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Abstract— Wireless sensor network localization is a complex

problem that can be solved using different types of methods

and algorithms. Nowadays, it is a popular research topic.

What becomes obvious is that there are several criteria which

are essential when we consider wireless sensor networks. Our

objective is to determine accurate estimates of nodes location

under the constraints for hardware cost, energy consumption

and computation capabilities. In this paper the application of

stochastic optimization for performing localization of nodes is

discussed. We describe two phase scheme that uses a combi-

nation of the trilateration method, along with the simulated

annealing optimization algorithm. We investigate two vari-

ants of our technique, i.e., centralized and distributed. The

attention is paid to the convergence of our algorithm for dif-

ferent network topologies and trade-off between its efficiency

and localization accuracy.

Keywords— ad hoc network, localization, simulated annealing,

stochastic optimization, wireless sensor network.

1. Introduction to Localization

Techniques

Recent advances in wireless communications and electron-

ics have enabled the development of low-cost, low-power

and multi-functional sensors that are small in size and com-

municate in short distances. Cheap, smart sensors, net-

worked through wireless links are deployed in various en-

vironments and are used in large number of practical ap-

plications, such as environmental information (light, pol-

lution, temperature, etc.), traffic or health monitoring, in-

trusion detection, etc., [1], [2]. Typical sensor network

consists of a large number of nodes – densely deployed

sensor devices.

A sensor node by itself is strongly constrained by a low

battery power, limited signal processing, limited computa-

tion and communication capabilities, and a small amount

of memory; hence it can sense only a limited portion of

the environment. However, when a group of sensor nodes

collaborate with each other, they can accomplish a much

bigger task efficiently. In order to do that nodes networked

through wireless must gather local data and communicate

with other nodes. The information sent by a given sen-

sor is relevant only if we know what location it refers to.

Location estimation allows applying the geographic-aware

routing, multicasting and energy conservation algorithms.

It makes self-organization and localization capabilities one

of the most important requirement in sensor networks.

The simplest way to determine a node location is to equip

this node with a global positioning system (GPS) or install

it at a point with known coordinates. Because of the cost,

size of sensors and constraints on energy consumption most

sensors usually do not know their locations, only a few

nodes, called anchors are equipped with GPS adapters. Lo-

cation of other nodes, called non-anchors, are unknown.

In such model the techniques that estimate the locations of

non-anchors based on information about positions of an-

chors are utilized.

In this paper we define the mathematical model of the

distance-based localization, and propose a two phase local-

ization algorithm that uses a combination of the trilateration

method, along with the stochastic optimization. We con-

sider two possible implementations: centralized and dis-

tributed ones. The efficiency of proposed method strongly

depends on the values of control parameters specific to the

optimization algorithm. We report the results of numeri-

cal tests performed for various values of these parameters.

We discuss the results obtained both for centralized and dis-

tributed scheme in terms of accuracy and energy efficiency.

Finally, we model the localization task as a multiobjective

optimization problem, maximizing the localization accu-

racy while minimizing the localization time.

2. Localization Problem Formulation

Let us formulate the mathematical model of the localization

problem for distance-based approaches. There is a network

of N nodes (sensors) in ℜk with bidirectional communica-

tion constraints as the edges. Positions of M nodes (an-

chors) are known. The Euclidean physical distance di j be-

tween the ith and jth nodes can be measured if (i, j) ∈ Ni,

where Ni = {(i, j) : ||xi − x j|| = di j ≤ r} denotes a set of

neighbors of node i, xi ∈ ℜk and x j ∈ ℜk true locations

of nodes i and j, r is a fixed parameter called transmis-

sion range (radio range). Assuming that we have the mea-

surements of distances between all pairs of nodes we can

formulate the model of the localization problem that mini-

mizes the sum of squares of errors in sensor positions for

fitting the distance measurements:

min
x̂

{

J(x̂) =
N

∑
i=M+1

∑
j∈Ni

(d̂i j − d̃i j)
2

}

, (1)

where

d̂i j = ||x̂i − x̂ j||, x̂i ∈ ℜk, x̂ j ∈ ℜk. (2)

The d̂i j denotes an estimated distance between nodes

i and j, x̂i an estimated position of node i and x̂ j an es-

timated position of a neighbor of node i, d̃i j a measured

distance between nodes i and j.
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3. Properties of Localization Techniques

Let us now turn to focus on the properties of localiza-

tion procedures. Even if we restrict the localization task

to distance-based localization with anchors, there is still

a number of facets that should be taken into account in

design process.

3.1. Centralized versus Distributed Computation

First of all it is necessary to determine if any required com-

putations should be performed locally, by the participants,

on the basis of some locally available measurements or all

measurements should be reported to a central station that

computes positions of nodes in the network and distributes

them back to the participants? There are two main issues

that should be considered: scaling and efficiency.

Centralized algorithms are designed to run on a central

machine with plenty of computational power. Each sensor

node gathers the measurements of distances between its

and all the neighbors and passes them to the central station

where the positions of nodes are calculated. The computed

positions are transmitted back into the network. Centralized

algorithms overcome the problem of nodes computational

limitations by accepting the communication cost of moving

data back to the central station. This trade-off becomes less

effective as the network grows larger, because it unduly

stresses nodes near the base station. Furthermore, the data

transmission to the central station involves time delays, so

the centralized techniques can not be acceptable in many

applications (e.g., mobile nodes).

In contrast, distributed algorithms are designed to run in the

network where computation takes place at every node. Each

node is responsible for determining its position using in-

formation about neighbors. It offers a significant reduction

in computation requirements because the number of neigh-

bors is usually not very big (between ten and twenty), so

the number of connections is usually a few orders of mag-

nitude less. The use of a distributed computation model

is also tolerant to node failures, and distributes the com-

munication cost evenly across the sensor nodes. On the

other hand, distributed algorithms implementation is often

connected with the loss of information and because of that

the results which can be obtained are usually less accurate.

3.2. Speed versus Accuracy

The most important figure of merit for a localization sys-

tem is the accuracy of its results. Of course the obtained

accuracy depends on the selected method, range estima-

tion error, the number of anchors, etc. In case of many

methods, especially based on optimization techniques, the

accuracy is also dependent on computation time. The open

question is when the computation should be stopped and

how to decrease the calculation effort?

3.3. Complexity of the Algorithm versus Energy

Conservation

In our analysis we consider localization algorithms based

on the stochastic optimization. It is obvious they are more

complicated than one-hop localization techniques or simple

multi-hop localization techniques based only on connectiv-

ity described in [3]. Intuitively, the more complex localiza-

tion algorithm is the better accuracy can be obtained. It is

true if we consider only the localization accuracy. How-

ever, we have to realize that more complex algorithm is

connected with higher energy consumption for data pro-

cessing and data transmission.

4. Criteria for Distance-Based

Localization

Multiple criteria can be formulated for distance-based lo-

calization. In our analysis we decided to stress the im-

portance of four criteria which are essential for wireless

sensor nodes. The majority of them are connected with

economical or technical constraints such as hardware cost,

low battery power and limited computation capabilities.

4.1. Localization Accuracy

To evaluate the performance of tested algorithms we used

the mean error between the estimated and the true location

of the non-anchor nodes in the network, defined as follows:

LE =
1

N −M
·

∑N
i=M+1

(||x̂i − xi||)
2

r2
·100%, (3)

where xi denotes the true position of the sensor node i

in the network, x̂i estimated location of the sensor node i

and r the radio transmission range. The location error LE

is expressed as a percentage error. It is normalized with

respect to the radio range to allow comparison of results

obtained for different size and range networks.

4.2. Hardware Cost

Each sensor node is equipped with radio. It is necessary to

communicate with other nodes. For example CC2420 radio

module, which is very popular, allows the programmer to

measure the received signal strength (RSS) that can be used

to calculate inter-nodes distances d̃i j used in the perfor-

mance function defined in Eq. (1). But many authors says,

that this measure is inaccurate [4]. We can obtain more ac-

curate results if we decide to use additional hardware, for

example, a sensor board equipped with light, temperature,

acoustic signals sensors. Acoustic signals in conjunction

with the standard radio module allows to use time differ-

ence of arrival (TDoA) technique, which is assumed to be

more accurate than RSS. However, additional hardware can

significantly increase the sensor node cost (typical sensor

board costs approximately the same as a simple node).
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4.3. Energy Consumption

In our analysis we consider only the energy consumed at

sensor nodes, and we do not take into account the energy

consumption for the base station, which is assumed not to

be energy constrained. At each sensor node energy is con-

sumed for data processing and data transmission. Energy

consumed for data processing depends on the quantity of

processed data and the complexity of the performed oper-

ations.

4.4. Localization Time

The same as energy also localization time is related to data

processing and data transmission. The communication time

depends on a network size, efficiency of multi-hop trans-

mission, complexity of the localization technique, and com-

putational power. It is not the aim of our work to improve

communication algorithms, but we would like to show how

localization algorithms can be improved in order to achieve

satisfying accuracy in a short time.

5. The TSA Scheme Description

5.1. Centralized TSA Method

In [5] we proposed the localization technique that uses

a combination of the geometry of triangles (trilateration),

along with the stochastic optimization. This algorithm op-

erates in two phases.

In the first phase the initial localization is provided. Tri-

lateration uses the known locations of a few anchor nodes,

and the measured distance between a given non-anchor and

each anchor node. To accurately and uniquely determine

the relative location of a non-anchor on a 2D plane using

trilateration alone, generally at least three neighbors with

known positions are needed. Hence, all nodes are divided

into two groups: group A containing nodes with known lo-

cation (in the beginning only the anchor nodes) and group B

of nodes with unknown location. In each step of the algo-

rithm node i, where i = M + 1, . . . ,N from the group B is

chosen. Next, three nodes from the group A that are within

node i radio range are randomly selected. If such nodes ex-

ist the location of node i is calculated based on inter-nodes

distances between three nodes selected from the group A

and the measured distances between node i and these three

nodes. The localized node i is moved to the group A. Oth-

erwise, another node from the group B is selected and the

operation is repeated. The first phase stops when there are

no more nodes that can be localized based on the available

information about all nodes location. It switches to the

second phase.

Due to the distance measurement uncertainty the coor-

dinates calculated in the first phase are estimated with

non-zero errors. Hence, the solution of the first phase

is modified by applying stochastic optimization methods.

Two techniques, i.e., simulated annealing and genetic al-

gorithm were considered. The numerical results obtained

for simulated annealing (SA) were much more promising

(see [5], [6]) w.r.t. calculated location accuracy and speed

of convergence. So, we decided to focus on this approach.

We called our method TSA (trilateration and simulated an-

nealing). The structure of the SA algorithm used in the

second phase of TSA is presented in Algorithm 1.

Algorithm 1: Simulated annealing algorithm used

in TSA

1: T = T0, T0 – initial temperature

2: ∆d = ∆d0, ∆d0 – initial move distance

3: while T > t f do

4: for i = 1 to P · (N −M) do

5: select a node to perturb

6: generate a random direction and move a node

at distance ∆d

7: evaluate the change in the cost function, ∆J

8: if (∆J ≤ 0) then

9: //downhill move ⇒ accept it

10: accept this perturbation and update

the solution

11: else

12: //uphill move ⇒ accept with probability

13: pick a random probability rp = uniform(0,1)

14: if (rp ≤ exp(−∆J/T)) then

15: accept this perturbation and update

the solution

16: else

17: reject this perturbation and keep the old

solution

18: end if

19: end if

20: end for

21: change the temperature: Tnew = α ·T , T = Tnew

22: change the distance ∆dnew = β ·∆d, ∆d = ∆dnew

23: end while

From the numerical experiments it was observed that the

increased value of the location error is usually driven by

incorrect location estimates calculated for a few nodes. The

additional functionality (correction) was introduced to the

second phase to remove incorrect solutions involved by the

distances measurement errors. The detailed description of

the correction algorithm can be found in [5].

5.2. Distributed TSA Method

From the numerical experiments performed for the cen-

tralized TSA method it was observed that centralized TSA

provides quite accurate location estimates even in the case

of unevenly distributed nodes with known positions.

However, in this approach we have to gather the measure-

ments of distances between all pairs of network nodes
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in a single computer to solve the optimization problem

Eq. (1). The data transmission to the central station in-

volves time delays and it can not be used in some applica-

tion, e.g., mobile networks. In contrast to the centralized

method we proposed a fully distributed method where com-

putations take place at every node. In this implementation

each node is responsible for determining its position using

local information about its neighbors.

Fig. 1. The state diagram for distributed TSA method.

The state diagram for distributed TSA algorithm is pre-

sented in Fig. 1. The estimated position of each node is

calculated in parallel. Every P iterations of SA algorithm

the neighboring nodes exchange the messages with the cur-

rent results of calculations.

Fig. 2. The scheme of exchanged messages.

The messages structure is illustrated in Fig. 2. Next, the

nodes update their location estimates. Many transmissions

are needed to obtain a reasonable solution.

6. TSA Scheme Evaluation

We performed many numerical tests to cover a wide range

of network system configurations including size of the net-

work (200 – 10000 nodes) and anchor nodes deployment.

Especially the anchor nodes deployment seems to be impor-

tant to evaluate the proposed approaches to sensor network

localization. Therefore we prepared a few test problems.

Figure 3 depicts four network topologies: a, b with evenly

distributed anchor nodes (a – random distribution, b – an-

chor nodes placed near the edges of a sensor field) and c,

d with anchor nodes deployed only in a part of the region

to be covered by sensors.

To solve the localization problem Eq. (1) we needed the

values of the measured distances between pairs of nodes.

In real applications the measured distance d̃i j between two

neighbor nodes is produced by measurement methods de-

scribed in literature [7], [8]. These methods involve mea-

surement uncertainty; each distance value d̃i j represents the

true physical distance di j corrupted with a noise describing

the uncertainty of the distance measurement. For the pur-

pose of numerical experiments we supposed that this dis-

turbance is described by introducing Gaussian noise with

a mean of 0 and a standard deviation of 1 added to the true

physical distance di j:

d̃i j = di j (1.0 + randn() ·n f ), (4)

where n f denotes a noise factor.
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Fig. 3. Test problems four network topologies: a, b with evenly

distributed anchor nodes (a – random distribution, b – anchor

nodes placed near the edges of a sensor field) and c, d with anchor

nodes deployed only in a part of the region to be covered by

sensors.

6.1. Centralized versus Distributed TSA Methods

Figure 4 presents the solution quality difference between

centralized and distributed algorithms for two test net-

works (b) and (c) depicted in Fig. 3. The obtained results

confirm that from the perspective of location estimation

accuracy, centralized algorithm provides more accurate lo-

cation estimates than distributed one. As a final result we

can say that for evenly distributed anchors we obtain quite

accurate solution using both methods, otherwise the results

of location estimation are much worse in case of distributed

version of our scheme.

Fig. 4. Localization error for centralized and distributed scheme;

test problems b and c.

Distributed version of localization algorithm has many ad-

vantages that were discussed in Subsection 3.1. However,

distributed algorithm performance is often connected with

the loss of information, which was confirmed in simulations

(see Fig. 4). There are two reasons of that: loss of infor-

mation due to parallel computation and loss of information

due to the incomplete network map.

6.2. Complexity of the Algorithm versus Energy Use

Let us now turn to the structure of our algorithm. It op-

erates in two phases. In the first phase the auxiliary solu-

tion (initial localization) is provided. The solution of the

first phase is modified by applying stochastic optimization

method in the second phase. Two aspects are worth con-

sidering here. First of all what does it mean that auxiliary

solution is provided, and how far this solution can be im-

proved in the second phase? The second question is, how

the stochastic optimization implies the energy consump-

tion?

The results obtained for centralized algorithm after the first

phase and the second phase (final result) are collected in

Table 1. The simulations were performed for four test net-

works depicted in Fig. 3.
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From this table we can see that stochastic optimization

greatly improves the solution quality. It is obvious that

the TSA algorithm needs many iterations to achieve a sta-

ble solution. The cost of each iteration, in energy terms,

is different for centralized and distributed TSA scheme.

Centralized algorithm in large networks requires each sen-

sors measurements to be sent over multiple hops to a cen-

tral processor, while distributed algorithm requires only lo-

cal information exchange between neighboring nodes but

many such local exchanges may be required, depending on

the number of iterations needed to arrive at a stable solu-

tion.

Table 1

Localization accuracy for different tasks

Test Localization error (LE) [%]

problem I phase II phase

a 6.3544 0.1447

b 8.8331 0.1414

c 25.0953 0.1961

d 57.0212 0.3248

In case of centralized implementation energy consumption

for localization is asymmetric, because the multi-hop trans-

mission stresses nodes near the central station more than

any others. Fortunately this is not a problem because lo-

calization task generates only one packet per node which

must be transmitted to the base station. In most cases this

packet can be transmitted without fragmentation, because

of the small amount of data.

Fig. 5. Localization packet.

Figure 5 presents the localization packet structure. From

this figure we can see that even for a node with 10 neighbors

the packet size doesn’t exceed the fragmentation boundary

(approximately 100 bytes) – more detailed information can

be found in [9].

Energy consumption becomes a bigger problem for dis-

tributed algorithms which require many local information

exchanges between neighboring nodes. In the second phase

many iterations is needed and each iteration is connected

with “SECOND PHASE MSG” sending. The problem is

depicted by the loop in Fig. 1. The critical message is

marked in bold.

6.3. TSA Parameters Tuning

Robustness for anchor nodes deployment. In the pa-

per [6] we have reported the comparison of the results

obtained for the TSA method and some other methods.

Our scheme seems to be very promising. However, its

efficiency and robustness strongly depend on control pa-

rameters α, β , ∆d0, t f specific to the simulated annealing

algorithm used in the second phase of TSA, and depicted

in Algorithm 1. All these parameters influence the speed

of convergence and accuracy of the solution. To obtain the

general purpose algorithm the values of them should be

tuned for various network topologies.

We performed the experiments for four test problems pre-

sented in Fig. 3. Our aim was to calculate the values

of SA parameters: α, β , ∆d0, t f , depicted in Algorithm 1,

which minimize the localization error Eq. (3) for all con-

sidered tasks. We solved a decision problem defined

as an optimization problem with four criteria (localization

errors for tasks a, b, c and d), where all criteria are mini-

mized:

min
z

(LEa(z),LEb(z),LEc(z),LEd(z)), (5)

where z = [α, β , ∆d0, t f ] denotes a vector of decision vari-

ables to be selected within the feasible set, which consists of

48000 elements. Model Eq. (5) specifies that we are inter-

ested in minimization of all objective functions and allows

us to eliminate insufficient solutions leading to a dominated

outcome vectors. After the elimination the Pareto frontier

consists of 196 undominated solutions.

In order to select the preferred solution we used a quasi-

satisfying approach to multiple criteria optimization – the

reference point method [10]–[12]. The model of pref-

erences was created by introducing the reference levels.

Table 2

Aspiration and reservation levels

Reference vector LEa LEb LEc LEd

Aspiration levels ra 0.10 0.10 0.25 0.50

Reservation levels rr 1.00 1.00 2.00 4.00

We considered two reference vectors: vector of aspiration

levels ra and vector of reservation levels rr, which speci-

fied acceptable and required values for the localization error

(see Table 2).
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Depending on the specified reference levels, the partial

achievement function si can be built and interpreted as

a measure of the decision maker satisfaction with the cur-

rent value of outcome the ith criterion. It is a strictly

increasing function of outcome LEi with value si = 1 if

LEi = ra
i , and si = 0 for LEi = rr

i . We used the piece-wise

linear partial achievement function with strong dissatisfac-

tion connected with outcomes worse than the reservation

level and si value slightly greater than 1 for outcomes bet-

ter than the aspiration level.

Having all the outcomes transformed into a uniform scale

of individual achievements they can be aggregated to form a

scalarizing achievement function Eq. (6). Maximization of

the scalarizing achievement function generates an efficient

solution to the multiple criteria problem:

max
z

[

min
i=a,b,c,d

si(LEi)+ ε · ∑
i=a,b,c,d

si(LEi)

]

. (6)

The solution obtained by solving the problem Eq. (6) was

equal:

z =











α

β

∆d0

t f











=













0.94

0.98

0.26

10
−13













.

Fig. 6. Partial achievement functions.

The corresponding objective and partial achievements val-

ues are collected in Table 3.

Table 3

Values in criterion space for selected solution

Task
Localization error Partial achievement

LE value s(LE)

a 0.1447 0.9503

b 0.1414 0.9540

c 0.1961 1.0077

d 0.3248 1.0125

Partial achievements functions are also depicted in Fig. 6.

The solution is marked with the dot for each partial achieve-

ment function.

A trade-off between efficiency and accuracy. Time con-

sumed on localization in case of centralized algorithm in-

creases proportionally to the network dimension, as it can

be seen in Table 4.

Table 4

Localization error and computation times for different

network sizes

Number of Localization Computation

nodes error LE [%] time [s]

200 0.11 1.4

500 0.15 7.6

1000 0.29 29.4

The trade-off between efficiency and accuracy is expected.

To decrease the calculation effort the optimal value of an-

other SA control parameter (P) have to be estimated. In the

SA implementation used in the second phase of the TSA

scheme at each value of the coordinating parameter T (tem-

perature), P(N −M) non-anchor nodes are randomly se-

lected for modification (where N denotes the number of

sensors in the network, M the number of anchors, and P

a reasonably large number to make the system into thermal

equilibrium). The parameter P plays the important role –

it influences the estimated location accuracy and calculation

time.

Fig. 7. Localization error for various values of P.
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Fig. 8. Computation times for various values of P.

Figures 7 and 8 present the results of numerical tests per-

formed for the network with 2000 nodes and various values

of P.

To calculate the optimal value of the parameter P for a given

network we can solve the two-criterion optimization prob-

lem:

min
P

(∆t,LE), (7)

where ∆t denotes a calculation time, LE a localization error

defined in Eq. (3).

Fig. 9. The solution of the problem (7) for the network with

2000 nodes.

Figure 9 illustrates the Pareto frontier for the network of

2000 nodes. In order to select the preferred solution we

also used the reference point method. As an aspiration and

reservation level we assumed that computation time can

not exceed ten seconds, and localization error must be less

then 1% (see Table 5).

Table 5

Aspiration and reservation levels

Reference Calculation time Localization error

vector [s] [%]

ra 10 0.10

rr 60 1.00

In Table 6 values of partial achievement functions for both

criteria and the scalarizing achievement function for all un-

dominated solutions are presented. We can see that the best

value of achievement is for the solution calculated for P = 2.

Table 6

Undominated solutions and corresponding achievement

function

P
Computation Localization PAF*

SAF**
time [s] error LE s(t) s(LE)

1 13.6 0.4940 0.9280 0.5622 0.5624

2 20.2 0.1448 0.7960 0.9503 0.7962

3 27.0 0.1201 0.6600 0.9777 0.6602

4 33.6 0.1081 0.5280 0.9910 0.5282

5 40.2 0.1047 0.3960 0.9948 0.3961

6 46.8 0.1017 0.2640 0.9981 0.2641

7 53.2 0.1014 0.1360 0.9985 0.1361

8 59.2 0.0977 0.0160 1.0006 0.0161

* PAF – partial achievement function,

** SAF – scalarizing achievement function.

The optimal values of parameter P corresponding to the

solutions of the task Eq. (7) for different networks are

illustrated in Table 7. Because TSA should be the general

purpose localization scheme that can be used to different

Table 7

Optimal values of parameter P for different size

of network

Number of nodes 200 500 1000 2000 4000

Calculated P 4 4 4 2 2

Table 8

Localization errors and computation times for different

sizes of network

Number of nodes LE [%] t [s]

200 0.1275 0.4

500 0.4124 2.2

1000 0.1387 8.0

2000 0.1081 33.6

4000 0.1086 125.8

5000 0.1581 189.8

10000 0.1193 790.4

dimension problems we solved the more general problem

for five networks with various dimensions (automatically

the number of criteria was ten). The preferred solution

was obtained for P = 4. The results of calculations per-

formed for network with 200 to 10000 nodes and P = 4 are

presented in Table 8.
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7. Summary and Conclusions

In this paper we outline the main properties and criteria that

should be considered while estimating the location of nodes

with unknown positions in the sensor network. We stressed

the importance of such criteria like localization accuracy,

hardware cost, energy consumption and calculation capa-

bilities. The main objective was to develop the efficient and

robust localization algorithm. We presented and evaluated

the hybrid scheme that combines simple geometry of trian-

gles and stochastic optimization technique. The big effort

was on tuning the parameters of the optimization algorithm.

Finally, we demonstrated that our method provides quite

accurate location estimates in the sensible computing time

even in the case of unevenly distributed nodes with known

positions.
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