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1. Hadamard matrices and definitions

A square matrix with elements �1 and size h, whose dis-
tinct row vectors are orthogonal is an Hadamard matrix of
order h. The smallest examples are

�
1
�
;

�
1 1
1 �

�
;

2
664
� 1 1 1
1 � 1 1
1 1 � 1
1 1 1 �

3
775

where we write � for �1. These were first studied by
J. J. Sylvester [17] who observed that if H is an Hadamard
matrix then �

H H
H �H

�

is also an Hadamard matrix. Indeed, using the matrix of
order 2 we have
Lemma 1 (Sylvester [17]): There is an Hadamard matrix
of order 2t for all integers t.

We call matrices of order 2t constructed by Sylvester’s con-
struction Sylvester-Hadamard matrices. They are naturally
associated with discrete orthogonal functions called Walsh
functions. Using Sylvester’s method the first few Hadamard
matrices obtained are:

�
1 1
1 �

�2664
1 1 1 1
1 � 1 �
1 1 � �
1 � � 1

3
775

2
66666666664

1 1 1 1 1 1 1 1
1 � 1 � 1 � 1 �
1 1 � � 1 1 � �
1 � � 1 1 � � 1
1 1 1 1 � � � �
1 � 1 � � 1 � 1
1 1 � � � � 1 1
1 � � 1 � 1 1 �

3
77777777775

For these matrices we count, row by row, the number of
times the sign changes so 1��1 changes sign twice. This
gives:

for the matrix of order 2 : 0,1
for the matrix of order 4 : 0,3,1,2,
for the matrix of order 8 : 0,7,3,4,1,6,2,5

Indeed we shall see that the set of the number of sign
changes in a Sylvester-Hadamard matrix of order n is
f0;1; :::;n�1g corresponding to the number of zero cross-
ings of the Walsh functions.
In 1893 Jacques Hadamard [4] gave examples for a few
small orders and conjectured they exist for every order di-
visible by 4. An example for order 12 is:

2
666666666666666666666666664

1 1 1 � 1 1 � 1 1 � 1 1
1 1 1 1 � 1 1 � 1 1 � 1
1 1 1 1 1 � 1 1 � 1 1 �

1 � � 1 1 1 � 1 1 1 � �

� 1 � 1 1 1 1 � 1 � 1 �

� � 1 1 1 1 1 1 � � � 1

1 � � 1 � � 1 1 1 � 1 1
� 1 � � 1 � 1 1 1 1 � 1
� � 1 � � 1 1 1 1 1 1 �

1 � � � 1 1 1 � � 1 1 1
� 1 � 1 � 1 � 1 � 1 1 1
� � 1 1 1 � � � 1 1 1 1

3
777777777777777777777777775

We now look at some basic properties of Hadamard matri-
ces:
Lemma 2: Let H be an Hadamard matrix of order h. Then:

(i) HHT = hIh;

(ii) jdetH j= h
1
2h;

(iii) HHT = HTH;

(iv) Hadamard matrices may be changed into other
Hadamard matrices by permuting rows and columns
and by multiplying rows and columns by �1. We call
matrices which can be obtained from one another by
these methods H-equivalent (not all Hadamard ma-
trices of the same order are H-equivalent);

(v) every Hadamard matrix is H-equivalent to an
Hadamard matrix which has every element of its first
row and column +1 – matrices of this latter form are
called normalized;

(vi) if H is a normalized Hadamard matrix of order 4n,
then every row (column) except the first has 2n mi-
nus ones and 2n plus ones in each row (column),
further n minus ones in any row (column) overlap
with n minus ones in each other row (column);

(vii) the order of an Hadamard matrix is 1,2, or 4n, n pos-
itive integer.
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Definition 1: If M = (mi j ) is a m� p matrix and N = (ni j )
is an n� q matrix, then the Kronecker product M�N is
the mn� pq matrix given by

M�N =

2
6664

m11N m21N � � � m1pN
m12N m22N � � � m2pN

...
mm1N mm2N � � � mmpN

3
7775

Example:

Let M =

�
1 1
1 �1

�
and

N =

2
664
�1 1 1 1

1 �1 1 1
1 1 �1 1
1 1 1 �1

3
775 then

M�N =

�
N N
N �N

�
=

=

2
6666666666664

�1 1 1 1 �1 1 1 1
1 �1 1 1 1 �1 1 1
1 1 �1 1 1 1 �1 1
1 1 1 �1 1 1 1 �1

�1 1 1 1 1 �1 �1 �1
1 �1 1 1 �1 1 �1 �1
1 1 �1 1 �1 �1 1 �1
1 1 1 �1 �1 �1 �1 1

3
7777777777775

Lemma 3 (Sylvester-Hadamard): Let H1 and H2 be
Hadamard matrices of orders h1 and h2. Then by the prop-
erties of Kronecker products H = H1�H2 is an Hadamard
matrix of order h1h2.

2. Historical background

More than one hundred years ago, in 1893, Jacques
Hadamard [4] found square matrices of orders 12 and 20,
with entries �1, which had all their rows (and columns) or-
thogonal. These matrices, X = (xi j ), satisfied the equality
of the following inequality

jdet Xj2 �
n

∏
i=1

n

∑
j=1
jxi j j

2

and had maximal determinant. Hadamard actually asked
the question of matrices with entries on the unit disc but
his name has become associated with the real matrices.
Hadamard was not the first to study these matrices for
J. J. Sylvester in 1867 in his seminal paper “Thoughts on
inverse orthogonal matrices, simultaneous sign-successions
and tesselated pavements in two or more colours with appli-

cation to Newton’s rule, ornamental tile work and the the-
ory of numbers” [17] had found such matrices for all orders
which are powers of two. Nevertheless, Hadamard showed
matrices with elements �1 and maximal determinant could
exist for all orders 1, 2, and 4t and so the Hadamard con-
jecture “that there exists an Hadamard matrix, or square
matrix with every element �1 and all row (column) vec-
tors orthogonal” came from here. This survey discusses
some of the applications of hadamard matrices.

2.1. Hadamard codes

Definition 2: The rows of an Hadamard matrix H of order
4n give a (4n; 8n; n�1) block error correction code as
each of the rows has distance at least 2n from each of the
other rows. The block code is:�

H
�H

�

In the 1960’s the U.S. Jet Propulsion Laboratories (JPL)
was working toward building the Mariner and Voyager
space probes to visit Mars and the other planets of the
solar system. Those of us who saw early black and white
pictures of the back of the moon remember that whole lines
were missing. The first black and white television pictures
from the first landing on the moon were extremely poor
quality. How many of us now take the glorious high qual-
ity colour pictures of Jupiter, Saturn, Uranus, Neptune and
their moons for granted.
In brief, these high quality colour pictures are taken by
using three black and white pictures taken in turn through
red, green and blue filters. Each picture is then considered
as a thousand by a thousand matrix of black and white
pixels. Each picture is graded on a scale of, say, one to
sixteen, according to its greyness. So white is one and
black is sixteen. These grades are then used to choose
a codeword in, say, an eight error correction code based
on, say, the Hadamard matrix of order 32. The codeword
is transmitted to Earth, error corrected, the three black and
white pictures reconstructed and then a computer used to
reconstruct the coloured pictures.
Hadamard matrices were used for these codewords for two
reasons, first, error correction codes based on Hadamard
matrices have maximal error correction capability for
a given length of codeword and, second, the Hadamard
matrices of powers of two are analogous to the Walsh func-
tions, thus all the computer processing can be accomplished
using additions (which are very fast and easy to implement
in computer hardware) rather than multiplications (which
are far slower).

3. Walsh functions

Sylvester’s original construction for Hadamard matrices is
equivalent to finding Walsh functions which are the discrete
analogue of Fourier series.
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Example: Let H be a Sylvester-Hadamard matrix of order 8
and sequency order:

H =

0
BBBBBBBBBB@

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 1 �1 �1 �1 �1 1 1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1
1 �1 �1 1 �1 1 1 �1
1 �1 1 �1 �1 1 �1 1
1 �1 1 �1 1 �1 1 �1

1
CCCCCCCCCCA

The Walsh function generated by H is the following:

wal3(0; t) �1
2 0 1

2

�

wal3(1; t) �1
2 0 1

2

wal3(2; t) �1
2 0 1

2

wal3(3; t) �1
2 0 1

2

wal3(4; t) �1
2 0 1

2

wal3(5; t) �1
2 0 1

2

wal3(6; t) �1
2 0 1

2

wal3(7; t) �1
2 0 1

2

The points of intersections of Walsh functions are iden-
tical with that of trigonometrical functions. By mapping
w(i; t) = waln(i; t) into the interval [�1

2;0], then by map-
ping axial symmetrically into [0; 1

2], we get w(2i; t) which is
an even function. By operating similarly we get w(2i�1; t),
an odd function.
Just as any curve can be written as an infinite Fourier series

∑
n

ansinnt+bncosnt

the curve can be written in terms of Walsh functions

∑
n

an sal(i; t)+bn cal(i; t) =∑
n

cn wal(i; t):

The hardest curve to model with Fourier series is the
step function wal2(0; t) and errors lead to the Gibbes phe-
nomenom. Similarly, the hardest curve to model with
Walsh functions is the basic sin2πt or cos2πt curve. Still,
we see that we can transform from one to another.
Many problems require Fourier transforms to be taken, but
Fourier transforms require many multiplications which are
slow and expensive to execute. On the other hand, the fast
Walsh-Hadamard transform uses only additions and sub-
tractions (addition of the complement) and so is extensively
used to transform power sequency spectrum density, band
compression of television signals or facsimile signals or
image processing.

4. Desired characteristics of CDMA
spreading codes

Hadamard matrices have a significant role to play in the
search for desirable CDMA spreading codes.
For bipolar spreading codes fs(i)n g and fs(l)n g of length N,
the normalized discrete aperiodic correlation function is
defined as [9]:

ci;l (τ) =

8>><
>>:

1
N ∑N�1�τ

n=0 s(i)n s(l)
n+τ ; 0� τ � N�1

1
N ∑N�1+τ

n=0 s(i)
n�τs(l)n ; 1�N� τ < 0

0; jτj � N

:

When fs(i)n g equals fs(l)n g, the above equation defines the
normalized discrete aperiodic auto-correlation function.
In order to evaluate the performance of a whole set of M
spreading codes, the average mean sqaure value of cross-
correlation for all codes in the set, denoted by RCC, was
introduced by Oppermann and Vucetic [12] as a measure
of the set cross-correlation performance:

RCC =
1

M(M�1)

M

∑
i=1

M

∑
k=1
k6=i

N�1

∑
τ=1�N

jci;k(τ)j
2 :

A similar measure, denoted by RAC was introduced there
for comparing the auto-correlation performance:

RAC =
1
M

M

∑
i=1

N�1

∑
τ=1�N

τ 6=0

jci; j(τ)j
2 :

The RAC allows for comparison of the auto-correlation prop-
erties of the set of spreading codes on the same basis as
their cross-correlation properties.
It is higly desirable to have both RCC and RAC as low as
possible, as the higher value of RCC results in stronger mult-
access interferance (MAI), and an increase in the value
of RAC impedes code acquisition process. Unfortunately,
decreasing the value of RCC causes increase in the value
of RAC, and vice versa.
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Both RCC and RAC are very useful for large code sets and
large number of active users, when the constellation of in-
terferers (i.e. relative delays among the active users and the
spreading codes used) changes randomly for every transmit-
ted information symbol. However, for a more static situa-
tion, when the constellation of interferers stays constant for
the duration of many information symbols, it is also im-
portant to consider the worst-case scenarios. This can be
accounted for by analyzing the maximum value of peaks in
the aperiodic cross-correlation functions over the whole set
of sequences and in the aperiodic auto-correlation function
for τ 6= 0. Hence, one needs to consider two additional
measures to compare the spreading sequence sets.
Maximum value of the aperiodic cross-correlation func-
tions Cmax:

cmax(τ) = max jci;k(τ)j; τ=(�N+1);��� ;(N�1) :

i=1;��� ;M

k=1;��� ;M

i 6=k

Maximum value of the off-peak aperiodic auto-correlation
functions Amax

amax(τ) = max jck;k(τ)j;
k=1;��� ;M

Amax= maxfamax(τ)g :
τ 6=0

The known relationships between Cmax and Amax are due to
Welch [18] and Levenshtein [10].
The Welch bound states that for any set of M bipolar se-
quences of length N

maxfCmax;Amaxg �

r
M�1

2NM�M�1
:

A tighter Levenshtein bound is expressed by:

maxfCmax;Amaxg �

s
(2N2+1)M�3N2

3N2(MN�1)
:

It must be noted here that both Welch and Levenshtein
bounds are derived for sets of bipolar sequences where
the condition of orthogonality for perfect synchronization
is not imposed. Hence, one can expect that by introduc-
ing the orthogonality condition, the lower bound for the
aperiodic cross-correlation and aperiodic out-of-phase auto-
correlation magnitudes must be significantly lifted.

4.1. Constructions for Hadamard matrices for CDMA

There are many constructions for Hadamard matrices and
recent work of Seberry, B. Wysocki and T. Wysocki [15]

have found that different constructions give different auto-
correlation and cross correlation coefficients when tested
for CDMA coding.

5. Boolean functions

Hadamard matrices are intimately related with two families
of symmetric balanced incomplete block designs. These
families of designs are also connected with boolean
functions used in the construction of S-boxes for crypto-
graphic algorithms. The family SBIBD(4t�1;2t�1; t�1)
is related to linear boolean functions and the
SBIBD(4s2;2s2�s;s2�s) to those functions which
are “furthest” from linear functions the bent functions.

6. The existence and construction
of a complete set

of orthogonal F(4t;2t;2t)-squares

This material is from Walter T. Federer [2].

6.1. Introduction and definitions

Hedayat [5] and Hedayat and Seiden [6] have defined an
F-square as follows:

Definition 3: Let A = [ai j ] be an n� n matrix and let
Σ = (c1;c2; :::;cm) be the ordered set of m distinct ele-
ments or symbols of A. In addition, suppose that for
each k= 1;2; � � � ;m;ck appears exactly λk times (λk � 1)
in each row and in each column of A. Then A will be
called a frequency square or, more concisely, an F-square
on Σ of order n and frequency vector (λ1;λ2; � � � ;λm)
and will be denoted by F(n;λ1;λ2; � � � ;λm). Note that
(λ1+λ2+ � � �+λm) = n and that when λk = 1 and m= n,
a latin square results.
As with latin squares, one may consider orthogonality of
a pair or a set of F-squares of the same order. The above
cited authors give the following two definitions covering
these cases:

Definition 4: Given an F-square F1(n;λ1;λ2; � � � ;λk) on
a set Σ = (a1;a2; ::: ;ak) and an F-square F2(n;u1;u2; :::;ut)
on a set Ω= (b1;b2; :::;bt), we say F2 is an orthogonal mate
for F1 (and write F2?F1) if upon supposition of F2 on F1, ai
appears λiuj times with bj .

Definition 5: Let Si be an ni-set, i = 1;2; � � � ; t, and let
Fi be an F-square of order n on the set Si with frequency
vector λi = (λi1;λi2; � � � ;λih). Then F1;F2; :::;Ft is a set
of t mutually (pairwise) orthogonal F-squares if Fi ? Fj ,
i 6= j; i; j = 1;2; � � � ; t. If every ni = n and every λi` = 1,
`= 1;2; � � � ;n, a set of t mutually orthogonal latin squares
results and is denoted as OL(n; t).
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If a complete set of orthogonal latin squares exists, then
t = n�1 and the set is denoted as OL(n;n�1). If a com-
plete set of orthogonal F-squares of order n exists, the
number will depend upon the values of the ni in Defini-
tion 5. This leads to the following definition:

Definition 6: A complete set of orthogonal F-squares
of order n is denoted as CSOFS(�; �; �), and the num-
ber of F-squares with i distinct elements is given by the
terms in the summation ∑n

i=2NiF(n;λ1;λ2; � � � ;λi) where
∑h= 1iλh = n; ∑ i = 2nNi(i�1) = (n�1)2 and Ni is the
number of the squares with i distinct elements.
The fact that ∑ i = 2nNi(i�1) = (n�1)2 in order to have
a CSOFSfollows directly from analysis of variance the-
ory and from factorial theory in that the interaction of two
n-level factors has (n� 1)2 degrees of freedom and from
the fact that only interection degrees of freedom are avail-
able to construct F-squares. For each Fi(n;λ1;λ2; � � � ;λi)-
square, there are (i�1) degrees of freedom associated with
the i distinct symbols of an F-square, there are Ni F-squares
containing i symbols, and hence (n�1)2 = ∑n

i=2Ni(i�1).
Federer [2] showed that a CSOFSexists for n= 4t and for
i = 2 distinct symbols. The results have application in zero-
one graph theory, in orthogonal arrays, in coding theory,
and other areas. It illustrates now analysis of variance and
factorial theory can be used to construct the CSOFS and
thus provides a new tool for construction purposes.

6.2. Construction of a complete set
of F(4t;2t;2t)F(4t;2t;2t)F(4t;2t;2t)-squares

The use of orthogonal contrasts in the analysis of variance
for factorial experiments to construct latin squares was in-
dicated by Federer et al [1], Mandeli [11] also used this
procedure. It would appear that there is considerable po-
tential in using the orthogonality of single degree of free-
dom contrasts from the interaction to construct F-squares
and latin squares. The following theorem represents one
such example:

Theorem 1: There exists a complete set of (4t�1)2 mutu-
ally orthogonal F(4t;2t;2t) squares.
Proof: A normalised Hadamard matrix is one in which
there are all plus ones in the first row and in the first col-
umn. The remaining elements are plus and minus ones.
Hadamard matrices of side 4t are known to exist for all
1� t � 105 and are presumed to exist for all 4t. In the
last 4t�1 rows of a normalised 4t�4t Hadamard matrix,
the number of plus ones is equal to the number of minus
ones. The Kronecker product of two normalised Hadamard
matrices, i.e. H4t �H4t , is a normalised Hadamard matrix
of side 16t2. Delete the first 4t rows of the resulting H

16t2

and delete the 4t +1st, the 8t +1st, ..., 16t2�4t +1st row
of the H

16t2
matrix. 8t � 1 rows are thus deleted, leav-

ing (16t2� 8t + 1) = (4t �1)2 rows having 2t plus ones
and 2t minus ones. Let the plus one be symbol a1 and
the minus on be symbol a2 in these remaining (4t � 1)2

rows. Thus, an F(4t;2t;2t)-square will be formed from
each row resulting in (4t � 1)2F(4t;2t;2t)-squares. The

resulting F-squares will be mutually orthogonal from the
properties of Hadamard matrices. Hence, the CSOFSis
constructed in this manner. �

7. Hadamard matrices and optimal
weighing designs

Suppose we are given p objects to be weighed in n weigh-
ings with a chemical balance (two–pan balance) having no
bias. Let

xi j = 1 if the jth object is placed in the left pan in
the ith weighing,

xi j = �1 if the jth object is placed in the right pan
in the ith weighing,

Then the n� p matrix X = (xi j ) completely characterizes
the weighing experiment.
Let us write w1; w2; � � � ; wp for the true weights of the
p objects, and y1; y2; � � � ; yn for the results of n weighings
(so that the readings indicate that the weight of the left
pan exceeds that of the right pan by yi in the weighing
of i), denote the column vectors of w’s and y’s by W and
Y respectively.
Then the readings can be represented by the linear model

Y = XW+e;

where e is the column vector of e1; e2; : : : ; en and ei is the
error between observed and expected readings. We assume
that e is a random vector distributed with mean zero and
covariance matrix σ2I . This is a reasonable assumption in
the case where the objects to be weighed have small mass
compared to the mass of the balance.
We assume X to be a non-singular matrix. Then the best
linear unbiased estimator of W is

Ŵ = (XTX)�1XTY

with covariance of Ŵ

Cov(Ŵ) = σ2(XTX)�1 :

Hotelling showed that for any weighing design the vari-
ance of ŵi cannot be less than σ2=n. Therefore, we shall
call a weighing design X optimal if it estimates each of
the weights with this minimum variance, σ2=n. Kiefer [8]
proved that an optimal weighing design in our sense is actu-
ally optimal with respect to a very general class of criteria.
It can be shown that X is optimal if and only if XTX = nI.
This means that a chemical balance weighing design X is
optimal if it is an n� p matrix of �1 whose columns are
orthogonal, that is an Hadamard matrix.

8. Hadamard matrices and optical
multiplexing

The connection between Hadamard designs and multiplex-
ing optics is now straightforward. In the optical case
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the unknowns wi represent intensities of individual spatial
and/or spectral elements in a beam of radiation. In con-
trast to scanning instruments which measure the intensities
one at a time, the multiplexing optical system measures
(i.e. weighs) several intensities (or wi ’s) simultaneously.
The yi’s now represent the readings of the detector (in-
stead of the reading of the balance). Finally, the weighing
design itself, X, is represented by a mask. More precisely,
one row of X, which specifies which objects are present in
a single weighing, corresponds to the row of transmitting,
absorbing or reflecting elements. We usually refer to such
a row as a mask configuration.
The two types of weighing designs – chemical and spring
balance designs – are realized by masks which contain ei-
ther transmitting, absorbing and reflecting elements (for the
chemical balance design) or simply open and close slots
(for the spring balance design). Note that the former case
requires two detectors, whereas in the latter case the ref-
erence detector can be omitted. In Hadamard transform
spectrometry the separated light is sent to a mask. Various
parts of the mask will be clear, allowing the light to pass
through, reflective (sending light to a secondary detector),
or opaque. Let us represent clear, reflective and opaque
by 1; �1 respectively. Then the configuration of the mask
is represented by a sequence of elements 1; �1.
Suppose k measurements are to be made, and suppose it is
convenient to measure the intensity of light at n points of
the spectrum. Then the experiment will involve k masks,
which can be thought of as n� k matrix of entries 1,
and �1. The efficiency of the experiment is the same as
the efficiency of the matrix as a weighing design. The best
systems of mask are thus derived from Hadamard matrices.

9. Screening properties of Hadamard
matrices

An array on two symbols with N rows and k columns is
a (N;k; p) screening design if for each choice of p columns,
each of the 2p row vectors appears at least once. Screen-
ing designs are useful for situations where a large number
of factors (q) is examined but only few (k) of these are
expected to be important.
Screening designs that arise from Hadamard matrices have
traditionally been used for identifying main effects only,
because of their complex aliasing structures. Without loss
of generality we can insist that the first column of any
Hadamard matrix contain only 1’s. Then, by removing
this column we obtain a (N;N� 1; p) screening design,
with p� 2. Some screening designs of this form were in-
troduced by Plackett and Burman [13] and they are termed
as Plackett-Burman designs. These designs can be gen-
erated from the first row, that consists of N�1 elements,
by cyclic arrangement. The second row is generated by
removing all the entries of the first row one position to
the right and placing the last element in the first position.
The third row is generated from the second row with the

same procedure, and the process stops when N� 1 rows
are generated. A row of -1’s is then added as the last row,
completing the design with N runs and N�1 columns. By
adding a column of all 1’s in a Plackett and Burman design
with N runs we obtain a Hadamard matrix of order N. In
fact, Plackett and Burman constructed Hadamard matrices
of order N, for all N� 100 except N = 92 which was later
given by Baumert, Colomb and Hall in 1962. For more
details see [16]. As an example, the first rows that generate
the Plackett and Burman designs with N = 8; 12; 16; 20
and 24 runs are given below.

8 +++�+��
12 ++�+++���+�
16 ++++�+�++��+���
20 ++��++++�+�+����++�
24 +++++�+�++��++��+�+����

After the identification of the active factors, the original de-
sign is then projected into k dimensions for further analysis,
that is, we select the columns that correspond to the active
factors to form a new design with N runs and k columns
which is called a projection.
Since the choice of k columns varies with the outcome
of the analysis, it is desired to study the properties of all
projection designs that may arise.
Projection designs that arise from Hadamard matrices are
either regular or non-regular factorial plans. Regular frac-
tional factorial designs, have simple aliasing structures and
usually arise from Hadamard matrices of orders N = 2p;
non-regular fractional factorial designs have complex alias-
ing structures.
The aliasing structure of regular factorial designs can eas-
ily be computed. On the other hand, the alias structure
of non-regular designs cannot easily be computed. For
more details on fractional factorial designs and screen-
ing experiments we refer the interested reader to Wu and
Hamada [20].

10. Supersaturated designs

Supersaturated designs are useful in situations in which the
number of active factors is very small compared to the total
number of factors being considered.
The use of Hadamard matrices to construct supersaturated
designs that can examine k=N�2 factors in n=N=2 runs,
where N is the order of the normalized Hadamard matrix
used. The first column of all 1’s is not taken into considera-
tion since it is fully aliased with the mean. Then, we choose
a branching column out of the remaining N� 1 columns
and we split the N runs into two groups. Group I contains
all the runs with the sign +1 in the branching column and
Group II contains the remaining runs. Then by deleting the
branching column either from Group I or Group II causes
the remaining N�2 columns to form a super saturated de-
sign to examine k= N�2 factors in N=2 runs.
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Applications of Hadamard matrices

11. Edge designs

These designs allow a model-independent estimate of the
set of relevant variables, thus providing more robustness
than traditional designs. They use a construction known as
skew-Hadamard matrices.
If the first row and first column of C is removed,
a (N�1)� (N�1) matrix S is obtained to be used in the
form

X =

�
1 S+ IN�1
1 S� IN�1

�

in order to obtain the resulting edge design, where
1T = (1;1; : : : ;1) is a 1� (N� 1) vector with all entries
equal to 1.

12. Idle column method

This uses Hadamard matrices of order N = 8t to construct
multi-level idle column arrays.
Let HN=2 be a normalized Hadamard matrix of order N=2.
We can denote this matrix by HN=2 = (1;C1; : : : ;CN=2�1).
Then it is well known that

HN =

 
HN=2 HN=2
HN=2 �HN=2

!

=

 
1 C1 : : : CN=2�1 1 C1 : : : CN=2�1
1 C1 : : : CN=2�1 �1 �C1 : : : �CN=2�1

!

is a Hadamard matrix of order N.
Remove the first column of HN and by treating the column
(1T ;�1T)T as the idle column, the product of columns
(CT

i ;C
T
i )

T and (CT
i ;�CT

i )
T for 1� i � N

2 � 1, equals to
the idle column. Then, for the level combinations of the
two columns in a pair, the recoding scheme

(�1;�1) �! �1
(�1;1) �! 0
(1;�1) �! 1
(1;1) �! 0

is used to construct a three level column.
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