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Abstract — In the paper the results of spatio-temporal imag-
ing simulation based on radar, synthetic aperture radar (SAR)
and radiometry systems are presented. The analytical rela-
tionship between object scattering/emitting and the formed
image is given and the general approach for the description
of imaging system by means of Frendholm equation solution
is developed. The potential limit of image resolution based on
Rao-Cramer inequality is estimated.
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1. Introduction

Resolution of radar and radiometry imaging systems is al-
ways constrained because of their finite spatio-temporal
bandwidth that is determined by the constructive and tech-
nological particularities. That causes the decrease of re-
ceived image quality. Advances in modern image and sig-
nal processing techniques open the new possibilities of real
time image processing. Thus, the problem of adequate
simulation of image formation for the development of opti-
mal algorithms of resolution increasing and obtained image
quality improving is very actual.
In this paper three main classes of imaging systems (mono-
static radar, SAR and radiometer) are considered [1]. The
distortions caused by imaging systems are determined as
the analytical relation between scattering/emitting object’s
ability and the obtained image. Scattering Q(x; y) is a local
object characteristic that is described by relation between
incident and reflected waves. Emitting Qp(x; y) property is
defined by radiating particularities of investigated object.

2. Radar image formation

In radar imaging systems the range portrait is formed based
on the delayed scattered signal from the different object’s
parts [2, 3]. This enable to obtain one-dimensional ob-
ject presentation during one radiation period. In this case,
the delay determinates coordinates of scattering area, signal
magnitude permits to estimate scattering coefficient and an-
tenna directional pattern has to satisfy the condition of uni-
form object radiation and reflected-signal receiving (Fig. 1).
This principle is widely used for two-dimensional radar
imaging [2�6], where resolution in second coordinate is
satisfied by scanning with narrow antenna directional pat-
tern.

Developed model of radar imaging system was created un-
der assumption about flat surface of investigated objects,
isotropic scattering property of the object’s elements, and
absence of secondary reflection:
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where srad(t) is the radiated signal; Trad denotes the ra-
diated signal duration; c is the wave propagation velocity;
H is the altitude of radar position.

Fig. 1. The geometry of radiation at the range portrait formation
by radar system.

Temporal function of received signal secho(t) transformed
into corresponding spatial coordinate system is a range por-
trait I(Y) and Eq. (1) can be rewritten as:

I(Y) =

ymaxZ

ymin

Q(y)Gd[y; Y]dy; (2)

where Gd[y; Y] denotes the transform kernel Eq. (2) or sys-
tem function determined by radiated signal; (ymax; ymin) is
interval of scattering property investigating Q(y)Gd[y; Y]
describes the temporal distortion features. In the case of
Gd(t; τ) = srad(t� τ), Eq. (2) will be presented by a con-
volution, and distortion will be invariant in respect to the
range coordinate.

3. Radar imaging system
with synthetic aperture

To satisfy high quality of remote sensing, multiposition
radar systems with coherent processing, i.e. SAR are widely
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used, that permits to significantly improve cross-range res-
olution [4, 5]. Oppositely to ordinary radar, the formation
of synthesized directional pattern is performed by corre-
sponding spatio-temporal processing (Fig. 2). In each dis-
crete position with step ∆x the signal srad(t) is radiated and
echo-signal is received. Taking into account spatial filter-
ing properties of the transmitting and receiving antennas,
echo-signal srec(t) can be presented according to Eq. (1).
One of the particularities of these systems is Doppler fre-
quency shift effect that depends on the wave propagation
direction.

Fig. 2. Aperture synthesizing in radar imaging systems. Expla-
nations: I – elementary antenna pattern, II – synthetic aperture
pattern.

Synthesis process consists in the coherent summing of the
received signals

Ui(y) =
L

∑
k=�L

Ck si+k
rec
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; (3)

where Ui(y) is the complex discrete-continuous SAR im-
age. Complex coefficients Cj are equivalent to the current
distributions in the synthetic aperture. Depending on the
choice of Cj Eq. (3) gives a possibility to obtain different
synthetic aperture directional patterns, to select the orien-
tation direction of directional antenna pattern main lobe, to
focus the synthetic aperture on the certain range. Model (3)
does not permit to obtain the necessary resolution in the
range coordinate and compensate the Doppler frequency
shift that causes resolution decreasing.
The developed model was created under assumption of dis-
crete system carrier moving with synthesizing step ∆d. Tak-
ing into account Eqs. (1), (2) and (3) SAR model can be
expressed as:

I(X; Y) =

vmaxZ

vmin

ymaxZ

ymin

Q
�
(v�X); y

�
Gsar[v; y; Y]dydv; (4)

where transformation kernel Gsar[v; y; Y] is being defined
SAR carrier altitude H, its velocity V, synthesizing step ∆d,
as well as radar parameters: waveform of radiated signals

srad(t), its carrier frequency ω0, complex coefficients of
coherent processing Ck, directional properties of transmit-
ting Ftran(γ; θ ) and receiving Frec(γ; θ ) antenna directional
patterns, and described by the following equation:
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and D =

p
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Fig. 3. Tested scattering ability Q(x; y).

In alternative to SAR models based on Radom transform [6]
model (4) does not need the coordinate transformation, that
permits to simplify the processing algorithms. To show the
particularities of the above mentioned model the test im-
age presented in Fig. 3 was chosen. The simulation was
performed for Gaussian radiated signal and uniform field
distribution in the elementary transmitting and receiving
antennas and different kinds of coherent signal processing
methods (Fig. 4). Obtained results confirm possibility to
form the narrow directional pattern of synthesized aperture
by means of coherent summation with quadratic phase and
time delay compensation. Kernel (5) shows that SAR dis-
torting impact is invariant to x, and non-invariant to y that
is explained by different nature of image formation in these
coordinates.
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Fig. 4. Obtained SAR image I(X; Y) with 5 elements (a),
with 100 elements and without quadratic phase delay compen-
sation (b), with 100 elements and corresponding quadratic phase
delay compensation (c).

4. Radiometry imaging systems

In radiometry systems image formation process is being
performed by two-dimensional scanning [7, 8]. Radiometry
receiver is energy device, thus, the received image charac-
terizes energetic properties of the studied object emission.
This class of systems can be described by following model:

I(X; Y) =

ϑmaxZ

ϑmin

ηmaxZ

ηmin

Qp(η ; ϑ ) �Gpasiv[X�η ; Y�ϑ ]dηdϑ ;

(6)

where (ηmax; ηmin; ϑmax; ϑmin) denotes the scanning re-
gion; Gpasiv[X�η ; Y�ϑ ] is transformation kernel and de-
pends on field distribution in aperture e(x; y):

Gpasiv[η ; ϑ ] =
��ℑfe(x; y)g

��2
; (7)

where ℑfe(x; y)g denotes two-dimensional Fourier trans-
form.

Fig. 5. Radiometry image I(X; Y) obtained on the base of the
model (7).

Image formed by radiometry systems according to Eq. (6)
is presented in Fig. 5. The distortions caused by radiome-
try imaging systems have spatially invariant character and
are determined by the form of a system function. The sig-
nificant losses in high spatial frequency band cause typical
blurring of the obtained image.

5. Generalized linear imaging model

The presented above models of the image formation systems
Eqs. (2), (4) and (6) are deterministic ones. However, the
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real systems usually are under impact of many stochastic
factors, such as received noise, error of imaging system ge-
ometrical parameters estimation, system parameters errors
(radiated signal and direction pattern forms). The compli-
cated stochastic nature of these parameters do not allow to
obtain precise statistic model of radar/radiometry imaging
systems. Taking into account large number of stochastic pa-
rameters and the linearity of image formation models the
additive Gaussian component can be assumed due to cen-
tral limit theorem assumption. In this case the generalized
model of radar/radiometry imaging systems is described by
the following expression:

I(X; Y) =

xmaxZ

xmin

ymaxZ

ymin

Q(x; y) �G[x;X;y;Y]dydx+n(X;Y);

(8)

where G[x;X;y;Y] is the point spread function, and n is the
additive Gaussian component.
Based on the presented models, the synthesis of image pro-
cessing algorithms is possible and quality improving can be
formulated based on the inverse solution of first kind Frend-
holm equation. Correctness and robustness issues of this
problem solution will be determined by kernel form [9],
type of systems and their parameters that have also impact
on the noise statistics.
This approach gives possibility to reduce blurring impact
of point spread function and remove the noise component.
The synthesized based on this approach SAR image pro-
cessing algorithms permit automatically to compensate the
quadratic phase distortions and moving of SAR carrier.

6. Potential limit of restoration
accuracy. Restoration methods

A lot of methods of Frendholm integral equation solution
are known [9�14]. Deterministic methods based on prior
information are given in [3]. Selection of solution methods
is being performed according to the type of integral equa-
tion kernel or structure and size of equation system matrix.
Singular operators are characterized by nonstability of so-
lution to calculation errors, imprecission of initial data or
stochastic component existing in right part of equation.
Radar and radiometry image restoration (8) are often per-
formed under significant noise impact. Stochastic charac-
ter of the radar image formation shows necessity to use
stochastic methods of problem (8) solution. These meth-
ods give possibility not only to find stochastically correct
solution, but also to estimate potential solution limit.
Problem (8) can be presented by system of linear equations:

X = GA+n; (9)

where G is M �M matrix with gi; j elements; X and A
are obtained and original image respectively; n is random
vector with Gaussian distribution N(0; σ2

n ). Each element
xi of vector X can be presented by linear combination of

unknown parameters aj . In the case of prior information
about distribution law of aj absence, Eq. (9) can be solved
by maximum likelihood (ML) principle [15]. Element xi

has the Gaussian distribution with mean
M
∑
j=1

gi; j � aj and

variance σ2
n . Then taking into account statistical indepen-

dence of xi , likelihood function can be written as:
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M
∏
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�#)
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Solving Eq. (9) by means of ML function corresponds to
solving of equations’ system GTX = GTGA that coincides
with the least squares approach [9]. Potential accuracy of
Eq. (9) solution can be found from Rao-Cramer inequal-
ity [15]. From Eqs. (10) and (11) the accuracy of unknown
parameter aj based on ML principle is calculated as its
estimation variance:

E
h
âiml

�ai

i2 �
 
�E

�
∂ 2 ln

�
p(X j A)

�
∂ai∂ai

�!�1

=

= σ2
n

�
M
∑

l=1
jgl ; i j2

�
�1

; i = 1; M : (11)

The found accuracy is the same for all unknown parame-
ters and defined by the relation between random compo-
nent variance and sum of squared column’s elements of
matrix G. Inequality (11) gives possibility to estimate po-
tential accuracy of the radar/radiometry image restoration.
Precision of the restoration without prior information is
equal to the relation of noise variance to the squared norm
of point spread function. In the case of spatially variant
linear operators, e.g. Eqs. (2) or (4), point spread function
changes its form in dependence on the image coordinates,
therefore, accuracy will be defined by different relationship.

7. Conclusions

The results of radar and radiometry imaging systems anal-
ysis show possibility to describe these system by the linear
model. The analytical form of operator transforms for ef-
ficient image formation simulation is determined for the
classical types of these systems. Blurring of radar and
radiometry images is caused by the finite spatio-temporal
bandwidth. Nonoptimality of the coherent processing in
SAR also decreases image quality. Based on the devel-
oped models the approach to radar and radiometry image
quality improving that consists in the image processing by
means of restoration methods synthesized by the mentioned
models is generalized. The potential limit of image restora-
tion accuracy under Gaussian noise impact is determined.
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Variance of image estimation is proportional to the noise
energy and inversely proportional to the squared norm of
point spread function, that permits to make some recom-
mendations about wave form type and antenna parameters.
According to the developed model of radar range portrait
formation the point spread function corresponds to radi-
ated signal form that points out on the possibility of signal
with large base usage [16]. This kind of signals has high
energy because of large duration and wide band because
of the complicated modulation. Spatial properties of the
imaging systems are defined by antenna parameters and
directly depended on the aperture magnitude-phase distri-
bution. Thus, usage of complicated distributions permits
to satisfy the robustness of image restoration algorithms to
noise level and to obtain high accuracy.
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