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Abstract — The aim of this work is to develop a coherent
polarimetric model and to find a geometrical description of
a monochromatic wave. The spinor form of the electrical field,
its links to the coherency matrix and the Poincare’ sphere are
introduced with the aim to obtain a geometrical representa-
tion of the spinor. It consists, from the “polarization point
of view”, on the polarization vector and a tangential plane to
the Poincare’ sphere where it is possible to visualize the zero
phase.
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1. Introduction

Pulse radar has a very narrow band, so, to describe the
state of the signal, it is possible to consider one single
pulse like a monochromatic electromagnetic wave, which
is completely polarized [1, 2]. A very useful representation
of the electrical field is its spinor form which contains the
complete information even the zero phase1. The aim of
this work is to develop a coherent polarimetric description
which has a geometrical representation.

2. Spinors and quadrivectors –
the coherency matrix

The two-component complex field of the Jones representa-
tion may be treated as a spinor ηA:

�
η1

η2

�
=

�
Ex

Ey

�
=

�
axeiδx

ayeiδy

�
; (1)

where ax, ay are the amplitudes and δx, δy are the phases
of the phasor representation of a RF signal.
A quadrivector xµ = (x0; x1; x2; x3) may be regarded as
a Hermitian second-rank spinor. The spin matrix X [3]:

X = x0+(~x�~σ) =
 x0+x4 x1� ix2

x1+ ix2 x0�x4

=

=


X11̇ X12̇

X21̇ X22̇

 (2)

is transformed like a second rank spinor namely the co-
efficients in the law for the transformation of the compo-
nents of the spin matrix XAV̇ are identical with the coeffi-
cient in the law for the transformation of the second rank

1D. H. O. Bebbington, “Analytical foundations of polarimetry: I” – to
be published.

spinor χAξ V̇ (the dots are used for the conjugate complex,
not transpose). In more compact form:

XAV̇ =
�
x0+(~x�~σ)

�AV̇
= xµσAV̇

µ (µ = 0; 1; 2; 3) ; (3)

where σ0 is the unit matrix and σ1; σ2; σ3 are the Pauli
matrices:

σ1σ2 =�σ2σ1 = iσ3 (4)

and cyclic permutations. In this way a geometric represen-
tation of the spinor ηA which the spinor form of the Jones
vector, is possible. Then, if XAV̇ is calculated as

XAV̇ = ηA�η�V̇ (5)

it results: X11̇=ExE�
x , X12̇=ExE�

y , X21̇=EyE�
x , X22̇=EyE�

y ,
which are the components of the coherency matrix J [4]
(where E�

i is the conjugate complex of the complex num-
ber Ei).
The correspondent 4-vector xµ is obtained from the Eq. (3)
and from Eq. (5):

 x0+x1 x2� ix3

x2+ ix3 x0�x1

=


η1η 1̇ η1η 2̇

η2η 1̇ η2η 2̇

 ; (6)

where the cyclic permutation: σ1! σ2, σ2! σ3, σ3! σ1
is considered. Substituting the components of the Jones
vector, the components of the Stokes vector are found:

x0 =
1
2

g0; x1 =
1
2

g1; x2 =
1
2

g2; x3 =
1
2

g3 : (7)

For a monochromatic wave, (g0; g1; g2; g3) is a real null
4-vector

(g0)2�(g1)2�(g2)2�(g3)2 = 0) (x0)2�(x1)2+

�(x2)2�(x3)2= 0: (8)

All the directions of the 4-vectors xµ in the Minkowski
space-time for which the components satisfy (8) are null
directions and they build the null cone [5]. The space
of the null directions can be represented in the Euclidean
space by the intersections of the null cone with the hyper
planes x0= constand so g0= const(with the same intensity
of the electrical field, because g0 = I ). If the const=�1,
the intersection is a sphere which can be regarded as a Rie-
mann sphere of an Argand plane, which is the Poincare’
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sphere. But in general for any value of the constant, unless
g0 = 0, we get from the relation (8):

�
g1

g0

�2

+

�
g2

g0

�2

+

�
g3

g0

�2

= 1 (9)

and we can define

p1 =
g1

g0 ; p2 =
g2

g0 ; p3 =
g3

g0 (10)

which are the components of the polarization vector. The
equation of the Poincare’ sphere is in general:

(p1)2+(p2)2+(p3)2 = 1: (11)

The exterior of the sphere represents space-like directions
namely unpolarized or partially polarized light.
Multiplying the spinor ηA by a complex number p= λeiθ

(λ and θ real) the 4-vector xµ is stretched of λ 2 but is
unchanged in direction (cfr. (5)), namely it is independent
from the choice of the angle θ . The 4-vector is uniquely
defined by the spinor but to a 4-vector correspond a lot of
spinors, which differ by the multiplicative factor eiθ .
On the other side we want find a coherent description of
a monochromatic wave, which contains the so-called “zero
phase” α = δx (0< α < 2π). In order to do this, we look
at the spinor in its polarization vector form [6]:

�
η1

η2

�
=

r
I
2

eiα
�

(1+ p1)1=2

(1+ p1)�1=2(p2+ ip3)

�
: (12)

This form of the spinor contains explicitily the zero phase
and, as we have stated below, the corresponding 4-vec-
tor (g0; g1; g2; g3), is unaffected by the choice of the an-
gle α .

3. The tangential plane and the angle α
Let us consider the spinor mate [3] ξ B of ηA:

�
ξ 1

ξ 2

�
=

r
I
2

e�iα
�
�(1+ p1)�1=2(p2� ip3)

(1+ p1)1=2

�
: (13)

The spinor and the spinor mate so defined satisfy the con-
dition:

ηAξ A = I : (14)

They build a basis normalized to I and if we consider I = 1
the two spinor build a basis normalized to 1. The spinor
and the spinor mate are linked by the equations:

ηAξ B�ξ AηB = εAB (A; B= 1; 2) ; (15)

where εAB is an antisymmetric symbol such that: ε12 =
= ε12 = 1, εAB = �εBA. The spinor and the spinor mate
constitute a spinor basis.

As we have stated below that XAV̇ is transformed like a sec-
ond rank spinor χAξ

V̇
, we can calculate the component

of QAV̇ using the spinor mate:

QAV̇ = ηA�ξ�V̇
: (16)

Now multiplying the spinor ηA by a complex number
ρ = λeiθ , the vector is stretched but also it depends on the
choice of the angle θ and in particular it depends on 2θ .
The calculation of QAV̇ gives:

Q11̇ =� I
2 e2iα(p2+ ip3); Q12̇ = I

2 e2iα(1+ p1);

Q21̇ =� I
2 e2iα(1+p1)�1(p2+ip3)2; Q22̇ = I

2 e2iα(p2+ip3)

(17)

which corresponds to a complex point. Infact, by the
Eq. (3) the components of the corresponding 4-vector qµ

are:

q0 = 0;

q1 =�
I
2

e2iα(p2+ ip3);

q2 =
I
4

e2iα (1+ p1)2� (p2+ ip3)2

1+ p1 ;

q3 =�
I
4i
(p2+ ip3)� (1+ p1)2

1+ p1 : (18)

If the real and imaginary parts are separated, the two real
4-vectors have components qµ

R
= (0; ~qR) and qµ

I
= (0; ~qI )

which are:

q0
R= 0;

q1
R= I(�p2cos2α + p3sin2α);

q2
R= I

�
p1(1+p1)+(p3)2

1+ p1 cos2α +
p2p3

1+p1 sin2α
�
;

q3
R= I

�
�

p2p3

1+p1 cos2α�
p1(1+p1)+(p2)2

1+p1 sin2α
�
: (19)

q0
I = 0;

q1
I = I(�p2sin2α� p3cos2α);

q2
I = I

�
p1(1+p1)+(p3)2

1+ p1 sin2α�
p2p3

1+p1 cos2α
�
;

q3
I = I

�
�

p2p3

1+p1 sin2α +
p1(1+p1)+(p2)2

1+p1 cos2α
�
: (20)

The 4-vector qµ is space-like and in particular of magni-
tude equal to I . The 4-vector pµ(1; p1; p2; p3), qµ

R
(0; ~qR),

qµ
1
(0; ~qI ) are orthogonal in the sense:

pµ(qR)µ = 0; pµ(qI )µ = 0; (qI )
µ(qR)µ = 0: (21)
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And it is easy to see that even ~g = (g1; g2; g3), ~qR =
= (q1

R; q2
R; q3

R) and ~qI = (q1
I ; q2

I ; q3
I ) are orthogonal and of

modul equal to I in the Euclidean space. So the vectors ~qR
and ~qI provide basis vectors (I = 1 ) in the two-dimensional
space which is the tangential plane at the point ~p on the
Poincare’ sphere. When the angle α varies, the vectors ~qR
and ~qI rotate in the tangential plane.
The aim is now to visualize the angle α and to find
a reference for α = 0. For the horizontal polarization
~pH = (1; 0; 0) and for α = 0, ~qR is the tangential vector
to the equatorial great circle. If α increases, ~qR rotates
in the tangential plane clockwise through an angle of 2α .
Keeping α = 0, the fact that the point ~pH moves into the
point ~p corresponds to a rotation applied to the spinor ηA.
This means a change of the basis, which means differ-
ent ~qR(α=0) and ~qI(α=0). The rotation matrix, which pre-
serves the angle α and which moves the point ~pH to the
point ~p is:

R=

�
1

1+ jρ j2

��1=2� 1
jρ jeiδ

�jρ je�iδ

1

�
; (22)

where ρ =
Ey
Ex

= jρ jeiδ (δ = δy � δx, cfr. (1)) is the
polarization ratio. This is a rotation around the axis
~n(0; �sinδ ; cosδ ) through an angle such that cosθ =

= 1�jρ j2
1+ jρ j2 = p1. The rotation (22) preserves the an-

gle between the directions but not the direction, so the
vector ~qR(α=0) changes its direction. The direction r
(cfr. Fig. 1), obtained by the intersection of the great cir-
cle through ~pH and ~p, forms with the vector ~qR(α=0) an
angle δ and with the vector ~qR the angle 2α + δ . It is
very important to find a reference for α = 0 because ~qR
forms an angle δ with the direction r but δ is different
for every point on the sphere. To solve this problem, let
us consider ~p and ~qR and ~qI for any α , consider the cor-
respondent spinor, apply the rotation which preserves the

Fig. 1. The Poincare’ sphere and the tangential planes in the
point ~pH and in the point ~p.

angle α and move the vector ~p in the point ~pH to obtain
the vector ~qRH and the angle 2α is the angle between ~qRH
and ~qRH(α=0).
The spinor and the spinor mate constitute a spinor ba-
sis. It is easy to see that the correspondent 4-vectors
(cfr. Eq. (6)) fix on the Poincare’ sphere two antipodal
points ((p1; P2; p3) and (�p1;�p2;�p3)) which are the
basis states of polarization [7]. If the corresponding ~qR
and ~qI vectors are calculated, the result is:

~p!~qR; ~qI �~p!�~qR; ~qI : (23)

With the help of the spinor, the change of basis is easy
because it corresponds to a unitary transformation of the
spinor which corresponds to a rotation in the three dimen-
sional space. Infact the group of two-dimensional spe-
cial unitary transformations (with unit determinants), which
preserve the invariants, are homomorphic to the three-
dimensional rotation group [5]. The general form of the
spin rotation matrix is:

R= cos
θ
2
� i sin

θ
2
(σ1n1+σ2n2+σ3n3) ; (24)

where θ is the angle of rotation, (n1; n2; n3) are the com-
ponents of the axis ~n of rotation in the Euclidean space
and σi are the Pauli matrices. The transformation law of
a spinor is:

η ! η 0 = Rη : (25)

It is possible to show that the rotation spin matrix is a uni-
tary matrix and its determinant is necessarily unity.
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