
Paper A seamless software defined

radio development flow for waveform

and prototype debugging
Ernst Martin Witte, Torsten Kempf, Venkatesh Ramakrishnan,

Gerd Ascheid, Marc Adrat, and Markus Antweiler

Abstract—With the increasing number of wireless commu-

nication standards flexibility has gained more and more im-

portance which has lead to the software defined radio (SDR)

concept. However, SDR development has to face many chal-

lenges, among them are the questions how SDR systems can

be designed to achieve flexibility, architectural efficiency, en-

ergy efficiency and portability at the same time. These re-

quirements result in very elaborate architectures and a highly

increased design complexity. To cope with such complexity, we

proposed an SDR development flow. During the development

of such SDR, debugging becomes more efficient on a proto-

type hardware implementation than on a simulation model.

However, error analysis on a prototype suffers from strong

limitations like a reduced state visibility. In this paper, an

extension to the SDR development flow is presented and suc-

cessfully applied to an example SDR. It allows for an efficient

error analysis with the SDR simulation model by the feedback

of stimulus data from the prototype.

Keywords— software defined radio, prototype platform, wave-

form development environment, electronic system level simula-

tion, waveform debugging, stimulus feedback.

1. Introduction

The demand for software defined radio (SDR) systems orig-

inates from the fact that today’s radio communication sys-

tems are designed for a single (or at least a very small num-

ber of) waveform specification(s) only. This causes severe

interoperability issues. In order to achieve interoperabil-

ity the key idea is to add flexibility to the radio hardware

platform. This allows to run many standards on the same

hardware and with this, enables the communication part-

ners to easily agree on a common waveform. The flexibility

issue can be solved by adding programmability and recon-

figurability to the hardware platform. However, there are

well known trade-offs between flexibility, performance and

energy efficiency. Heterogeneous multiprocessor systems

on chip (MPSoCs) are a widely accepted candidate to cope

with this challenge. Compared to traditional chip designs,

this approach results in a highly increased design com-

plexity.

While the goals of flexibility, programmability, and recon-

figurability are major hardware-related challenges in design-

ing an SDR system, an additional more software-related

key topic is portability. Portability means that a waveform

implementation can be transferred from one platform to an-

other. Portability of waveforms is of particular importance

if waveforms shall be exchanged between communication

partners with different hardware platforms. For instance,

currently efforts have been started within NATO to estab-

lish a waveform library for the coalition partners.

The software framework to realize these features has been

set by the software communications architecture (SCA) [2].

However, especially the hardware and portability related

problems raise a couple of issues, which are not addressed

by the SCA so far and have to be solved by the waveform

and system designers. For example, it has not been spec-

ified how to generate software (SW) and hardware (HW)

code that is applicable to a given specific SDR platform.

In order to solve these problems, a concept for a seam-

less design flow for a waveform development environ-

ment (WDE) starting from a waveform description lan-

guage (WDL) [3, 4] down to the (semi-) automatic gen-

eration of SCA-compliant SW/HW code for implementa-

tion on a (more or less) arbitrary SDR platform has been

proposed in [1]. Such a concept can be the basis for the

waveform library mentioned above. It contains waveforms

specified in the WDL which can be ported with reasonable

efforts by the nations to their national SDR platforms by

(semi-) automatic code generation.

The key idea of the concept is an orthogonalization of

the waveform description (functionality and topology), the

hardware platform design and the mapping to an arbitrary

hardware platform. These three tasks lead to an iterative

process of implementing, testing and taking design deci-

sions.

Due to its complexity, the SDR design process can bene-

fit from the hardware/software co-design concepts of elec-

tronic system level (ESL) [5] simulation platform (“virtual

prototype”). It allows designers to iteratively refine the

complete SDR MPSoC model on different abstraction lev-

els depending on the intended use. For example, fast in-

struction accurate models support the software developer

while cycle accurate hardware models are needed by the

hardware designer. During hardware implementation, ad-

ditional models will be required, depending on the abstrac-

tion level used in the ESL simulation platform. Although

the WDE concept has a focus on a consistent design flow,

the functional correctness of a prototype hardware imple-

mentation cannot be guaranteed. Therefore, implementa-

tion errors will also be detected on the HW prototype and

must be analyzed and resolved. However, due to the com-

21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235205999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ernst Martin Witte, Torsten Kempf, Venkatesh Ramakrishnan, Gerd Ascheid, Marc Adrat, and Markus Antweiler

plexity of SDR systems, debugging via standard debug in-

terfaces such as joint test action group (JTAG) is difficult.

The visibility of internal states is limited. A debug halt of

one component can break the synchronicity between parts

of the system, for example a transmitter continues to run

while the receiver is being debugged which results in lost

samples at the receiver (real time requirements). There-

fore, this approach of debugging the SDR prototype results

in very high development and analysis effort.

However, often errors that are only identified in the pro-

totype implementation, still can be analyzed in the ESL

simulation model. This makes error analysis significantly

faster and more efficient by allowing the complete visibility

of internal states, and guarantees the synchronicity of all

system parts. In order to enable the system level analysis

of errors found in later development stages such as a pro-

totype or hardware implementation, it is necessary to drive

the system simulation into the same state as the hardware.

This can only be achieved by a suitable stimulus recorded

on the prototype and fed back into the system simulation.

In this paper, the extension of the WDE concept with stim-

ulus feedback loops as shown in Fig. 1 will be presented.

Fig. 1. Prototype toolflow integration by feedback loops.

Section 2 will briefly introduce the concept for a seamless

waveform development and highlight development issues

arising when realizing a hardware implementation, e.g., on

a prototype platform. In Section 3 the development flow of

an example SDR prototype system will be presented and

analyzed with respect to debugging properties. Based on

these investigations, Section 4 will present the realization

of the stimulus feedback loops.

2. Concept for seamless waveform

development

In [1] a concept for a seamless design environment for

SDRs starting from a waveform description down to the

implementation onto an SDR hardware platform has been

proposed. In contrast to formerly known approaches [3, 4],

it is neither limited to a single aspect like waveform de-

scriptions nor to a specific tool.

2.1. Concept description

The concept is based on four key elements as illustrated in

Fig. 2.

Fig. 2. Design flow from application description to implementa-

tion.

Waveform specification. Firstly, a waveform application,

typically given as a written document (specification) is im-

plemented based on general programming language struc-

tures that are applicable for both software and hardware

description. The waveform application is decomposed into

functional blocks (e.g., voice coding, forward error cor-

rection, and modulation) and communication edges. Every

edge represents a specific path for data exchange between

two blocks. The full assembly of blocks and edges forms

a topology graph. The topology graph summarizes the data

dependencies of the functional blocks and combines them

to a complete waveform application.

The SDR HW platform description. Secondly, the de-

scription of an arbitrary SDR hardware platform composed

of processing elements, communication architectures and

memories is required. The processing elements are the de-

vices which perform the signal processing. They can be

grouped into programmable (e.g., GPP, DSP), reconfig-

urable (e.g., FPGA), and configurable (e.g., ASIC) de-

vices. Communication architectures describe the data ex-

change capabilities and are mainly characterized by their

type (e.g., wires, point-to-point) and their interfaces.

Mapping. Thirdly, the mapping of a waveform application

onto an arbitrary platform has to be considered in temporal

(when to execute) and spatial (where to execute) manner.

The mapping has a major influence on system performance

and is a key issue for portability. Throughout the mapping

process, the functional blocks of the waveform decomposi-

tion are mapped to the processing elements and the edges

to the communication architectures, respectively. It is pos-

sible that several blocks are mapped to the same processing

element such that a scheduling of the functional execution

becomes necessary. It is also possible that one block is

split up into subtasks which are processed in parallel by

different elements. Criteria for the feasibility analysis of

such mappings have been discussed in [6].

22



A seamless software defined radio development flow for waveform and prototype debugging

Code generation. Last but not least, the fourth step pro-

vides the link from the application and platform description

towards the system implementation by a (semi-) automatic

generation of SW/HW code [1].

2.2. SDR development and prototyping

The proposed concept highlights a seamless design flow

from the waveform down to the SDR implementation. De-

spite of a minimization of design errors by a seamless de-

sign flow, such a highly complex SDR prototype will likely

suffer from still undetected errors, even if the SDR appli-

cation and/or hardware platform have been fully verified

separately. Such a prototype implementation might reveal

issues and corner cases, e.g., related to synchronization,

latency problems, etc.

The proposed concept requires the developers to define the

SDR application, the SDR hardware platform and the map-

ping of waveform tasks to processing elements. Therefore,

the concept does not eliminate the developer’s expertise

from these tasks.

However, with these descriptions, the concept enables the

generation of the full system simulation and even the hard-

ware configuration (e.g., FPGA bit streams, etc.), if a suffi-

ciently detailed hardware description is provided. Thus, an

iterative design space exploration will become highly effi-

cient. The system simulation can provide detailed informa-

tion about the performance (throughput, latency, bus/CPU

load, etc.) of single components or the whole system. With

this analysis the developer is able to optimize the mapping,

the hardware platform and/or the waveform, depending on

his development focus. Furthermore, debugging benefits

from the full visibility of internal states. A prototype work-

bench realizing this concept has been introduced in [7].

The ESL models for the system simulation can be gener-

ated for the complete SDR. Fast field programmable gate

array (FPGA) prototyping is enabled by the automatic gen-

eration of implementation files for the Xilinx embedded

development kit (EDK) [8].

The SDR hardware platform can be considered as MPSoC.

Designing such an MPSoC is a challenging task, which is

addressed separately in research. Recent research activities

have put forth the paradigm of ESL [5]. Complete systems

(MPSoCs) are assembled and can be analyzed and verified

by simulation. To cope with the enormous complexity,

simulations are run at a higher level than register transfer

level (RTL) using transaction level modeling (TLM).

Figure 3 illustrates the system development flow based on

the proposed concept. After finalizing the description of

SDR waveform application and hardware platform, devel-

opers can map the application to the hardware platform.

The generated output is the system implementation, which

can either be an ESL simulation model or an FPGA proto-

type. The mapping must meet design constraints. Initially,

estimates will be used which are based on a high level

of abstraction of the hardware platform behavior. Then,

ESL simulation will be used to verify functional correct-

ness and to check compliance with performance constraints,

Fig. 3. System development flow.

(e.g., throughput, latency). Required modifications are ap-

plied to improve the mapping. ESL simulations can also be

used within the SDR waveform development or hardware

platform development cycle. In order to approach portabil-

ity, the development iterations of waveform and hardware

should be orthogonalized, ensuring that for example dur-

ing the waveform development, only the waveform will be

modified without relying on a specific mapping or hardware

platform. If all requirements are fulfilled, developers can

leave the ESL domain and can go into the phase of proto-

typing. This is usually at a point, where the bug detection

rate decreases in a saturation process [9]. Bug detection

now requires extensive simulation at low abstraction level

(full hardware details). Using a prototype implementation

can significantly speed up the bug detection process [10].

Possible issues occurring on the prototype are:

• Undetected software and system errors. Some errors

only occur after extensive testing (coverage issues).

• Errors in the design of hardware components that

were not captured in the system level model (model-

ing errors).

• Errors that only occur in a real time environment,

for example interaction with analog frontend/analog

components.

Therefore, debugging capabilities of the SDR prototype

with feedback loops to the simulation are inevitable to al-

low developers to identify and fix such errors efficiently.

In the following section we will highlight these problems

based on an exemplary waveform and an FPGA prototype.

In Section 4 a solution will be then introduced that allows

to cope with the debugging issues.

23



Ernst Martin Witte, Torsten Kempf, Venkatesh Ramakrishnan, Gerd Ascheid, Marc Adrat, and Markus Antweiler

3. SDR development flow

The WDE concept presented in Section 2 has been realized

as a development flow which will be discussed in the fol-

lowing. First, the SDR application waveform used in the

study will be shortly introduced followed by an exemplary

SDR hardware platform. The system implementation, sim-

ulation and prototype will then be discussed with respect

to the debugging and error analysis capabilities.

3.1. SDR application – example waveform

The waveform utilized in this study has been selected in or-

der to keep the design complexity reasonable, while putting

the focus on the investigation of the SDR development flow

aspects. Therefore, the waveform does not include chan-

nel coding, interleaving, pilot insertion, etc. The wave-

form implements a differential quaternary phase shift key-

ing (DQPSK) modulation scheme, pulse shaping is done

by a Root-Raised-Cosine filter (roll-off factor 0.22, over-

sampling factor 8), resulting in a symbol rate of 5 MHz

at a sampling rate of 40 MHz. The center frequency is

in the 2.4 GHz band, the receiver input is a signal at an

intermediate frequency (IF) of 10 MHz, mixed down to the

base-band by a digital down converter (DDC).

For data transmission purpose, a simple frame structure

consisting of 128 symbols has been defined. The payload

data is a small black and white picture of 160×160 pixels

in size. The picture is transmitted one line per frame with

the line number transmitted at the beginning of the frame

followed by the pixel data.

The transmitter will not be discussed in the following since

it consists only of a DQPSK modulator and a pulse form fil-

ter. It is a pure VHDL implementation due to the simplicity

of the given waveform. The receiver topology of this SDR

application is given in the block diagram in Fig. 4. The

signal is received as complex values at an IF of 10 MHz

converted to base band by the DDC block and filtered by

the matched filter (MF) block. The further processing only

requires timing synchronization for symbol detection and

a non-data-aided phase synchronization. The demodulator

is directly followed by the frame synchronization and pay-

load data decoder.

Fig. 4. Receiver block diagram for demonstration waveform.

In future, this waveform can be easily extended or replaced

depending on the focus of investigations which in our case

will be the SDR development flow aspects rather than on

the waveform itself.

3.2. Example SDR hardware platform

The main parts of the SDR receiver are software (C-code),

only parts with high computational requirements are real-

ized in hardware (VHDL). Therefore, the system basically

consists of two processing elements as depicted in Fig. 5

(a MicroBlaze general-purpose RISC processor [11] and

a hardware accelerator). The MicroBlaze processor has

been selected at this point in time for its ease of use and

debugging capabilities. It does not allow real-time opera-

tion (scaled performance only). In future, a more suitable,

real-time capable processor will be used.

Fig. 5. Sample SDR platform used in this study.

The processor is connected to the peripherals (e.g., VGA

port) by buses and IP cores. The hardware accelerators im-

plement DDC and a MF. The basic IP core for accessing

the SRFC RF interface has been provided by Signalion [12]

and extended for the use in the MicroBlaze environment.

3.3. Mapping

With the SDR application and HW platform description

developers can accomplish the mapping phase according

to the concept. Each task of the SDR application has to

be mapped onto a processing element (PE) of the underly-

ing SDR HW platform. For this exemplary SDR platform,

the mapping step is rather simple since only the Micro-

Blaze processor and dedicated hardware accelerators exist.

Therefore, the mapping allocates the RF RX interface, the

MF and DDC block as 1 : 1 mapping to the dedicated hard-

ware accelerators, whereas all other parts have a temporal

mapping as software tasks onto the MicroBlaze processor.

The system implementation can then be generated from

the defined mapping as depicted in Fig. 3. Such a sys-

tem implementation can be an ESL simulation or an FPGA

prototype system, depending on the intended use case,

e.g., whether a hardware implementation or a system model

on a higher abstraction level will be investigated.

3.4. Simulation environment

The simulation of the complete SDR system is performed

in the ESL domain. This allows the developer to test

24



A seamless software defined radio development flow for waveform and prototype debugging

the interaction of all components at the same time and at

different abstraction levels of the implementation.

System simulation and abstraction provide many advantages

in ESL design. However, there are also issues with this ap-

proach: raising the abstraction level introduces inaccuracy.

Therefore, a successful detection depends on the type of er-

ror and on the selection of an appropriate abstraction level.

In our simulation, the components of the hardware plat-

form have been modeled with the abstractions described in

the following. More accurate models can be selected when

required.

• The MicroBlaze processor is represented by an in-

struction accurate simulation model.

• The DDC and MF components have been modeled by

SystemC blocks [13]. In this implementation, their

latency was not included in the system simulation

models, although this is possible in general.

• The RF interface has been reduced to a clocked

source of complex valued channel data. The control

interface has been reduced to the functional mini-

mum.

However, the use of the system simulation results in several

important advantages:

• Visibility. The developer has control over the com-

plete internal state of all components and can trace

the states of special interest. The possibilities for vi-

sualization of such traces for a time instant or over

time are manifold.

• Synchronicity. The system can be halted syn-

chronously. Therefore, no component will continue

to run while the state of another is being investi-

gated, guaranteeing a consistent debugging environ-

ment over time.

The following sections describe the FPGA prototype setup,

the hardware implementation of the SDR platform its de-

bugging capabilities.

3.5. SDR hardware implementation – prototyping

Prototyping platform setup. The hardware prototyping

platform is depicted in Fig. 6. It comprises an off-the-

shelf Xilinx Virtex 4 FPGA development board, namely the

ML402 board and a commercial RF-interface (SRFC) from

Signalion [12] with two channels in the 2.4 and 5.0 GHz

bands. The ML402 board provides on-board memories as

well as a series of common interfaces. For debugging pur-

poses, a standard JTAG interface is available which con-

nects (among other chips) to the FPGA. Designs within

the FPGA can connect to this JTAG chain, for example

the MicroBlaze processor core. The Signalion SRFC RF

frontend is connected to the 64-bit general purpose header

of the ML402 board via an adapter card which provides ac-

cess to the channel data and additional 22 signals via two

mictor connectors. Sampling rates can be coarsely adjusted

between 8 MHz and 80 MHz. In this setup, a sampling rate

of 40 MHz is used.

Fig. 6. Hardware prototype platform.

The SDR hardware platform implementation. The hard-

ware platform has been set up with the Xilinx EDK devel-

opment kit from a set of basic IP blocks connected by

buses. This implementation flow clearly follows the pro-

posed concept, the only gap that needs to be bridged later

is the translation from the system simulation configuration

into an EDK project configuration. The software binaries

already used in the system simulation can be re-used with-

out any changes for running the receiver prototype. The

RF interface is connected by an IP core provided by Sig-

nalion [12]. The hardware acceleration blocks for the down

conversion (DDC) and the matched filter have been imple-

mented by IP cores generated from the Xilinx IP core li-

brary. FIFO buffers connected to the buses guarantee that

blocks of continuous samples will be received by the pro-

cessor.

Fig. 7. Prototype debugging: consistency and visibility.

25



Ernst Martin Witte, Torsten Kempf, Venkatesh Ramakrishnan, Gerd Ascheid, Marc Adrat, and Markus Antweiler

Prototype debugging. The debugging options available

on the prototype platform used in this study are shown in

Fig. 7. One traditional way of debugging is the hardware

access via a JTAG interface [14]. Peripherals not connected

to the JTAG chain, e.g., the RF interface, will continue to

produce data, for example in case the processor is being

debugged via JTAG, stimulus data from the RF frontend

will be lost. Therefore, the time span for investigating such

a prototype is very limited, analysis of past or future states

is almost impossible or includes the risk of being inconsis-

tent due to non synchronized IP blocks.

In order to deal with the temporal visibility, the require-

ments are high: investigating 64 bit at only 40 MHz results

already in 320 MByte/s. The use of a logic analyser allows

to record at this rate and at least solves the problem of

analysing future and past by selecting the trigger position

relatively to the recorded data carefully.

The traditional top-down approach which has also been part

of the proposed WDE concept (see Section 2) requires an

extension in order to allow the analysis of errors found in

a complex prototype system, such as an SDR. This exten-

sion by feedback loops of stimulus data will be discussed

in the following section.

4. Stimulus feedback to higher

abstraction levels

As demonstrated, it is desirable to analyze errors, which

were detected on the prototype, in the ESL simulation.

However, there is a significant issue. It is neither suffi-

cient nor possible to trace and copy the SDR hardware

state to the system simulation due to limited visibility, pos-

sible differences in accuracy and the size of the complete

state information. One option is to feed back the essential

stimulus data from the prototype to the system simulation.

4.1. Requirements on stimulus recording and feedback

Typically, there is a delay between the occurrence of an

error and the observation of its effect. Therefore, a thor-

ough analysis of the observed malfunction and the recent

processing steps is necessary for debugging. Viewing past

events usually is not possible on a real HW implementation,

but it is feasible to record the stimulus data which caused

the error and to use this as input for the ESL simulation. In

order to allow such feedback of stimulus data the following

requirements have to be fulfilled:

• State reachability. The stimulus data must be suit-

able to drive the system into the state where the bug

can be detected and analyzed. This also poses re-

quirements on the accuracy of the system simulation

and the interfacing to the lower abstraction levels.

• Looking into the past. The stimulus data must cover

a specific amount of the time before the bug is de-

tected. This puts high requirements on the recording

technology in order to store a significant amount of

stimulus data before detecting the bug.

• Stimulus recording. The stimulus data can arrive at

high data rates. Interfaces such as serial communica-

tions, USB or hard disk are not capable to deal with

such data rates.

• Stimulus import. Seamless stimulus import is key

for each simulation setup. This is basically a require-

ment for the simulation interfaces and optional data

format conversion.

A question is, how much stimulus data before the trigger

point is required to reach the same system state that in-

cludes the underlying error. Because of recursive structures

it may in principle require collection of data starting with

the last known state (e.g., after reset). However, in the sig-

nal processing domain, many subsystems implement either

stream like processing without recursion (e.g., FIR filters

or buffers) or have a limited number of recursions. There-

fore, such systems can be steered into a desired state by

appropriate choice of history length. This will most proba-

bly not apply for layers above the physical layer. However,

internal states, e.g., on layers 2 and 3 are changing at much

lower rates, making state recording feasible. Therefore, fu-

ture extensions will have to consider this mix of stimulus

and state recording for higher layers.

4.2. Stimulus feedback implementation

Since the SDR application depicted in Fig. 4 does not

contain loops on the task level and no recursion inside

the tasks, the internal state of the SDR application only

depends on a limited number of recent input samples re-

ceived from the RF frontend. Therefore, recording the digi-

tized channel data at the interface to the SRFC RF frontend

is sufficient. The amount of data that needs to be recorded

before a bug is detected depends mainly on the latencies of

filters and FIFO buffers.

For recording stimulus data, the original adapter card

connecting the GPIO connector on the ML402 board to

the SRFC RF frontend had been extended by two mic-

tor connectors, providing a total of 64 bit of parallel data.

Since the samples on the RF RX channel have been se-

lected, stimulus data is being recorded at a sample rate

synchronous to the sampling clock. The SRFC interfaces

only occupies 42 of the 64 bit on the mictor interface, leav-

ing further 22 free bits for steering the recording trigger or

additional stimulus data.

The data is recorded by a logic analyzer connected to the

mictor connectors on the adapter card. In this setup, the

logic analyzer samples the data with the RF RX sampling

clock provided by one signal on the mictor connectors.

Thus the logic analyzer is synchronous with the SDR re-

ceiver implementation and the recorded data can be used

as stimulus within the system simulation.

To drive the ESL simulation into the correct state, the

stimulus data before a bug detection has to be recorded.

Modern logic analysers offer a trigger option, that allows

for the setting of the trigger position at any point in time

26



A seamless software defined radio development flow for waveform and prototype debugging

within the later recorded data. Of course, the trigger con-

dition has to be set up manually. This requires a designer

to drive the free debug signals on the mictor connectors

accordingly (Fig. 8).

Fig. 8. Stimulus feedback loop realization.

The recorded data has been imported in ESL simulations

and even into Matlab simulations. This step basically con-

sists of the implementation of suitable import filters. The

data can be taken expressively or it might require the con-

version, e.g., to fixed/floating point number representations

like in Matlab. For the given example SDR system, im-

porter filters for both Matlab and the ESL simulation have

been developed.

4.3. Design process experience

This stimulus feedback setup has been used during the ini-

tial setup of the SDR hardware platform with the intention

to be used in future more extensively. Nevertheless, the

feedback setup has already been valuable during the devel-

opment steps of the SDR receiver system presented above.

On this platform, several basic algorithmic implementations

have been tested, for example, the implementations of es-

timations and corrections for timing, phase and frequency

errors.

One of the most helpful features of an ESL simulation us-

ing the recorded data has been the aspect of visualization.

Depending on the type of data (e.g., complex values) a suit-

able visualization (e.g., I/Q diagram) can be generated from

any trace of internal states, data transfers on buses, etc.

Therefore, the data analysis is virtually unlimited and gives

valuable support to the SDR developer.

When testing the first implementations of a basic frequency

error estimation and correction, the synchronization result

has been visualized on the VGA port of the prototype sys-

tem first. On the prototype, the frequency synchronization

result was hardly recognizable while the system simulation

seemed to work well with a generic channel input. Af-

ter some investigation the input stream sampled within the

FPGA was recorded by the logic analyzer and fed back into

the ESL simulation. The errors could be reproduced and vi-

sualized, this time even with Matlab. The key point in this

case has been the visualization which uncovered occasional

phase shifts by 90
◦. The investigation showed that this er-

ror has been caused by a combination of the DDC hard-

ware block together with the erroneous clocking setup in

the FPGA which created an occasionally mis-sampled data

stream. The interesting aspect is the fact, that although the

error cause has been in very low level hardware, the feed-

back flow proved to be highly efficient for error tracking

and analysis.

Other errors have been localized in the software implemen-

tation, e.g., during the initial implementation of the timing

synchronization. Here, it has been extremely helpful to

debug the software implementation while comparing the

outputs visually with the results of the Matlab simulation

for the same input data.

Therefore, the extension of the WDE development concept

by stimulus feedback loops results in valuable benefit for

already small scale SDR systems. It will most probably be

inevitable for highly complex future SDR systems. Future

extensions will need to include state recording at much

lower rates for layers above the physical layer.

5. Conclusion and outlook

In this paper we proposed an extension to our WDE concept

that feeds back stimulus data from a hardware implementa-

tion such as a prototype back to the system simulation. This

allows the more efficient error analysis. We believe, that

such a feedback concept is essential for the development of

future complex SDR systems.

In future, this concept will be used in our SDR develop-

ment approaches based on the WDE concept. Extensions

will need to include state recording at much lower rates

for layers above the physical layer. So far, the steps of

the proposed development flow had been realized mainly

independently from each other. Therefore one important

point for future development is the realization of a seam-

less prototype work bench for SDR development ranging

from the waveform’s specification down to the implemen-

tation. Furthermore, with the help of this tool chain we will

investigate more realistic SDR systems and communication

standards like, e.g., the MIL-STD-188-110B. Additionally

we will investigate more in depth the key issue of portability

for SDRs.

Acknowledgements

This research project was performed under contract with

the Technical Center for Information Technology and Elec-

tronics (WTD-81), Germany.

The authors would like to thank J. Holzer, C. Hatzig,

S. Hartmann and H. Siegmar of this Center for inspiring

discussions.

27



Ernst Martin Witte, Torsten Kempf, Venkatesh Ramakrishnan, Gerd Ascheid, Marc Adrat, and Markus Antweiler

References

[1] T. Kempf, E. M. Witte, V. Ramakrishnan, G. Ascheid, M. Adrat,

and M. Antweiler, “An SDR implementation concept based on wave-

form description”, Freq. J. RF-Eng. Telecommun., vol. 60, iss. 9–10,

pp. 171–175, 2006.

[2] “Software communications architecture (SCA) specifications V2.2”,

JTRS, http://sca.jpeojtrs.mil

[3] E. D. Willink, “Waveform description language: moving from im-

plementation to specification”, in IEEE Milit. Commun. Conf. MIL-

COM 2001, Vienna, Virginia, USA, 2001, vol. 1, pp. 208–212.

[4] M. S. Gudaitis and R. D. Hinman, “Practical considerations for

a waveform development environment”, in IEEE Milit. Commun.

Conf. MILCOM 2001, Vienna, Virginia, USA, 2001, vol. 1,

pp. 190–194.

[5] M. Grant, B. Bailey, and A. Piziali, Electronic System Level Design

and Verification. San Francisco: Morgan Kaufmann, 2007.

[6] T. Kempf, M. Adrat, E. M. Witte, V. Ramakrishnan, M. Antweiler,

and G. Ascheid, “On the feasibility of implementing a wave-

form application onto a given SDR platform”, in Milit. CIS Conf.

2006 MCC 2006 (formerly NATO RCMCIS), Gdynia, Poland,

2006.

[7] T. Kempf, E. M. Witte, V. Ramakrishnan, G. Ascheid, M. Adrat,

and M. Antweiler, “A workbench for waveform description based

SDR implementation”, in Softw. Defin. Radio Tech. Conf., Denver,

USA, 2007.

[8] “Platform studio and the EDK”, Xilinx, http://www.xilinx.com/ise/

embedded design prod/platform studio.htm

[9] Y. Malka and A. Ziv, “Design reliability – estimation through statis-

tical analysis of bug discovery data”, in Proc. Des. Automat. Conf.

DAC’98, San Francisco, USA, 1998.

[10] K. Morris, “Debug dilemma – simulate or emulate?”, FPGA Pro-

gramm. Log. J., Jan. 2005, http://www.fpgajournal.com/

articles 2005/20050111 debug.htm

[11] “Microblaze processor reference guide”, Xilinx,

http://www.xilinx.com/ise/embedded/mb ref guide.pdf

[12] “Prototyping the wireless future”, Signalion GmbH,

http://www.signalion.de

[13] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with

SystemC. Norwell: Kluwer, 2002.

[14] “Standard Test Access Port and Boundary-Scan Architecture”, IEEE

Std. 1149.1, 2001.

Ernst Martin Witte received

his Dipl.-Ing. degree in elec-

trical engineering in August

2004 from the Institute for In-

tegrated Signal Processing Sys-

tems, RWTH Aachen Univer-

sity, Germany, where he is cur-

rently pursuing the Ph.D. de-

gree. Currently, his research in

the area of software defined ra-

dio focuses on architecture ex-

ploration, implementation and prototyping of application

specific instruction-set processors.

e-mail: witte@iss.rwth-aachen.de

Institute for Integrated Signal Processing Systems

RWTH Aachen University

Templergraben 55

D-52056 Aachen, Germany

Torsten Kempf received his

Dipl.-Ing. degree in electri-

cal engineering from RWTH

Aachen University, Germany, in

December 2003. In 2004 he

joined the Institute for Inte-

grated Signal Processing Sys-

tems and is currently pursuing

the Ph.D. degree. Currently his

research topics are multiproces-

sor system on chips, electronic

system level design and software defined radios.

e-mail: kempf@iss.rwth-aachen.de

Institute for Integrated Signal Processing Systems

RWTH Aachen University

Templergraben 55

D-52056 Aachen, Germany

Venkatesh Ramakrishnan re-

ceived his M.Sc. degree in in-

formation and communication

engineering from University of

Karlsruhe, Germany, in 2004.

He is currently pursuing the

Ph.D. degree at the Institute

for Integrated Signal Processing

Systems, RWTH Aachen Uni-

versity, Germany. Currently, his

research in the area of software

defined radio focuses on the implementation of waveform

and prototyping.

e-mail: ramakris@iss.rwth-aachen.de

Institute for Integrated Signal Processing Systems

RWTH Aachen University

Templergraben 55

D-52056 Aachen, Germany

Gerd Ascheid received his

Dipl.-Ing. and Dr.-Ing. degrees

in electrical engineering (com-

munications eng.) from RWTH

Aachen University, Germany. In

1988 he started as a co-founder

CADIS GmbH. The company

has successfully brought the

system simulation tool COS-

SAP to the market. In 1994

CADIS GmbH was acquired by

SYNOPSYS, a California-based EDA market leader where

his last position was Senior Director (executive manage-

ment), wireless and broadband communications service

line, synopsys professional services. Since April 2003 he is

the Head of Institute for Integrated Signal Processing of the

RWTH Aachen University (as successor of Prof. Heinrich

Meyr). He is also the Chairman of the cluster of excellence

in “Ultra-high speed Mobile Information and Communica-

tion (UMIC)” at RWTH Aachen University.

28



A seamless software defined radio development flow for waveform and prototype debugging

e-mail: ascheid@iss.rwth-aachen.de

Institute for Integrated Signal Processing Systems

RWTH Aachen University

Templergraben 55

D-52056 Aachen, Germany

Marc Adrat received his Dipl.-

Ing. degree in electrical engi-

neering and the Dr.-Ing. de-

gree from RWTH Aachen Uni-

versity, Germany, in 1997 and

2003, respectively. From Jan-

uary 1998 to March 2005, he

was with the Institute of Com-

munication Systems and Data

Processing at RWTH Aachen

University. His work was fo-

cused on joint/combined source-channel (de)coding for

wireless communications with the main focus on itera-

tive, turbo like processes. Since April 2005, he is with

the Research Establishment for Applied Sience (FGAN

FKIE/KOM) in Wachtberg. His current research interests

include software defined radio, cognitive radio, (military)

waveform design as well as concepts for a waveform de-

scription language.

e-mail: adrat@fgan.de

Research Institute for Communications,

Information Processing, and Ergonomics (FKIE)

Research Establishment for Applied Science (FGAN)

Neuenahrer st 20

D-53343 Wachtberg-Werthhoven, Germany

Markus Antweiler received

his Dipl.-Ing. and Dr.-Ing. de-

grees from the RWTH Aachen

University, Germany, in 1986

and 1992, respectively. The

focus in his industry career

was on system design and ver-

ification of digital communi-

cation transceivers and imple-

mentation in application spe-

cific integrated circuits and

field programmable gate array technology. Projects he

has worked for were in the area of digital modula-

tion/demodulation and coding/decoding for satellite com-

munication, microwave links, cellular and wireless com-

munication systems. In 2004, he joint the Research

Institute for Communications, Information Processing,

and Ergonomics of the Research Establishment for Ap-

plied Science (FGAN e.V.) in Wachtberg, where he

is heading the Communication Systems Department.

His current interests are now on tactical communica-

tions with focus on mobile ad hoc networks, secu-

rity, software defined radios and reconaissance of radio

systems.

e-mail: antweiler@fgan.de

Research Institute for Communications,

Information Processing, and Ergonomics (FKIE)

Research Establishment for Applied Science (FGAN)

Neuenahrer st 20

D-53343 Wachtberg-Werthhoven, Germany

29


