gap
between the next to the last array and the last array of the
structure, see Fig. 1.

Fig. 1. Layered array: amplitudes of the reflected, transmitted,
and partial waves.

Let us assume operators r , t for a single array to be known,
as well as r(n�1), t(n�1) for the system of (n� 1) arrays,
and show that the operators for the whole system can then
be found recursively. The amplitudes of the partial waves
satisfy equations

A(n�1) = t(n�1)q+ r(n�1)eB(n�1) ;

B(n�1) = reA(n�1) ;

r(n)q= r(n�1)q+ t(n�1)eB(n�1) ;

t(n)q= teA(n�1) ; (7)

where e is the plane-wave propagator operator from the
plane of one array to the next array plane. After elimi-
nation of vectors A(n�1) and B(n�1) one obtains recurrent
expressions which allow to find operators r(n) and t(n) in
the form

r(n) = r(n�1)+ t(n�1)ere(I � r(n�1)ere)�1t(n�1) ; (8)

t(n) = te(I � r(n�1)ere)�1t(n�1) : (9)
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4. Numerical results and discussion

For shortness, we will call straight strips I-shaped inclu-
sions, the shape of open loops we associate with the shape
of letter C, and an Ω-shaped conductive inclusion we call
the omega particle. The frequency dependence of the trans-
mission and reflection coefficients of an array of I-shaped
elements has a resonant behavior. The resonance appears
when the length of an element approximately equals to one
half of the incident wavelength. Naturally, an increase of
the element length leads to a decrease of the resonant fre-
quency. Frequency dependence of the reflection coefficient
of an array of infinitely long strips (an array without defects
as periodic cutting of strips) has no resonances.
Further reduction of the resonance frequency is possible by
changing the element shape so that it is more compact but
has a longer stretched length. In the frequency dependen-
cies for an array of C-shaped elements there are two res-
onances. The second resonance appears when the length
of an element is close to one and one half of the wave-
length. Knowing the resonant behavior of layered struc-
tures as dependent on the shape, length of strips, periods
of arrays, elements and distance between the layers we can
create systems of layers with interesting and useful prop-
erties. A 4-layer structure of I-shaped strips exhibits the
same behavior as the 3D wire mesh with defects described
in [4].
A system with two zones of full reflection can be made
using a 4-layer structure (L = 5=6dx) with C-shaped ele-
ments (a= 5=12dx, φ1 = π=18, 2w= 1=30dx, dx = dy). Its
frequency characteristics are shown in Fig. 2. The first re-
flection zone is in the low frequency area. It is the first
resonance (polarization along axis Oy) depending on the
element length (S= 2:47dx, dx = dy) with the resonance
between the first and the fourth layers (dx=λ � 0:2). The
second zone is the second length resonance with resonances
between layers: layer 1 and layer 2 (L12� λ=2), layer 1 and
layer 3 (L13� λ ), layer 1 and layer 4 (L14� 3λ=2), when
dx=λ � 0:6.

Fig. 2. Reflection coefficient from a four-layer array of C-shaped
inclusions.

Fig. 3. Reflection and transmission coefficients from a four-layer
array of Ω-shaped inclusions.

Similar behavior of the frequency dependence of the reflec-
tion coefficient we can see in Fig. 3 in the case of a 4-layer
structure (L= 0:5dx) with Ω-shaped elements (a= 0:25dx,
l = 0:35dx, 2w= 0:019dx, dx = dy). Because we have cho-
sen in this case symmetrical displacements of elements with
respect to the diagonal of the array cells, cross-polarized
field components exist in the transmitted and reflected field.
There are no frequencies of full reflection in this case
because of the polarization transformation. Different re-
sponses of the array on different polarizations allow to use
such structures not only as frequency selective filters but
also as polarization-sensitive filters.

5. Conclusion

There are three reasons for resonant behavior of the fre-
quency dependencies of the reflection coefficient for such
structures. The first reason is interference phenomena be-
tween layers. The second reason is introduced by defects
(cut strips, in our case) that leads to finite length of array
elements and, as a consequence, to additional resonances.
The third reason is interference between layers on frequen-
cies near to the resonant frequencies of elements in a single
array. In the last case new resonances can appear because
of strong dispersion of the phase of the transmission coef-
ficient for a single array.
Regular structures of conducting elements without defects
are strongly reflecting in the low frequency region. Layered
structures of arrays of finite-length elements are transpar-
ent in the low frequency region and have properties of PBG
structures in the frequency region where the main sizes of
the elements and the whole array thickness are approxi-
mately equal to the wavelength.
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