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Abstract— The MANET networks are of prime interest for

military networks. One of the proeminent routing protocols

for MANET is OLSR, and indeed, OLSR has been used in

many evaluations and experiments of MANETs. As OLSR is

on its way to standardization, there are still a number of exten-

sions that are useful and sometimes necessary for practical use

of OLSR networks: such extensions are quality of service sup-

port, security, and OSPF interconnection. In this paper, we

present the architecture, design, specifications and implemen-

tations that we made to integrate these features in a military

test-bed. This test-bed is a real MANET comprising 18 nodes.

These nodes communicate by radio and use the IEEE 802.11b

MAC protocol. The OLSR routing protocol updates the rout-

ing table used by the IP protocol to forward packets.

Keywords— mobile ad hoc networks, OLSR, quality of service,

security, OSPF, interconnection.

1. Introduction

A mobile ad hoc network (MANET), is a collection of

autonomous mobile nodes communicating over a wireless

medium without requiring any pre-existing infrastructure.

These nodes are free to move about arbitrarily. MANETs

exhibit very interesting properties: they are self-organizing,

decentralized and support mobility. Hence, they are very

good candidates for tactical networks in military applica-

tions. Military world integrates today new concepts which

are, i.e., battlefield digitalization (NEB), network centric

warfare (NCW), aeroterrestrial operational bubble (BOA),

cooperative engagement. The goal of these concepts is

to create a total numerical network, amongst other things

on tactical perimeter, which connects the various tactical

pawns (i.e., headquarters, soldiers). In the general context

of military IP networks architecture (strategic, operative,

tactical), with implementations on various types of techno-

logical supports, and through various networks (i.e., fixed,

mobile, satellite), it is required for a MANET to be a full

IP network. As a MANET is generally multihop, and in

order to allow the communication between any two nodes,

a routing protocol must be used. The IETF MANET work-

ing group has standardized four routing protocols that cre-

ate and update the routing table used by IP. Among them,

optimized link state routing (OLSR) [1] is a proactive pro-

tocol where nodes periodically exchange topology informa-

tion in order to establish a route to any destination in the

network.

The OLSR [1] is an optimization of a pure link state rout-

ing protocol. It is based on the concept of multipoint re-

lays (MPRs). First, using multipoint relays reduces the

size of the control messages: rather than declaring all its

links in the network, a node declares only the set of links

with its neighbors that have selected it as multipoint re-

lay. The use of MPRs also minimizes flooding of control

traffic. Indeed only multipoint relays forward control mes-

sages. This technique significantly reduces the number of

retransmissions of broadcast messages. Each node acquires

the knowledge of its one-hop and two-hop neighborhoods

by means of periodic Hello messages. It independently se-

lects its own set of multipoint relays among its one-hop

neighbors in such a way that the multipoint relays cover

(in terms of radio range) all its two-hop neighbors. Each

node also maintains topological information about the net-

work obtained by means of topology control (TC) messages

broadcast by MPR nodes. The routing table is computed

by the Dijkstra algorithm. It provides the shortest route

(i.e., the route with the smallest hop number) to any desti-

nation in the network. In [2], we reported the performance

evaluation results showing that a MANET with OLSR rout-

ing achieves very satisfying performances.

However, OLSR, as defined in [1], does not support qual-

ity of service (QoS) and hence does not satisfy the mili-

tary operational constraints associated with the various traf-

fics exchanged in a tactical mobile ad hoc network. On

these tactical mobile networks, as on the fixed networks,

various types of traffics coexist: data, voice, and video.

These traffics have different characteristics and military

operational constraints. They must receive a differentiated

treatment: the importance of military operational flows

(i.e., hierarchical priority) must be taken into account

(example: “flash” message crossing a mobile ad hoc net-

work). The QoS support based on OLSR has to take into

account constrained environments and to optimize with re-

spect to this environment, the mechanisms which contribute

to QoS support. The concept of constrained environments

can correspond to various operational military criteria such

as low data bit rate, “time constrained network”, secured

architecture of “red/black” type, constraints of mobility. It

is also necessary to manage end-to-end QoS in an opti-

mal way, to correlate IP level quality of service with that

of the radio level. That leads, among other things, to

the optimization of the couples “QoS mechanisms – radio

medium access protocol (MAC layer)”: concept of “cross

layering”.
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Fig. 1. The CELAR MANET/OLSR platform. Explanations: ALGECO – a modular construction, INSC – interoperable networks for

secure communications.

We present a QoS support based on OLSR in Section 2.

Another requirement in a military network is security.

The OLSR routing protocol, as defined in [1], does not

meet this requirement. Indeed, a node can, for instance,

pretend to be another node or advertise false links. Such

a behavior can seriously damage the routing. In extreme

cases, no message reaches its destination. This problem

is common to both reactive and proactive routing proto-

cols. That is why, we have proposed mechanisms to pro-

vide a secure routing. These mechanisms will be presented

in Section 3.

A tactical network is not isolated, it should be able to com-

municate with other networks, more conventional. These

networks generally use open shortest path first (OSPF).

Consequently, an interconnection should be done between

the OLSR and the OSPF routing domains. We show how

to take advantage that both protocols are link based routing

protocols in order to perform such an interconnection. This

OLSR-OSPF interconnection is described in Section 4.

The MANET in general and OLSR networks specifically,

are of prime interest to DGA/CELAR (French MoD).

Hence in partenership with INRIA, which developped and

installed a MANET/OLSR platform at CELAR (Technical

Defense Center for Information Warfare), such OLSR-based

MANETs have been experimented and their features and

performances have been evaluated.

The platform used for experimentation is illustrated by

Fig. 1. It comprises 18 nodes which are routers, laptops

and VAIOs. They use the IEEE 802.11b protocol to access

the wireless medium. They operate with IPv4 or IPv6.

They use the OLSR protocol for routing. This protocol

has been enhanced with security functionalities and QoS

support. The nodes are distributed in the central tower of

the CELAR, and in a shelter, denoted ALGECO on Fig. 1,

and some of them are embedded in vehicles. This MANET

is interconnected to a wired network by means of an OLSR-

OSPF router. This router takes advantage of the fact that

both routing protocols are link-state protocols.

In this paper, we describe in Section 2 the QoS support

we have implemented on this platform. We will present

in Section 3 how to make the OLSR routing protocol se-

cure. Section 4 shows how to interconnect an OLSR rout-

ing domain with an OSPF one, taking advantage of the fact

that both are link state routing protocols.

2. QoS support in an OLSR MANET

Several works deal with QoS support in a MANET, see

for instance [3–6]. Some of them are based on the OLSR

routing protocol like [7–10]. The QoS support we have

implemented on the CELAR platform comprises five com-

ponents as illustrated by Fig. 2.

As resources are scarce in MANETs, our extension [10]

keeps the optimizations present in OLSR, which rely on

two principles:

– a partial topology knowledge: the advertised link set

is a subset of the whole topology;
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– an optimized flooding, called MPR flooding: it is

based on the concept of multipoint relays.

In this solution, we distinguish the four following classes

of flows, listed by decreasing priority order.

• Control flows. They are required to make the net-

work operational, like for instance OLSR messages.

This class is not allowed to user flows.

• Delay flows. These flows have delay requirements,

like voice flows. In this solution, they are processed

with a high priority.

• Bandwidth flows. These flows have bandwidth re-

quirements, like video flows.

• Best effort flows. They have no specific QoS re-

quirements.

In the following, we denote QoS flows, flows having delay

or bandwidth requirements. BE denote best effort flows.

Fig. 2. The QoS support with its five components.

The admission control is in charge of deciding whether

a new QoS flow can be accepted or not. The decision de-

pends on the bandwidth requested by this flow, the available

bandwidth at each node and the possible interferences cre-

ated by this flow. If there is not enough resources to accept

the new flow, this flow is rejected. The decision is taken

locally by the source of the QoS flow with regard to the

bandwidth requested by the flow.

We can notice that this admission control is applied only

on QoS flows. If BE flows were not constrained, they

could saturate the medium and degrade the QoS granted to

QoS flows. We introduce a leaky bucket on each node to

limit the bandwidth consumed by BE flows and protect the

QoS flows.

To select the shortest route meeting the bandwidth required,

the QoS routing protocol must know the bandwidth locally

available at each node. QoS signalling is introduced for

that purpose. QoS parameters values are disseminated in

the network by means of MPRs. The selection of MPRs

is modified to consider the bandwidth locally available at

each node. The main drawback of this solution lies in the

overhead generated. Each flooded message leads to a num-

ber of retransmissions higher than that obtained with native

OLSR [10]. In order to conciliate the optimized perfor-

mances of MPR flooding with QoS support, we distinguish

two types of MPRs.

• The MPRs, selected according to the native version

of OLSR, are used to optimize flooding.

• The QoS MPRs, selected considering the local avail-

able bandwidth, are used to compute the routes.

This extension of OLSR would provide better performances

if a QoS MAC were used. An ideal QoS MAC would be

deterministic, would grant access to the waiting packet with

the highest priority and would provide information concern-

ing the QoS at the MAC level (example: the local avail-

able bandwidth, the waiting time for transmission). How-

ever, even if the MAC layer does not support QoS, QoS

OLSR improves the quality of service provided to QoS

flows, as shown in [10, 11], where the protocol used is

IEEE 802.11b.

We can notice that this QoS support does not need any

additional message. The Hello and TC messages of OLSR

are extended with QoS information in order to allow any

flow source to compute the shortest route providing the

bandwidth requested by its new flow. As the problem

of finding a route meeting a given bandwidth has been

shown NP-hard in wireless networks subject to radio in-

terferences [4], we use an approximation to compute the

bandwidth consumed by a flow at the MAC level. This

approximation is used only by the QoS routing protocol

to select the route which also depends on the local avail-

able bandwidth measured at each node. Once a route has

been found for a QoS flow, it is used by all packets of the

flow considered, until either a shorter route is established

because network resources have been released, or it is no

longer valid because of a link breakage. Source routing can

be used for that purpose. Notice that BE flows are routed

hop-by-hop.

With this QoS support, QoS flows receive a throughput

close to this requested, their delivery rate is improved, be-

cause interferences are taken into account. Users perceive

the QoS improvement. Moreover, this gain is still obtained

in case of node mobility up to 20 m/s. In that case, some

additional rules should be taken in the selection of MPRs

and QoS MPRs, in order to avoid nodes at the transmission

range limit.

3. Security in an OLSR MANET

A significant issue in MANETs is that of the integrity

of the network itself. OLSR allows any node to partici-

pate in the network – the assumption being that all nodes

are behaving well and welcome. If that assumption fails,
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then the network may be subject to malicious nodes, and

the integrity of the network fails.

In OLSR as in any other proactive MANET routing proto-

col, each node must, first, correctly generate routing proto-

col control traffic, conforming to the protocol specification.

Secondly, each node is responsible for forwarding routing

protocol control traffic on behalf of other nodes in the net-

work. Thus incorrect behavior of a node can result from

either a node generating incorrect control messages or from

incorrect relaying of control traffic from other nodes. Thus

we have two types of attacks against the OLSR routing

protocol.

The first type of attack consists, for a node, in generat-

ing incorrect control message. For this first type of attack,

the node can generate a fake control message from scratch

or it can replay already sent control messages. In this sec-

ond case, we have an incorrect control message generation

using replay. Another even more advanced such replay at-

tack consists in capturing a control message in a given lo-

cation of the network and relaying it very rapidly to another

location to replay it.

In the second type of attack, the node is not relaying cor-

rectly either the control messages or the data packets. This

attack can range from the absence of relaying to an in-

correct relaying, e.g., a data packet can be forwarded to

a wrong next hop node.

The security architecture initially proposed in [12] that we

have used to counter the previous attacks relies on two main

mechanisms:

– a signature mechanism is used to authenticate control

messages;

– a timestamp mechanism is used to ensure the fresh-

ness of control messages.

This security architecture can be easily implemented using

the message format shown in Fig. 3. Notice that the op-

tional source interface address is used to make the sig-

Fig. 3. Format of a signed message.

nature depends on this address which is not in the

OLSR message; without this option attacker could replay

a Hello message changing the source interface address

which is found by OLSR in the IP header.

For the signature mechanism, three possibilities were con-

sidered.

• Signature with symmetric cryptography, traditional

asymmetric cryptography or identity-based (pairing-

based) cryptography.

• Using asymmetric keys (with traditional cryptogra-

phy) requires the distribution of these keys: this leads

to overhead and additional attacks.

• Identity-based cryptography (based on pairing) could

be an interesting solution, however the signature

and verification times are beyond the computational

power of the routers (see [16]).

For simplicity and computational power reasons, we have

implemented the HMAC authentication algorithm (which

MD5 hashing function) using a symmetric shared secret

key.

The timestamps are simply the times given by nodes inter-

nal clock. A strict synchronization of nodes clocks is not

necessary since the timestamp is used to complete the al-

ready existing protection offered by the message sequence

number and the duplicate set. As a matter of fact, messages

that are already in the duplicate set are silently dropped.

If the nodes clocks are of very poor quality, it is still possi-

ble to use them to generate timestamps. In [17] an OLSR

secure time protocol (OSTP) is presented. It allows nodes

to run with non-synchronized clocks while the timestamps

are still using the nodes clocks.

With such security architecture and without compromised

nodes, the above mentioned attacks can be countered ex-

cept the relay attacks. Attacker nodes will be maintained

outside the network; these nodes will never be relays and

will even not be present in the routing table of the net-

work nodes. The relay attacks as the attacks in presence

of compromised nodes are more difficult to counter; pos-

sible techniques are proposed in [13–15]. Compromised

nodes have the knowledge of given crypotgraphic keys of

the network.

4. OSPF interconnection

4.1. Overview

The OLSR and OSPF are both well-established proto-

cols with different application areas. However in the mil-

itary networks, at different levels, there are network in-

frastructures that fit the requirements of either OLSR

or OSPF.

Hence, one important feature is to be able to integrate both

types of networks and make them interoperate. A general
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solution is to use an external protocol such as border gate-

way protocol (BGP) [18], to connect networks with differ-

ent routing technologies.

Fortunately, OSPF and OLSR share some similarities: they

are both link state protocols. Hence a possibility exists to

make both interoperate.

In this spirit, we indeed designed, implemented and experi-

mented a mechanism to perform OSPF/OLSR interconnec-

tion. The core idea is the following: OSPF and OLSR

both incorporate mechanisms in order to exchange rout-

ing information with other routing protocols; hence those

mechanisms are used.

4.2. Principles of the OSPF/OLSR interconnection

The OLSR features a simple and efficient mechanism to

import routes coming from another routing protocol: host

and network association (HNA) messaging. With these

messages, an OLSR node can advertise it has reachabil-

ity to non-OLSR hosts or networks. For instance, if an

OLSR node is also connected via another interface to an

OSPF network, it can periodically generate and transmit

such HNA messages including the OSPF network’s IP pre-

fixes. Routes to the OSPF network will then be included

in OLSR-driven routing tables.

Similarily, OSPF features its own mechanisms to import

routes coming from another routing protocol: link state

advertisement (LSA) messages type 5 and 7. These mes-

sages advertise routes that are “external” to the OSPF

network, which are then included in OSPF-driven rout-

ing tables. There are however two different types of

metrics.

In order to achieve OLSR/OSPF interconnection, it is there-

fore sufficient to use these two mechanisms to transfer

routes between OSPF and OLSR through the interface

routers (the routers that have both OSPF and OLSR in-

terfaces).

4.3. Implementation of the OSPF/OLSR interconnection

In practice, in OLSR and OSPF, the mechanisms to import

route from other protocols are implementation-dependent.

Hence, we started with the choice of two implementations:

the OLSR implementation which is used is the OOLSR

implementation [20] from INRIA.

The OSPF (OSPFv3) implementation which is used, is part

of the Quagga [21] routing suite (precisely quagga-0.99.4).

It is a derivative of Zebra [23]. Notice that we will use

the names Zebra and Quagga interchangeably, since the

architecture, interfaces and code are near identical.

The overview of Quagga, is given by supporting doc-

umentation [22]: “Quagga is a routing software suite,

providing implementations of OSPFv2, OSPFv3, RIP v1

and v2, RIPv3 and BGPv4 for Unix platforms, particularly

FreeBSD, Linux, Solaris and NetBSD. The Quagga archi-

tecture consists of a core daemon: zebra, which acts as an

abstraction layer to the underlying Unix kernel and presents

the Zserv API over a Unix or TCP stream to Quagga clients.

It is these Zserv clients which typically implement a rout-

ing protocol and communicate routing updates to the ze-

bra daemon”, . . . such as ospf6d, implementing OSPFv3

(IPv6).

Hence, the central part of Quagga, is the zebra daemon

which is offering an API, called Zserv. This main daemon

is in charge of actually performing low-level or system-

level parts, such as for instance setting up the routes in the

kernel. It is also in charge of exchanging routes, interfaces

and addresses information to the daemons.

Figure 4 represents the architecture of Quagga: each rout-

ing protocol is implemented as a daemon.

Fig. 4. Zebra/Quagga architecture.

As a result of running the routing protocol, some routes

are detected or exchanged between some nodes in the net-

work.

Instead of setting directly the routes as in traditional routing

protocol implementations, the routing daemons communi-

cate the added/deleted routes to the main daemon zebra,

which will add/remove them actually in the network.

An important point is that the Zserv protocol between

the main daemon and the routing protocol daemons in-

cludes the ability to send routes in both directions: hence,

in Fig. 4, the ospf6d daemon is also able to get routes

which are set up by ripgngd for instance, if it has regis-

tered to do so. This feature is largely used in the Quagga

routing suite, in order for daemons to redistribute routes

obtained by other daemons.

4.4. Interconnection between OOLSR and Quagga:

QOED

In order to interconnect OLSR and OSPF, we have de-

cided to use the traditionnal way of Quagga: another rout-

ing daemon is added, which sets routes by communicating

with the main Quagga daemon. The exchange of routes

between OLSR and OSPF is then done through this main

daemon.
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As shown on Fig. 5, the communication is actually done

indirectly, using a daemon called QOED, Quagga OOLSR

Exchange daemon, which mediates between Quagga and

OOLSR. The reasons for this are multiple, but mostly re-

late to the desire for limiting the changes to OOLSR and

Quagga.

Fig. 5. Quagga/OOLSR interconnection architecture.

To Quagga main daemon zebra, QOED appears as a normal

Quagga routing daemon, which gives some routes (OLSR

routes), and asks for other routes (IPv6 OSPF routes).

To ospf6d, QOED appears indirectly: this daemon has the

ability to redistribute routes from other protocols (such

as RIP, BGP, . . .) QOED and OLSR appear through the

routes they set in zebra.

To OOLSR, QOED appears as a daemon implementing the

specific protocols for route exchanges OOLSR→QOED and

QOED→OOLSR.

A crucial point of the architecture and implementation,

is that, the Quagga/Zebra Zserv protocol is re-used, and

also that additional protocols for route exchanges between

OOLSR and QOED are used.

5. Conclusion

In this paper, we have shown how to extend OLSR in

order to provide QoS support, ensure a secure routing

and interconnect the OLSR and OSPF domains. All these

extensions take care of MANET specificities: radio in-

terferences, high dynamicity and low capacity resources.

They have been implemented on a real MANET/OLSR

platform comprising 18 nodes. Performances obtained on

this platform allow us to conclude that the OLSR exten-

sions are very useful to military applications and very

significantly improve the network behavior, in particular

when self-organization, mesh operations, with a possible

high mobility are required. MANET solutions have to be

considered today for tactical edge routing scenario, but

also for transit networks, where it would require more

studies concerning the scalability. MANET meets mil-

itary requirements and that in particular below Brigade

echelon.
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