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Abstract—In this paper, we derive an analytical expression

for the exact pairwise error probability (PEP) of a space-time

coded system operating over a spatially correlated slow fading

channel using a moment-generating function-based approach.

This analytical PEP expression is more realistic than previ-

ously published exact-PEP expressions as it fully accounts for

antenna spacing, antenna geometries (uniform linear array,

uniform grid array, uniform circular array, etc.) and scatter-

ing models (uniform, Gaussian, Laplacian, Von-Mises, etc.).

Inclusion of spatial information provides valuable insights into

the physical factors determining the performance of a space-

time code. We demonstrate the strength of our new analytical

PEP expression by evaluating the performance of two space-

time trellis codes proposed in the literature for different spatial

scenarios.

Keywords— Gaussian Q-function, modal correlation, moment-

generating function, MIMO system, non-isotropic scattering,

space-time coding.

1. Introduction

Space-time coding combines channel coding with multiple

transmit and multiple receive antennas to achieve band-

width and power efficient high data rate transmission over

fading channels. The performance criteria for space-time

codes have been derived in [1] based on the Chernoff bound

applied to the pairwise error probability (PEP). In general,

the Chernoff bound is quite loose for low signal-to-noise

ratios. In [2], the exact-PEP of space-time codes operat-

ing over independent and identically distributed (i.i.d.) fast

fading channels was derived using the method of residues.

A simple method for exactly evaluating the PEP based on

the moment generating function associated with a quadratic

form of a complex Gaussian random variable [3] is given

in [4] for both i.i.d. slow and fast fading channels. The

fading correlation effects on the performance of space-time

codes were investigated in [5]. There, the exact-PEP re-

sults derived in [2] were further extended to spatially cor-

related slow fading channels with the use of residue meth-

ods. In [5], the correlation is calculated in terms of the

correlation between channel gains, but there is no direct

realizable physical interpretation to the spatial correlation.

Therefore, existing PEP expressions derived in the literature

do not provide insights into the physical factors determin-

ing the performance of a space-time code operating over

correlated fading channels. In particular, the effect of an-

tenna spacing, spatial geometry of the antenna arrays and

the non-isotropic scattering environments on the perfor-

mance of space-time codes are of interest.

In this paper, using the MGF-based approach presented

in [4], we derive an analytical expression for the exact-

PEP of a space-time coded system operating over a spa-

tially correlated slow fading channel. This expression is

more realistic than previously published exact-PEP expres-

sions, as it fully accounts for antenna placement along with

non-isotropic scattering environments. In this work, we use

a recently developed novel spatial channel model [6, 7] to

incorporate the above factors in to the exact-PEP expres-

sion of a space-time coded system. Using this analytical

exact-PEP expression, one can evaluate the performance of

a space-time code applied to a MIMO system in any gen-

eral spatial scenario (antenna geometries: uniform linear

array (ULA), uniform grid array (UGA), uniform circu-

lar array (UCA), etc., scattering models: uniform, Gaus-

sian, Laplacian, Von-Mises, etc.) without the need for ex-

tensive simulations. We provide an analytical technique

which can be used to evaluate the exact-PEP in closed form.

The strength of our new analytical exact-PEP expression is

demonstrated by evaluating the performance of a 4-state

QPSK space-time trellis code with two transmit antennas

proposed by Tarokh et al. [1] and a 16-state QPSK space-

time trellis code with three transmit antennas proposed by

Zuho-Chen et al. [8] for different spatial scenarios.

The rest of this paper is organized as follows. Section 2

reviews the spatial channel model derived in [6]. Section 3

formulates the exact-PEP of a space-time coded system op-

erating over a spatially correlated channel and Section 4

discusses a technique which can be used to obtain analyt-

ical solutions for the exact-PEP. Section 5 is devoted to

examples, where we investigate the effects of antenna spac-

ing, antenna configuration and scattering channel correla-

tion for two space-time trellis codes. Finally, conclusions

are drawn in Section 6.

Notations. Throughout the paper, the following notations

will be used: [·]
T
, [·]

∗

and [·]
†

denote the transpose, com-

plex conjugate and conjugate transpose operations, re-

spectively. The symbols δ (·) and ⊗ denote the Dirac

delta function and matrix Kronecker product, respectively.

The notation E {·} denotes the mathematical expectation,

Q(y) =
1

√

2π

∫ ∞
y e−x2

/2dx denotes the Gaussian Q-function,

vec(A) denotes the vectorization operator which stacks the

columns of A, and ⌈.⌉ denotes the ceiling operator. The

matrix In is the n×n identity matrix.
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2. System model

Consider a multi input multi output (MIMO) system con-

sisting of nT transmit antennas and nR receive antennas.

Let xn = [x
(n)

1
,x

(n)

2
, · · ·x

(n)

nT
]
T denote the space-time coded

signal vector transmitted from nT transmit antennas in the

nth symbol interval and X = [x1, x2, · · ·, xL] denote the

space-time code representing the entire transmitted signal,

where L is the code length. Assuming quasi-static fading,

the signals received at nR receiver antennas during L sym-

bol periods can be expressed in matrix form as

Y =
√

EsHX +N,

where Es is the transmitted power per symbol at each trans-

mit antenna and H is the nR×nT zero-mean complex valued

channel gain matrix, N is the noise represented by an nR×L

complex matrix in which entries are zero-mean independent

Gaussian distributed random variables with variance N0/2

per dimension.

Spatial channel model. Using a recently developed spatial

channel model [6], we are able to incorporate the antenna

spacing, antenna placement and scattering distribution pa-

rameters such as mean angle-of-arrival (AOA), mean angle-

of-departure (AOD) and angular spread, into the exact-PEP

calculations of space-time coded systems. In this spatial

channel model, MIMO channel is separated in to three

physical regions of interest: scatterer free region around

the transmitter antenna array, scatterer free region around

the receiver antenna array and the complex random scatter-

ing media which is the complement of the unions of two

antenna array regions. In other words, MIMO channel is de-

composed into deterministic and random matrices, where

the deterministic portion depends on the physical configu-

ration of the transmitter and the receiver antenna arrays and

the random portion represents the complex scattering media

between the transmitter and the receiver antenna regions.

Let up, p = 1,2, · · · ,nT be the position of pth transmit an-

tenna relative to the transmitter antenna array origin and

vq, q = 1,2, · · · ,nR be the position of qth receive antenna

relative to the receiver antenna array origin. Assume that

the scatterers are distributed in the farfield from the trans-

mitter and the receiver antenna arrays and the two regions

are distinct. Then the MIMO channel H has the decompo-

sition

H = JRHSJ
†

T , (1)

where JR is the nR×(2mR +1) receiver antenna array con-

figuration matrix,

JR =

















J−mR
(v1) . . . JmR

(v1)

J−mR
(v2) . . . JmR

(v2)

...
. . .

...

J−mR
(vnR

) . . . JmR
(vnR

)

















,

JT is the nT×(2mT +1) transmitter antenna array configu-

ration matrix,

JT =

















J−mT
(u1) . . . JmT

(u1)

J−mT
(u2) . . . JmT

(u2)

...
. . .

...

J−mT
(unT

) . . . JmT
(unT

)

















,

with Jn(x) defined as the spatial-to-mode function (SMF)

which maps the antenna location to the nth mode of the

region. The form which the SMF takes is related to the

shape of the scatterer-free antenna region. For a circular

region in 2-dimensional space, the SMF is given by a Bessel

function of the first kind [6] and for a spherical region in

3-dimensional space, the SMF is given by a spherical

Bessel function [7]. For a prism-shaped region, the SMF

is given by a prolate spheroidal function [9]. Here, we

consider only the 2-dimensional1 scattering environment

where antennas are encompassed in scatterer-free circular

apertures. In this case, SMF is given by

Jn(w) = Jn(k‖w‖)ein(φw−π/2)
,

where Jn(·) is the Bessel function of integer order n, vector

w = (‖w‖,φw) in polar coordinates is the antenna location

relative to the origin of the aperture which encloses the an-

tennas, k = 2π/λ is the wave number with λ being the wave

length and i =
√

−1. MT = (2mT +1) and MR = (2mR +1)

are the number of effective communication modes2 avail-

able in the transmitter and receiver regions, respectively.

Note that, mT and mR are determined by the size of the

antenna aperture, but not from the number of antennas en-

compassed in an antenna array. The number of effective

communication modes (M) available in a region is given

by [10]

M = 2⌈πer/λ⌉+1, (2)

where r is the minimum radius of the antenna array aperture

and e ≈ 2.7183. HS in Eq. (1) is the (2mR +1)×(2mT +1)

random scattering matrix with (ℓ,m)th element given by

{HS}ℓ,m =

∫ π

0

∫ π

0

g(φ ,ϕ)e
−i(ℓ−mR−1)ϕ

e
i(m−mT−1)φ dϕdφ ,

ℓ = 1, · · · ,2mR +1, m = 1, · · · ,2mT +1. (3)

Note that {HS}ℓ,m represents the complex gain of the scat-

tering channel between the mth mode of the transmitter re-

gion and the ℓth mode of the receiver region, where g(φ ,ϕ)

is the scattering gain function, which is the effective ran-

dom complex gain for signals leaving the transmitter aper-

ture with angle of departure φ and arriving at the receiver

aperture with angle of arrival ϕ .

1The 2D case is a special case of the 3D case where all the signals

arrive from on a horizontal plane only. Similar results can be obtained

using the 3D channel model proposed in [7].
2The set of modes form a basis of functions for representing a multipath

wave field.
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3. Exact PEP on correlated

MIMO channels

Assume that perfect channel state information (CSI) is

available at the receiver and also a maximum likeli-

hood (ML) decoder is employed at the receiver. Assume

that the codeword X was transmitted, but the ML-decoder

chooses another codeword X̂ . Then the PEP, conditioned

on the channel, is given by [1]

P(X → X̂ |h) = Q

(

√

Es

2N0

d2(X , X̂)

)

, (4)

where d2
(X , X̂) = h[InR

⊗X∆]h†, X∆ = (X − X̂)(X − X̂)
†
,

h = (vec(HT
))

T
is a row vector. To compute the aver-

age PEP, we average Eq. (4) over the joint probability dis-

tribution of h. By using Craig’s formula for the Gaussian

Q-function [11, Chap. 4, Eq. (4.2)]

Q(x) =
1

π

∫ π/2

0

exp

(

−

x2

2sin
2 θ

)

dθ

and the MGF-based technique presented in [4], we can

write the average PEP as

P(X → X̂) =
1

π

∫ π/2

0

∫ ∞

0

exp

(

−

Γ

2sin
2 θ

)

pΓ(Γ)dΓdθ ,

=
1

π

∫ π/2

0

MΓ

(

−

1

2sin
2 θ

)

dθ , (5)

where MΓ(s) =
∫ ∞

0
e

sΓ pΓ(Γ)dΓ is the MGF of

Γ =
Es

2N0

h[InR
⊗X∆]h† (6)

and pΓ(Γ) is the probability density function (pdf) of Γ.

Substituting Eq. (1) for H in h = (vec(HT
))

T
and using

the Kronecker product identity [12, p. 180] vec(AXB) =

(BT
⊗A)vec(X), we rewrite Eq. (6) as

Γ =
Es

2N0

hS(J
T
R ⊗ J

†

T )(InR
⊗X∆)(J∗R ⊗ JT )h

†

S (7a)

=
Es

2N0

hS

[

(J
†

RJR)
T
⊗ (J

†

T X∆JT )

]

h
†

S (7b)

=
Es

2N0

hSGh
†

S, (7c)

where hS = (vec(HS
T
))

T
is a row vector and

G = (J
†

RJR)
T
⊗ (J

†

T X∆JT ). (8)

Note that, Eq. (7b) follows from Eq. (7a) via the identity

[12, p. 180] (A⊗C)(B⊗D) = AB⊗CD, provided that the

matrix products AB and CD exist.

Note that hSGh
†

S in Eq. (7c) is a quadratic form of a ran-

dom variable since hS is a random row vector and G is fixed

as JT ,JR and X∆ are deterministic matrices. Furthermore,

the matrix G is Hermitian as both J
†

RJR and J
†

T X∆JT are

Hermitian, and the Kronecker product between two Her-

mitian matrices is always Hermitian. The MGF associated

with a quadratic random variable is readily found in the

literature [3]. Using [3, Eq. (14)], we write the MGF of Γ

as

MΓ(s) =

[

det

(

I −
sγ̄

2
RG

)]

−1

, (9)

where γ̄ =
Es

N0
is the average symbol energy-to-noise ratio

(SNR) and R = E

{

h
†

ShS

}

is the covariance matrix of hS.

Here we assumed that the entries of hS are zero-mean com-

plex Gaussian distributed.

Substitution of Eq. (9) into Eq. (5) gives the exact-PEP

P(X → X̂) =
1

π

∫ π/2

0

[

det

(

I +
γ̄

4sin
2 θ

RG

)]

−1

dθ . (10)

Remark 1: Equation (10) is the exact-PEP3 of a space-time

coded system applied to a spatially correlated slow fad-

ing MIMO channel following the channel decomposition

in Eq. (1).

Remark 2: When R = I (i.e., correlation between different

communication modes is zero), Eq. (10) above captures

the effects due to antenna spacing and antenna geometry

on the performance of a space-time code operating over

a slow fading channel.

Remark 3: When the fading channels are independent

(i.e., R = I and G = InR
⊗X∆), Eq. (10) simplifies to,

P(X → X̂) =
1

π

∫ π/2

0

[

det

(

InT
+

γ̄

4sin
2 θ

X∆

)]

−nR

dθ ,

which is the same as [4, Eq. (13)].

Kronecker product model as a special case. In some

circumstances, the covariance matrix R of the scattering

channel HS can be expressed as a Kronecker product be-

tween correlation matrices observed at the receiver and the

transmitter antenna arrays [13, 14], i.e.,

R = E

{

h
†

ShS

}

= FR ⊗FT , (11)

where FR and FT are the transmit and receive correla-

tion matrices. Substituting Eq. (11) in Eq. (10) and recall-

ing the definition of G in Eq. (8), the exact-PEP can be

written as

P(X → X̂) =
1

π

∫ π/2

0

[

det

(

I +
γ̄

4sin
2 θ

Z

)]

−1

dθ , (12)

where Z = (FRJT
RJ∗R)⊗ (FT J

†

T X∆JT ).

3Equation (10) can be evaluated in closed form using the analytical

technique discussed in Section 4.
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4. Realistic exact-PEP

The exact-PEP expression we derived in the previous sec-

tion captures the antenna configurations (linear array, cir-

cular array, grid, etc.) both at the transmitter and the re-

ceiver arrays via JT and JR, respectively. Furthermore, it

also incorporates the modal correlation effects at the trans-

mitter and the receiver regions via FT and FR, respec-

tively. Therefore, the PEP expression Eq. (12) can be con-

sidered as the realistic exact PEP of a space-time coded

system.

To calculate the exact-PEP, one needs to evaluate the in-

tegral Eq. (12) (or Eq. (10) in a more general spatial

scenario), either using numerical methods or analytical

methods. We present an analytical technique which can be

employed to evaluate the integral Eq. (12) in closed form

as follows.

Matrix Z in Eq. (12) has size MRMT×MRMT . Therefore,

the integrand in Eq. (12) will take the form4

[

det

(

I +
γ̄

4sin
2 θ

Z

)]

−1

=
(sin

2 θ)
N

N

∑
ℓ=0

aℓ(sin
2 θ)

ℓ

, (13)

where N = MRMT and aℓ, for ℓ = 1,2, · · · ,N, are constants.

Note that the denominator of Eq. (13) is an Nth order

polynomial in sin
2 θ . To evaluate the integral Eq. (13) in

closed form, we use the partial-fraction expansion tech-

nique given in [11, Appendix 5A] as follows.

First we begin by factoring the denominator of Eq. (13)

into terms of the form (sin
2 θ + cℓ), for ℓ = 1,2, · · · ,N.

This involves finding the roots of an Nth order polynomial

in sin
2 θ either numerically or analytically. Then Eq. (13)

can be expressed in product form as

(sin
2 θ)

N

∑
N
ℓ=0

aℓ(sin
2 θ)ℓ

=

Λ

∏
ℓ=1

(

sin
2 θ

cℓ + sin
2 θ

)mℓ

, (14)

where mℓ is the multiplicity of the root cℓ and ∑
Λ
ℓ=1

mℓ = N.

Applying the partial-fraction decomposition theorem to the

product form Eq. (14), we get

Λ

∏
ℓ=1

(

sin
2 θ

cℓ + sin
2 θ

)mℓ

=

Λ

∑
ℓ=1

mℓ

∑
k=1

Akℓ

(

sin
2 θ

cℓ + sin
2 θ

)k

, (15)

where the residual Akℓ is given by [11, Eq. (5A.72)]

Akℓ =











dm
ℓ
−k

dxm
ℓ
−k

Λ

∏
n=1
n 6=ℓ

(

1

1+ cnx

)mn











|
x=−c−1

ℓ

(mℓ − k)!c
mℓ−k

ℓ

. (16)

Expansion Eq. (15) often allows integration to be performed

on each term separately by inspection. In fact, each term

4One would need to evaluate the determinant of
(

I +
γ̄

4sin
2 θ

Z

)

and then

take the reciprocal of it to obtain the form Eq. (13).

in Eq. (15) can be separately integrated using a result found

in [4], where

P(cℓ,k) =
1

π

∫ π/2

0

(

sin
2 θ

cℓ + sin
2 θ

)k

dθ ,

=
1

2

[

1−

√

cℓ

1+ cℓ

k−1

∑
j=0

(

2 j

j

)(

1

4(1+ cℓ)

) j
]

.

(17)

Now using the partial-fraction form of the integrand in

Eq. (15) together with Eq. (17), we obtain the exact-PEP

in closed form as

P(X → X̂) =
1

π

∫ π/2

0

Λ

∏
k=1

(

sin
2 θ

cℓ + sin
2 θ

)mℓ

dθ ,

=

Λ

∑
ℓ=1

mℓ

∑
k=1

AkℓP(cℓ,k). (18)

For the special case of distinct roots, i.e., m1 = m2 = · · · =

mN = 1, the exact-PEP is given by

P(X → X̂) =
1

2

N

∑
ℓ=1

(

1−

√

cℓ

1+ cℓ

)

N

∏
n=1
n 6=ℓ

(

cℓ

cℓ − cn

)

.

5. Analytical performance evaluation:

examples

In this section, we consider the following two space-time

codes as examples:

• 4-state QPSK space-time trellis code with two trans-

mit antennas [1, Fig. 4]; the shortest error event path

of length 2, as illustrated by shading in Fig. 1 of [4];

• 16-state QPSK space-time trellis code with three

transmit antennas [8, Table 1]; the shortest error

event path of length 3.

For the 4-state code, the exact-PEP results and approximate

bit error probability (BEP) results for nR = 1 and nR = 2

were presented in [2, 4] for i.i.d. fast fading and slow fad-

ing channels. In [5], the effects of fading correlation on

the average BEP were studied for nR = 1 over a slow fad-

ing channel. In this work, we compare the i.i.d. channel

performance results presented in [2, 4] with our realistic

exact-PEP results for different antenna spacing and scatter-

ing distribution parameters. In addition, we use the 16-state

code with three transmit antennas to study the impact

of antenna placement on the performance of space-time

codes.

In [2, 4], performances were evaluated under the assump-

tion that the transmitted codeword is the all-zero codeword.

Here we also adopt the same assumption as we compare

our results with their results. However, we are aware that

space-time codes may, in general, be nonlinear, i.e., the

average BEP can depend on the transmitted codeword.
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5.1. Effect of antenna spacing

First we consider the effect of antenna spacing on the

exact-PEP when the scattering environment is isotropic,

i.e., FT = I2mT +1 and FR = I2mR+1. Consider the 4-state

code with two transmit antennas and two receive antennas,

where the two transmit antennas are placed in a circular

aperture of radius 0.25λ (antenna separation5 = 0.5λ ) and

the two receive antennas are placed in a circular aperture of

radius r (antenna separation = 2r).

Figure 1 shows the exact pairwise error probability per-

formance of the 4-state code for length 2 error event and

receive antenna separations 0.1λ , 0.2λ , 0.5λ and λ . Also

shown in Fig. 1 for comparison is the exact-PEP for the

i.i.d. slow fading channel (Rayleigh) corresponding to the

length two error event path.

Fig. 1. Exact pairwise error probability performance of the

4-state space-time trellis code with 2-Tx antennas and 2-Rx an-

tennas: length 2 error event.

As we can see from the figure, the effect of antenna sepa-

ration on the exact-PEP is not significant when the receive

antenna separation is 0.5λ or higher. However, the effect

is significant when the receive antenna separation is small.

For example, at PEP 10
−5, the realistic PEPs are 1 dB

and 3 dB away from the i.i.d. channel performance results

for 0.2λ and 0.1λ transmit antenna separations, respec-

tively. From these observations, we can emphasize that the

effect of antenna spacing on the performance of the 4-state

code is minimum for higher antenna separations whereas

the effect is significant for smaller antenna separations.

5In a 3D isotropic scattering environment, antenna separation 0.5λ (first

null of the order zero spherical Bessel function) gives zero spatial corre-

lation, but here we constraint our analysis to a 2D scattering environment.

The spatial correlation function in a 2D isotropic scattering environment

is given by a Bessel function of the first kind. Therefore, antenna separa-

tion λ/2 does not give zero spatial correlation in a 2D isotropic scattering

environment.

5.2. Loss of diversity advantage due to a region with

limited size

We now consider the diversity advantage of a space-time

coded system as the number of receive antennas increases

while the receive antenna array aperture radius remains

fixed. Figure 2 shows the exact-PEP of the 4-state STTC

Fig. 2. Exact PEP performance of the 4-state space-time trel-

lis code with 2-Tx antennas and n-Rx antennas: length 2 error

event.

with two transmit antennas and nR receive antennas, where

nR = 1,2, . . . ,10. The two transmit antennas are placed

in a circular aperture of radius 0.25λ (antenna separation

= 0.5λ ) and nR receive antennas are placed in a uniform

circular array antenna configuration with radius 0.15λ . In

this case, the distance between two adjacent receive antenna

elements is 0.3λ sin(π/nR).

The slope of the performance curve on a log scale corre-

sponds to the diversity advantage of the code and the hor-

izontal shift in the performance curve corresponds to the

coding advantage. According to the code construction cri-

teria given in [1], the diversity advantage promised by the

4-state STTC is 2nR. With the above antenna configuration

setup, however, we observed that the slope of each perfor-

mance curve remains the same when nR > 5, which results

in zero diversity advantage improvement for nR > 5. Nev-

ertheless, for nR > 5, we still observed some improvement

in the coding gain, but the rate of improvement is slower

with the increase in number of receive antennas. Here the

loss of diversity gain is due to the fewer number of effective

communication modes available at the receiver region than

the number of antennas available for reception. In this case,

from Eq. (2), the receive aperture of radius 0.15λ corre-

sponds to M = 2⌈πe0.15⌉+1 = 5 effective communication

modes at the receive region. Therefore when nR > 5, the di-

versity advantage of the code is determined by the number

of effective communication modes available at the receiver
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antenna region rather than the number of antennas avail-

able for reception. That is, the point where the diversity

loss occurred is clearly related to the size of the antenna

aperture, where smaller apertures result in diversity loss of

the code for lower number of receive antennas, as proved

analytically in [15].

5.3. Effect of antenna configuration

In this section, we compare the PEP performance of the

16-state code for different antenna configurations at the

transmitter antenna array. Here we consider UCA and ULA

antenna configurations as examples.6 We place the three

transmit antennas within a fixed circular aperture of ra-

dius r(= 0.15λ ,0.25λ ), where the antenna placements are

shown in Fig. 3. The exact-PEP performance for the er-

ror event path of length three is also shown in Fig. 3 for

a single receive antenna.

Fig. 3. The exact-PEP performance of the 16-state code with

three transmit and one receive antennas for UCA and ULA trans-

mit antenna configurations: length 3 error event.

From Fig. 3, it is observed that at high SNRs the per-

formance given by the UCA antenna configuration outper-

forms that of the ULA antenna configuration. For example,

at PEP 10
−5, the performance difference between UCA and

ULA are 2.75 dB with 0.15λ receiver aperture radius and

1.25 dB with 0.25λ receiver aperture radius. From Fig. 3,

we observed that as the radius of the transmitter aperture

decreases the diversity advantage of the code is reduced,

particularly for the ULA antenna configuration. Here, the

loss of diversity advantage is mainly due to the loss of rank

of JT .

6The exact-PEP expression we derived in this work can be applied to

any arbitrary antenna configuration.

5.4. Effect of modal correlation

For simplicity, here we only consider the modal correlation

effects at the receiver region and assume that the effective

communication modes available at the transmitter region

are uncorrelated, i.e., FT = I2mT +1. First, we derive the

definition of modal correlation matrix FR at the receiver

region.

Using Eq. (3), we can define the modal correlation between

complex scattering gains as

γ
ℓ,ℓ

′

m,m′ = E

{

{HS}ℓ,m{HS}
∗

ℓ′,m′

}

.

Assume that the scattering from one direction is indepen-

dent of that from another direction for both the receiver and

the transmitter apertures. Then the second-order statistics

of the scattering gain function g(φ ,ϕ) can be defined as

E

{

g(φ ,ϕ)g∗(φ
′

,ϕ
′

)

}

= G(φ ,ϕ)δ (φ −φ
′

)δ (ϕ −ϕ
′

),

where G(φ , ϕ) = E
{

|g(φ , ϕ) |
2
}

with normalization
∫ ∫

G(φ ,ϕ)dϕdφ = 1. With the above assumption, the

modal correlation coefficient, γ
ℓ,ℓ

′

m,m′ can be simplified to

γ
ℓ,ℓ

′

m,m′ =

∫ ∫

G(φ ,ϕ)e
−i(ℓ−ℓ

′
)ϕ ei(m−m′

)φ dϕdφ .

Then the correlation between the ℓth and ℓ
′th modes at

the receiver region due to the mth mode at the transmitter

region is given by

γRx
ℓ,ℓ′

=

∫

PRx(ϕ)e
−i(ℓ−ℓ

′
)ϕ dϕ , (19)

where PRx(ϕ) =
∫

G(φ ,ϕ)dφ is the normalized azimuth

power distribution of the scatterers surrounding the receiver

antenna region. Here we see that modal correlation at the

receiver is independent of the mode selected from the trans-

mitter region. Note that the (ℓ,ℓ
′
)th element of FR is given

by Eq. (19) and FR is a (2mR + 1)× (2mR + 1) matrix.

Also note that PRx(ϕ) can be modeled using all com-

mon azimuth power distributions such as uniform, Gaus-

sian, Laplacian, Von-Mises, polynomial, etc.

It was shown in [16] that all azimuth power distribution

models give very similar correlation values for a given

angular spread, especially for small antenna separations.

Therefore, without loss of generality, we restrict our inves-

tigation only to the case of energy arriving uniformly over

a limited angular spread σ around a mean AOA ϕ0 (uni-

form limited azimuth power distribution). In this case, the

modal correlation coefficient γRx
ℓ,ℓ′

in the receiver region is

given by

γRx
ℓ,ℓ′

= sinc((ℓ− ℓ
′
)σ)e

−i(ℓ−ℓ
′
)ϕ0 . (20)

Continuing the performance analysis, we now investi-

gate the modal correlation effects on the performance of
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the 4-state code with two transmit and two receive anten-

nas. We place the two transmit antennas 0.5λ apart and

also the two receive antennas 0.5λ apart.7

Figure 4 shows the exact-PEP performances of the 4-state

code for various angular spreads σ = {5
◦
, 30

◦
, 45

◦
, 180

◦
}

about a mean AOA ϕ0 = 0
◦ from broadside, where the

broadside angle is defined as the angle perpendicular to

the line connecting the two antennas. Note that σ = 180
◦

represents the isotropic scattering environment.

The exact-PEP performance for the i.i.d. slow fading chan-

nel (Rayleigh) is also plotted on the same graph for com-

parison.

Fig. 4. Effect of receiver modal correlation on the exact-PEP of

the 4-state QPSK space-time trellis code with 2-Tx antennas and

2-Rx antennas for the length 2 error event. Uniform limited power

distribution with a mean angle of arrival ϕ0 = 0
◦ from broadside

and angular spreads σ = {5
◦
, 30

◦
, 45

◦
, 180

◦
}.

As one would expect, the performance loss incurred due

to the modal correlation increases as the angular spread of

the distribution decreases.

For example, at PEP 10
−5, the realistic PEP results obtained

from Eq. (12) are about 0.25 dB, 1.75 dB, 2.75 dB and

7.5 dB away from the i.i.d. channel performance results for

angular spreads 180
◦
, 45

◦
, 30

◦ and 5
◦, respectively. There-

fore, in general, if the angular spread of the distribution is

closer to 180
◦ (isotropic scattering), then the loss incurred

due to the modal correlation is insignificant, provided that

the antenna spacing is optimal. However, for moderate an-

gular spread values such as 45
◦ and 30

◦, the performance

loss is quite significant. This is due to the higher concen-

tration of energy closer to the mean AOA for small angular

spreads.

It is also observed that for large angular spread values,

the diversity order of the code (the slope of the perfor-

mance curve) is preserved whereas for small and moderate

7Performance loss due to antenna spacing is minimum when the antenna

separation is 0.5λ or higher as we showed in Subsection 5.1.

angular spread values, the diversity order of the code is

diminished.

Figure 5 shows the PEP performance results of the 4-state

code for a mean AOA ϕ0 = 60
◦ from broadside. Similar

results are observed as for the mean AOA ϕ0 = 0
◦ case.

Fig. 5. Effect of receiver modal correlation on the exact-PEP

of the 4-state QPSK space-time trellis code with 2-Tx antennas

and 2-Rx antennas for the length 2 error event. Uniform limited

power distribution with a mean angle of arrival ϕ0 = 60
◦ from

broadside and angular spreads σ = {5
◦
,30

◦
,45

◦
,180

◦
}.

Comparing Figs. 4 and 5 we observe that the perfor-

mance loss is increased for all angular spreads as the

mean AOA moves away from broadside. This can be justi-

fied by the reasoning that, as the mean AOA moves away

from broadside, there will be a reduction in the angular

spread exposed to the antennas and hence less signals being

captured.

Furthermore, we observed that (performance results are not

shown here) when there are more than two receive anten-

nas in a fixed receiver aperture, the performance loss of

the 4-state code with decreasing angular spread is most

pronounced for the ULA antenna configuration when the

mean AOA is closer to 90
◦ (inline with the array). But,

for the UCA antenna configuration, the performance loss

is insignificant as the mean AOA moves away from broad-

side for all angular spreads. This suggests that the UCA

antenna configuration is less sensitive to change of mean

AOA compared to the ULA antenna configuration. Hence,

the UCA antenna configuration is best suited to employ

a space-time code.

Using the results we obtained thus far, we can claim that, in

general, space-time trellis codes are susceptible to spatial

fading correlation effects, in particular, when the antenna

separation and the angular spread are small.
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5.5. Extension of PEP to average bit error probability

An approximation to the average BEP was given in [17]

on the basis of accounting for error event paths of lengths

up to H as

Pb(E) ∼=
1

b
∑

t

q(X → X̂)tP(X → X̂)t , (21)

where b is the number of input bits per transmission,

q(X → X̂)t is the number of bit errors associated with the

error event t and P(X → X̂)t is the corresponding PEP.

In [4], it was shown that error event paths of lengths up to

H are sufficient to achieve a reasonably good approximation

to the full upper (union) bound that takes into account er-

ror event paths of all lengths. For example, with the 4-state

STTC, error event paths of lengths up to H = 4 is sufficient

for the slow fading channel.

The closed-form solution for average BEP of a space-time

code can be obtained by finding closed-form solutions for

PEPs associated with each error type, using the analyti-

cal technique given in Section 4. In previous sections, we

investigate the effects of antenna spacing, antenna geome-

try and modal correlation on the exact-PEP of a space-time

code over slow fading channel. The observations and claims

which we made there, are also valid for the BEP case as

the BEPs are calculated directly from PEPs. Therefore,

to avoid repetition, we do not discuss BEP performance

results here.

6. Conclusion

Using an MGF-based approach, we have derived an analyt-

ical expression for the exact pairwise error probability of

a space-time coded system operating over a spatially corre-

lated slow fading channel. This analytical PEP expression

fully accounts for antenna separation, antenna geometry

and surrounding azimuth power distributions, both at the

receiver and the transmitter antenna arrays. In practice, it

can be used as a tool to estimate or predict the performance

of a space-time code under any antenna configuration and

surrounding azimuth power distribution parameters. Based

on this new PEP expression, we showed that space-time

codes employed on multiple transmit and multiple receive

antennas are susceptible to spatial fading correlation ef-

fects, particularly for small antenna separations and small

angular spreads.

Acknowledgements

This work was supported by the Australian Research Coun-

cil Discovery Grant DP0343804. Thushara D. Abhayapala

is also with National ICT Australia, Locked Bag 8001,

Canberra, ACT 2601, Australia. National ICT Australia is

funded through the Australian Government’s Backing Aus-

tralia’s Ability initiative, in part through the Australian Re-

search Council.

References

[1] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes

for high data rate wireless communication: performance criterion

and code construction”, IEEE Trans. Inform. Theory, vol. 44, no. 1,

pp. 744–765, 1998.

[2] M. Uysal and C. N. Georghiades, “Error performance analysis of

spacetime codes over Rayleigh fading channels”, J. Commun. Netw.,

vol. 2, no. 4, pp. 351–355, 2000.

[3] G. L. Turin, “The characteristic function of hermetian quadratic

forms in complex normal random variables”, Biometrika, vol. 47,

no. 1–2, pp. 199–201, 1960.

[4] M. K. Simon, “Evaluation of average bit error probability for space-

time coding based on a simpler exact evaluation of pairwise error

probability”, Int. J. Commun. Netw., vol. 3, no. 3, pp. 257–264,

2001.

[5] M. Uysal and C. N. Georghiades, “Effect of spatial fading correlation

on performance of space-time codes”, Electron. Lett., vol. 37, no. 3,

pp. 181–183, 2001.

[6] T. D. Abhayapala, T. S. Pollock, and R. A. Kennedy, “Spatial de-

composition of MIMO wireless channels”, in Proc. Seventh Int.

Symp. Sig. Proces. Appl. ISSPA’2003, Paris, France, 2003, vol. 1,

pp. 309–312.

[7] T. D. Abhayapala, T. S. Pollock, and R. A. Kennedy, “Charakteriza-

tion of 3D spatial wireless channels”, in IEEE Veh. Technol. Conf.

(Fall) VTC 2003, Orlando, USA, 2003.

[8] Z. Chen, B. Vucetic, J. Yuan, and K. L. Lo, “Space-time trellis

codes with two, three and four transmit antennas in quasi-static flat

fading channels”, in Proc. IEEE Int. Conf. Commun., New York,

USA, 2002, pp. 1589–1595.

[9] L. Hanlen and M. Fu, “Wireless communications systems with spa-

tial diversity: a volumetric approach”, in IEEE Int. Conf. Commun.

ICC’2003, Anchorage, USA, 2003, vol. 4, pp. 2673–2677.

[10] H. M. Jones, R. A. Kennedy, and T. D. Abhayapala, “On dimen-

sionality of multipath fields: spatial extent and richness”, in Proc.

IEEE Int. Conf. Acoust., Speech, Sig. Proces. ICASSP’2002,

Orlando, USA, 2002, vol. 3, pp. 2837–2840.

[11] M. K. Simon and M. S. Alouini, Digital Communications over Fad-

ing Channels, 2nd ed. Hoboken: Wiley, 2004.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.

Baltimore, London: The Johns Hopkins University Press, 1996.

[13] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and

F. Frederiksen, “A stochastic MIMO radio channel model with exper-

imental validation”, IEEE J. Selec. Areas Commun., vol. 20, no. 6,

pp. 1211–1226, 2002.

[14] T. S. Pollock, “Correlation modelling in MIMO systems: when can

we Kronecker?”, in Proc. 5th Austr. Commun. Theory Worksh., New-

castle, Australia, 2004, pp. 149–153.

[15] T. A. Lamahewa, R. A. Kennedy, and T. D. Abhayapala, “Upper-

bound for the pairwise error probability of space-time codes in

physical channel scenarios”, in Proc. 5th Austr. Commun. Theory

Worksh., Brisbane, Australia, 2005, pp. 26–32.

[16] T. S. Pollock, T. D. Abhayapala, and R. A. Kennedy, “Introduc-

ing space into MIMO capacity calculations”, J. Telecommun. Syst.,

vol. 24, no. 2, pp. 415–436, 2003.

[17] J. K. Cavers and P. Ho, “Analysis of the error performance of trel-

lis coded modulations in Rayleigh fading channels”, IEEE Trans.

Commun., vol. 40, no. 1, pp. 74–83, 1992.

67



Tharaka A. Lamahewa, Marvin K. Simon, Thushara D. Abhayapala, and Rodney A. Kennedy

Tharaka A. Lamahewa re-

ceived the B.E. (hons.) degree

in information technology and

telecommunications engineer-

ing from the University of Ade-

laide, South Australia, in 2000.

He is currently pursuing the

Ph.D. degree in telecommu-

nications engineering at the

Research School of Information

Sciences and Engineering, Aus-

tralian National University, Canberra. From 2001 to 2003,

he worked as a software engineer at Motorola Electron-

ics Pvt Ltd., Singapore. His research interests include

space-time coding, MIMO channel modeling and MIMO

capacity analysis for wireless communication systems.

e-mail: tharaka.lamahewa@anu.edu.au

Department of Information Engineering

Research School of Information Sciences and Engineering

The Australian National University

Canberra, ACT 0200, Australia

Marvin K. Simon is currently

a Principal Scientist at the

Jet Propulsion Laboratory, Cal-

ifornia Institute of Technology,

Pasadena, USA, where for the

last 36 years he has performed

research as applied to the design

of NASA’s deep-space and near-

earth missions resulting in the

issuance of 9 patents, 25 NASA

Tech Briefs and 4 NASA Space

Act awards. Doctor Simon is known as an internation-

ally acclaimed authority on the subject of digital com-

munications with particular emphasis in the disciplines of

modulation and demodulation, synchronization techniques

for space, satellite and radio communications, trellis-coded

modulation, spread spectrum and multiple access commu-

nications, and communication over fading channels. He

has published over 200 papers on the above subjects and

is co-author of 11 textbooks. He is the co-recipient of

the 1988 Prize Paper Award in Communications of the

“IEEE Transactions on Vehicular Technology” for his work

on trellis coded differential detection systems and also

the 1999 Prize Paper of the IEEE Vehicular Technol-

ogy Conference for his work on switched diversity. He is

a Fellow of the IEEE and a Fellow of the IAE. Among

his awards are the NASA Exceptional Service Medal,

NASA Exceptional Engineering Achievement Medal,

IEEE Edwin H. Armstrong Achievement Award and the

IEEE Millennium Medal all in recognition of outstanding

contributions to the field of digital communications and

leadership in advancing this discipline.

e-mail: marvin.k.simon@jpl.nasa.gov

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109, USA

Thushara D. Abhayapala was

born in Colombo, Sri Lanka,

in 1967. He received the B.E.

degree in interdisciplinary sys-

tems engineering in 1994 and

the Ph.D. degree in telecommu-

nications engineering in 1999

from the Australian National

University (ANU). From 1995

to 1997, he worked as a re-

search engineer at the Arthur

C. Clarke Centre for Modern Technologies, Sri Lanka.

Since December 1999, Associate Professor Abhayapala has

been with the Department of Information Engineering, Re-

search School of Information Sciences and Engineering at

the ANU. Currently he is a principal researcher and the

program leader for Wireless Signal Processing program,

National ICT Australia (NICTA), Canberra. His research

interests are in the areas of space-time signal processing for

wireless communication systems, spatio-temporal channel

modeling, MIMO capacity analysis, UWB systems, array

signal processing and acoustic signal processing. He has

supervised 17 research students and co-authored approx-

imately 100 papers. Doctor Abhayapala is currently an

associate editor for EURASIP Journal on Wireless Com-

munications and Networking.

e-mail: thushara.abhayapala@anu.edu.au.

Department of Information Engineering

Research School of Information Sciences and Engineering

The Australian National University

Canberra, ACT 0200, Australia

Rodney A. Kennedy has de-

grees from the University of

New South Wales, Australia,

University of Newcastle, and

the Australian National Univer-

sity. He worked 3 years for

CSIRO on the Australia Tele-

scope Project. He is now with

the Department of Information

Engineering, Research School

of Information Sciences and

Engineering at the Australian National University. His re-

search interests are in the fields of digital and wireless com-

munications, digital signal processing and acoustical signal

processing.

e-mail: rodney.kennedy@anu.edu.au

Department of Information Engineering

Research School of Information Sciences and Engineering

The Australian National University

Canberra, ACT 0200, Australia

68


