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Abstract—The work presents a new signature scheme, called

the multi-threshold signature, which generalizes the concept of

multisignature and threshold signature. This scheme protects

the anonymity of signers in a way the group signature does –

in exceptional circumstances the identities of signers may be

revealed. Due to the new party – completer, in our scheme

the threshold size may vary together with the message to be

signed. The presented scheme is based on the RSA signature

standard, however other signature standards might be applied

to it as well.

Keywords— public key cryptography, threshold signature, mul-

tisignature, secret sharing.

1. Introduction

Threshold and multiparty cryptography represent a wide

and important area of the modern cryptography. The large

part of it deals with the signature schemes such as threshold

signatures and multisignatures.

Threshold signatures (c.f. [3, 9]) allow any group of l users

to create a signature provided l ≥ t (where t is a thresh-

old level, fixed in advance). The multisignature allow any

group of members to sign the given message. The iden-

tities of signers are recognized in the verification phase

and then the decision if the signature is accepted is made

(see [1, 4–6]). The verification of the signature applies the

public keys of corresponding signers.

This paper is motivated by the following problem: given the

group G of cardinality l and the pair (m,t) we are interested

in the cryptographic scheme that allows any subgroup of

at least t members to sign the message m. In distinction to

the common (t, l)- threshold type scheme, here the value

of t is not fixed in advance, but may vary together with

the message m to be signed. Thus it might be very useful

in applications, where the number of members required to

agree upon the given document depends for instance on the

document’s “priority”.

Another motivation is to propose the flexible signature

scheme, which according to the requirement is anonymous

or admits the signer’s identification. This flexibility was not

the subject of the previous papers, which generally speak-

ing treat both solutions in separate schemes (c.f. [2] for

example). From the practical point of view this ability

seems to be significant in applications, and the proposed

scheme provides the essential computational savings by

joining both options within one cryptographic scheme.

Therefore as an input for the signing algorithm is the

triple (m,t,b), where b ∈ {0,1} points out if the signature

should be anonymous or with the signer’s identification.

The resulting signature is to be verified by any user apply-

ing the public key related to G. Similarly as in the con-

ventional threshold signature scheme we require, that any

subgroup of cardinality less than t is not able to generate

the valid (i.e., accepted in the verification phase) signature,

attached to the pair (m,t) (in fact it is not able to obtain

any nontrivial information about the group G secret value

related to its public key).

In the conventional threshold signature the group public key

corresponds to the given value of the threshold size t. The

idea of our solution relies on the enlarging somewhat the

original group G, so that the public key corresponds to the

bigger threshold size t ′. Then the additional shares (han-

dled by the additional (trusted) party C) will ensure the

valid threshold size t ≤ t ′ of the original signer’s group.

One could extend the above idea considering not necessar-

ily trusted completer (e.g., C being another group of sign-

ers). Such a development in direction of dynamic groups

was considered in [10]. The presented scheme is based on

the RSA [7] cryptosystem, and the Shamir secret sharing

protocol [8]. The paper contains the detailed description

of the corresponding multi-threshold signature scheme and

the proof of its correctness.

2. General system model

2.1. Participants

We assume there are three parties involved in the protocol:

1. Group G = {P1,P2, ...,PK}.

2. The trusted dealer D responsible for the generation

of private and public key of G and the correspond-

ing shares for the group members P1,P2...,PK and

completer C.

3. The trusted completer C responsible for flexibility of

the threshold level.

We assume that the dealer D is connected with the mem-

bers Pi and the completer C by the secure channels. Com-

munication between C and members of G goes through

group message board (GMB) where all the partial signa-

tures are published (only C and G have an access to it).

2.2. Notation

Throughout the paper N is a positive integer such that:

N = pq, where p = 2p′ + 1, q = 2q′ + 1 and p,q, p′,q′ are

prime numbers satisfying min(p′q′) > 2K, where K = |G|.
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By λ we denote the Carmichael lambda function defined

as

λ (∏p(pαp) = lcmpλ (pαp), where:

λ (2) = 1 λ (2α) = 2
α−2 for α ≥ 3,

λ (4) = 2 λ (pα) = pα−1(p−1) if p is an odd prime

number.

Conventionally the elements e and d are mutually inverse

elements in Z∗
λ (N), i.e., ed ≡ 1 mod λ (N).

We assume that every member Pi ∈ G is equipped with the

RSA keys (Ni,ei,di), respectively, needed for the authen-

tication process within corresponding parties or members.

To assure the uniqueness of m′ at the end of the verification

process we assume that N1 < N2 < ... < NK :

Ai =
2K

∏
j=1

j 6=i

(xi − x j) mod λ (N) for i = 1,2, ...,2K

(xi are numbers assigned to Pi).

Moreover we let A′
i = Ai/2

ϖi , where ϖi is the highest power

of 2 dividing Ai and ϖ = maxi∈I ϖi.
Throughout the paper h will denote a given secure hash

function.

3. Initialization phase

In the initialization phase the dealer D performs the follow-

ing steps:

1. Generates the key pair (d,e) and a random polyno-

mial:

f (x) = d + c1x + c2x2 + ....+ cKxK ∈ Z∗
λ (N)[x] .

2. Computes the shares si = f (xi)(A
′
i)
−1

mod λ (N) and

sends them to Pi (i ≤ K) and to C (for K + 1 ≤ i ≤
2K).

Remark 1. Since min(p′,q′) > 2K the odd numbers

A′
i are invertible mod λ (N).

3. Selects g∈ Z∗
N of order equal to λ (N) and sends g−1

mod N and zi = (gsi)−1
mod N to the completer C.

4. He publishes the group public key gpk = (N,e,ϖ).

4. The anonymous signing phase

Assume that the tuple (m,t,b) (m is the message, t ∈
{1,2, ...,K} is the threshold level and b ∈ {0,1} points out

the signature type (anonymous or with signers identifica-

tion)), is given to G and C in order to be signed by a given

subgroup of G. Then the following steps are performed:

1. Completer’s computation. The completer C com-

putes m∗ = h(m,t,b) and applies the partial signa-

ture generation algorithm to compute and publish in

the GMB the following partial signatures: σit+1
(m∗),

σit+2
(m∗), ...,σiK+1

(m∗) (where σi(m
∗) = (m∗)si

mod N) together with the sequence it+1, it+2, ..., iK+1

of terms contained in the interval (K,2K].

2. Group signing. The group members who decide to

sign m, compute m∗ = h(m,t,b) and publish their

partial signatures σi1(m
∗),σi2(m

∗), ...,σit (m
∗)

(1 ≤ i1 < i2 < ... < it ≤ K) in the GMB.

3. Partial signature verification. The completer se-

lects a random r ∈ Zλ (N) computes v∗ = (m∗

g
)r

mod N and sends it to the members participating

in the signature generation. Next he computes

v j = (zi j
σi j

(m∗))r
mod N. Each member compute

v∗j = (v∗)s j mod N and sends it to the completer.

Completer accepts the partial signature σi j
if and only

if v j = v∗j .

4. Generation of the full signature. With the aid of

the share combining algorithm the K +1 valid signa-

tures σi1(m
∗), σi2(m

∗), ...,σiK+1
(m∗) allow any del-

egated signer to compute the anonymous signature

((m,t,0),σB(m∗)), where:

B = {i1, i2, . . . , it , it+1, . . . , iK+1},

σB(m∗) = ∏
j∈B

σ
ai
i j

(m∗) mod n and

ai = 2
ϖ−ϖi ∏

j∈B
j 6=i

(0− x j) ∏
j/∈B

(xi − x j) is the appropriate

Lagrange coefficient for the group B.

When the signature σB(m∗) (verified by any signer

using gpk) occurs in the GMB, the anonymous sign-

ing is finished and σB(m∗) is published.

5. The authorization phase

In the following part the members Pi ∈ B authorize subse-

quently their signature using the private keys di. We remark

that the description of B contains the subscripts of the cor-

responding signers. They perform the following steps:

1. P1 computes the message m′ = h(m∗,σ ,B), signs it

using his private key d1 and sends the obtained ci-

phertext δ1 = (m′)d1 mod N1 to the second mem-

ber P2.

2. P2 verifies if (δ1)
e1 ≡ m′

mod N1 if so, he computes

δ2 = (δ1)
d2 mod N2 and sends it to P3 (otherwise he

publishes in GMB information about this disagree-

ment and stops the protocol).

3. Similarly P3 verifies the obtained ciphertext δ2 using

the public keys (e2,N2) and (e1,N1), respectively,

computes δ3 = (δ2)
d3 mod N3, sends it to P4 and

so on.
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4. The last member Pt ∈ B verifies δt−1 using the public

keys:

(et−1,Nt−1),(et−2,Nt−2), ...(e1,N1) and, if the verifi-

cation is correct, he computes δt = (δt−1)
dt mod Nt

and publishes it in GMB.

5. The full signature of the message m is the 5 – tuple:

((m,t,σ),B,δt ), where Pi ∈ B are ordered as obove.

According to the requirements, the chosen member of the

group G publishes the anonymous signature ((m,t,0),σ)
or the full signature ((m,t,1),σ ,B,δt).
The anonymous signature does not imply any informa-

tion about the identities of the members of B. It proves

only that at least t members of group G have signed the

document m.

6. The verification phase

After receiving the anonymous signature (m,t,σ) the ver-

ifier uses the group public key (e,N,ϖ) to compute m∗ =

h(m,t,b) mod N and then accepts it provided σ e ≡ (m∗)2
ϖ

mod N. To verify the full signature (m,t,σ ,B,δt ) one first

computes m′ = h(m∗,σ ,B) and then accepts the full signa-

ture provided (...((δ et
t mod Nt)

et−1 mod Nt−1)...)
e1 ≡ m′

mod N1.

Theorem 1. The correctly created signature will be accepted

in the verification phase.

Proof. First let us consider the anonymous signature

(m,t,σ). It is sufficient to prove that σ e ≡ (m∗)2
ϖ

mod N.

By definition we have σ = ∏
i∈B

σ
ai
i = (m∗)

∑
i∈B

siai

, where:

si = f (xi)(A
′
i)
−1

mod λ (N) , (1)

ai = 2
ϖ−ϖi ∏

j∈B, j 6=i

(0− x j)∏
j/∈B

(xi − x j) . (2)

It remains therefore to show that ∑
i∈B

siai = 2
ϖ d = 2

ϖ f (0) =

F(0) mod λ (N).

In this connection we apply the Lagrange interpolation for-

mula for

F(x) = 2
ϖ f (x) ∈ Z∗

λ (N)[x] whose graph passes by the points

(xi1 ,F(xi1)),

(xi2 ,F(xi2)), . . . ,(xiK+1
,F(xiK+1

)), where B = {i1, i2, . . . , it ,
it+1, . . . , iK+1}.

We have F(x) = ∑
i∈B

f (xi)(2
ϖ Λi(x)) mod λ (N), where:

2
ϖ Λi(x) = 2

ϖ−ϖi ∏
j∈B, j 6=i

(2ϖi(
x− x j

xi − x j

)) =

= 2
ϖ−ϖi ∏

j∈B, j 6=i

(x− x j)∏
j/∈B

(xi − x j)
2t

∏
j=1

j 6=i

2
ϖi

(xi − x j)
mod λ (N).

Hence in view of Eqs. (1) and (2) and definition of A′
i we

obtain:

F(0) = ∑
i∈B

f (xi)(A
′
i)
−1 ·2ϖ−ϖi ∏

j∈B, j 6=i

(0− x j) ∏
j/∈B

(xi − x j) =

= ∑
i∈B

siai mod λ (N), as claimed.

To verify the full signature (m,t,σ ,B,δt ) we use the bijec-

tivity of transformation x 7−→ xdi mod Ni (1 ≤ i ≤ t) and

the inequalities:

N1 < N2 < ... < NK (that assure the uniqueness of m′ at the

end of the verification process).

Taking δt to the power et we obtain the unique δt−1

mod Nt−1 then (using et−1) the unique δt−2 mod Nt−2 and

finally the unique

((m′)d1)e1 = m′
mod N1 as required.

�

7. Conclusions

Two basic benefits of the presented scheme are the

scaleability (in threshold size) and generality – it might

be useful for the applications typical for the threshold-type

signatures or multisignatures.

The final output is the pair: anonymous G-signature and

the full signature (containing the signers’ identifications).

The completer can be regarded as a well protected machine

which for the input value (m,t,b) outputs the corresponding

partial signatures.

As proved in [10] the multi-threshold device with C re-

garded as another group of signers could be developed in

the direction of dynamic groups signatures schemes.

Appendix – an example

1. System parameters:

p = 23 q = 47 N = 1081 λ (N) = 506

p′ = 11 q′= 23 t = 3 min(p′,q′) > 6 = 2t

e = 13 d = 39 m∗ = 7 G = {P1,P2,P3}

2. Dealer generates random polynomial:

f (x) = 3x3 +5x2 +7x+39 and sets xi = i which im-

plies:

Ai =
6

∏
j=1

j 6=i

(i− j) mod 506

3. We have:

A1 = 386 A′
1

= 193 ϖ1 = 1 (A′
1
)−1 = 409 f (1) = 54

A2 = 24 A′
2

= 3 ϖ2 = 3 (A′
2
)−1 = 169 f (2) = 97

A3 = 494 A′
3

= 247 ϖ3 = 1 (A′
3
)−1 = 295 f (3) = 186

A4 = 12 A′
4

= 3 ϖ4 = 2 (A′
4
)−1 = 169 f (4) = 339

A5 = 482 A′
5

= 241 ϖ5 = 1 (A′
5
)−1 = 21 f (5) = 68

A6 = 120 A′
6

= 15 ϖ6 = 3 (A′
6
)−1 = 135 f (6) = 403

ϖ = maxi ϖi = 3

53



Bartosz Nakielski, Jacek Pomykała, and Janusz Andrzej Pomykała

4. Dealer, using the table above, computes:

si = f (i)∗ (A′
i)
−1

mod λ (N)

s1 = (54 ∗ 409) mod 506 = 328

s2 = (97 ∗ 169) mod 506 = 201

s3 = (186 ∗ 295) mod 506 = 222

s4 = (339 ∗ 169) mod 506 = 113

s5 = (68 ∗ 21) mod 506 = 416

s6 = (403 ∗ 135) mod 506 = 263

5. Dealer selects g = 3 and sends to the completer the

following values:

g−1
mod N = 3

−1
mod 1081 = 721 and

z1 =(gs1)−1
mod N =331

z2 =(gs2)−1
mod N =259

z3 =(gs3)−1
mod N =639

z4 =(gs4)−1
mod N =949

z5 =(gs5)−1
mod N =538

z6 =(gs6)−1
mod N =647

6. We assume that m∗ = h(m,2,0) = 7

and B = {2,3,4,6}.

7. P2 and P3 generate and send to the completer their

partial signatures:

σ2 = (m∗)s2 mod N = 7
201

mod 1081 = 711

σ3 = (m∗)s3 mod N = 7
222

mod 1081 = 3

8. Completer verifies partial signatures created by P2

and P3.

He selects r = 5 and sends v∗ to P2 and P3, where

v∗ = (m∗g−1)r
mod N = (7 ·721)5

mod 1081 = 732.

Next the completer computes:

v2 =(z2 ·σ2(m
∗))r

mod N =(259 ·711)5
mod 1081= 948

v3 =(z3 ·σ3(m
∗))r

mod N =(639 ·3)5
mod 1081 = 16

9. Members P2 and P3 compute and send to the com-

pleter:

v∗
2
= (v∗)s2 = 732

201
mod 1081 = 948

v∗
3
= (v∗)s3 = 732

222
mod 1081 = 16

10. Completer accepts σ2, σ3 and creates two missing

partial signatures:

σ4 = (m∗)s4 mod N = 7
113

mod 1081 = 964 and

σ6 = (m∗)s6 mod N = 7
263

mod 1081 = 79

11. P2 (as a delegated user) computes the interpolation

coefficients:

a2 =2
1(0−3)(0−4)(0−6)(2−1)(2−5) mod 506=216

a3 =2
2(0−2)(0−4)(0−6)(3−1)(3−5) mod 506=262

a4 =2
1(0−2)(0−3)(0−6)(4−1)(4−5) mod 506=216

a6 =2
0(0−2)(0−3)(0−4)(6−1)(6−5) mod 506=79

and finally he computes the anonymous signature:

σ = ∏
i∈B

σ
ai
i =

(711
216 ∗ 3

262 ∗ 964
216∗ 79

386) mod 1081 = 354

12. To verify the signature ((m,1,0),354) we use the

public key (1081,13,3) and compute:

σ e
mod N = 354

13
mod 1081 = 909

(m∗)2
ϖ

mod N = 7
8

mod 1081 = 909 and accept the

signature.
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