
Paper Application of bioinformatics

methods to recognition of network threats

Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk

Abstract— Bioinformatics is a large group of methods used in

biology, mostly for analysis of gene sequences. The algorithms

developed for this task have recently found a new application

in network threat detection. This paper is an introduction to

this area of research, presenting a survey of bioinformatics

methods applied to this task, outlining the individual tasks

and methods used to solve them. It is argued that the early

conclusion that such methods are ineffective against polymor-

phic attacks is in fact too pessimistic.

Keywords— network threat analysis, sequence alignment, edit

distance, bioinformatics.

1. Introduction

When biologists discover a new gene, its function is not al-

ways apparent. The usual approach is to compare its struc-

ture with genes, whose function has already been identified.

Comparison (so-called alignment) of biological sequences

is a basis for bioinformatics, a science focused on theories,

algorithms, computational techniques and statistical meth-

ods, with the goal of solving problems of biological data

analysis [1]. Bioinformatics draws inspiration from many

other branches of science and the techniques it provides

often have interesting applications outside of biology – in-

cluding automatic voice and handwriting recognition, but

also in computing systems security. This paper focuses on

methods of defining the similarity between biological se-

quences and shows, how similar methods can be applied

to the problem of recognition and characterization of com-

puter network threats.

2. Sequence alignment

Sequence alignment is a tool used in bioinformatics to de-

fine and visualize a measure of similarity between DNA or

protein sequences.

Definition 1 (from [2]) : A (global) alignment of two

strings S1 and S2 is obtained by first inserting chosen spaces

(or dashes), either into or at the ends of S1 and S2, and then

placing the two resulting strings one above the other so that

every character or space in either string is opposite a unique

character or a unique space in the other string.

For example, in the alignment

c a c _ d b d

c a w x _ b _

of strings cacdbd and cawxb, character c is mismatched

with w, both d’s and the x are opposite spaces, and all

other characters are in matches.

Definition 2 (from [2]) : A global multiple alignment of

k > 2 strings S = S1,S2, ...,Sk is a natural generalization

of alignment for two strings. Chosen spaces are inserted

into (or at either end of) each of the k strings so that the re-

sulting strings have the same length, defined to be l. Then

the strings are arrayed in k rows of l columns each, so

that each character and space of each string is in a unique

column.

Alignment is necessary, since evolutionary processes intro-

duce mutations in the DNA and biologists do not know,

whether nth symbol in one sequence indeed corresponds to

the nth symbol of the other sequence – a shift is probable.

Definition 3 (from [2]) : The edit distance between two

strings is defined as the minimum number of edit oper-

ations – insertions, deletions, and substitutions – needed to

transform the first string into the second. For emphasis,

note that matches are not counted.

Edit distance is sometimes referred to as Levenshtein dis-

tance in recognition of the paper [3] by V. Levenshtein

where edit distance was probably first discussed.

Sequence alignment is a generalization of an intuitive ap-

proach to analysis of similarity between sequences, based

on searching for the longest common subsequence (LCS).

The LCS is found by inserting gaps in the two sequences,

so that they can be aligned with a maximum possible num-

ber of matching characters. This operation uses a simple

scoring function: “+1 for a matching character, 0 other-

wise.” In real biological applications more complicated

scoring matrices are used, assigning more points to match-

ing known functional biological sequences, giving points

for aligning characters which do not strictly match, but are

similar from the point of view of their biological func-

tion, and also subtracting points for non-matching charac-

ters and gaps in unexpected places. The final score is usu-

ally simply a sum of points for all pairs of characters. The

alignment is therefore optimal, when the similarity is great-

est, resulting in the highest score with the selected scoring

matrix [4].

The optimal path leading to the best alignment is found

using dynamic programming algorithms. The most well-

known dynamic programming algorithm used in bioinfor-

matics for this task is the Needleman-Wunsch algorithm.

The goal is to find the best global alignment of two se-

23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235205911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk

quences of characters. Global alignment answers the ques-

tion, how similar are the two compared sequences along

their entire length. Usually the compared sequences are

of similar length, however in some cases the sequences

are very different, except for some shorter, similar sub-

sequences. Sometimes it is also necessary to compare

sequences of very different lengths. In this case a local

alignment algorithm is better. An example of such algo-

rithm is the Smith-Waterman algorithm, a modification of

the Needleman-Wunsch algorithm. Given a scoring func-

tion, the algorithm is designed to find the most similar pair

of subsequences of both sequences. In the local alignment

problem the final score is computed only on the pair of

subsequences, omitting the rest of the characters. The dif-

ference between local and global alignment is illustrated

below [5].

Global alignment:

--AGATCCGGATGGT--GTGACATGCGAT--AAG--AGGCGTT

||| | | | ||||| |||||| ||| | | ||

GTCCATCTG--TCTTGGGTGAC-TGCGATACAAGTTA--CCTT

Local alignment:

--AGATCCGGATGGT--[GTGACATGCGATA]--AG--AGGCGTT

||||| |||||||

GTCCATCTG--TCTTGG[GTGAC-TGCGATA]CAAGTTA--CCTT

3. Sequence alignment and network

threat recognition

Sequence alignment is a useful tool for network threat

recognition in intrusion detection systems, automated threat

signature generators and in malware analysis. To recognize

a threat it is necessary to compare the new, observed be-

havior with previously identified or exemplary malicious

behavior. The comparison is more useful, if it is not

strict – this facilitates the detection of variants of attacks

(behaviors) or attempts at masking the attack. Just like in

bioinformatics problems, the main task is to find regulari-

ties, repeating similar sequences in large datasets.

4. Anomaly detection

One of the first applications of sequence alignment to intru-

sion detection is mentioned in [5] – with explicit connection

to bioinformatics. The authors focused on the problem of

detection of masquerading attempts, using logs of the acct

tool in Unix systems as input data. Masquerading detec-

tion involves a user signature – a sequence of commands

collected from the user, compared with the current session

of this user. The main assumption is that an intruder using

another user’s account will behave in a different way than

the rightful owner of the account, and that this difference

of issued commands should be detectable. The paper pro-

poses a method of aligning sequences of commands from

the current session with the user signature using a modi-

fied version of the Smith-Waterman algorithm. The result

of the alignment, using a proposed scoring function, is used

to detect an intrusion. In the opinion of the authors a lo-

cal alignment would not be sufficiently effective, as a lot

of potentially interesting data would be ignored. There-

fore, the authors have used a semi-global alignment. In

this type of alignment only the suffixes or prefixes of com-

pared sequences are aligned. The scoring function rewards

matching commands, but does not penalize the existence

of large, non-matching parts of the signature. As in every

anomaly detection method, an arbitrary threshold must be

chosen to separate a suspected intrusion from a normal, but

slightly atypical session of the original user – this thresh-

old was found empirically. The best experimental results

show a 75.8% intrusion detection level with 7.7% of false

positives. A full description of the algorithm, the scoring

function, data preparation method and analysis of results

can be found in [5].

Another method of intrusion detection, popular in the lit-

erature but rarely used on a wide scale is system call mon-

itoring – the system calls of processes are monitored and

compared to typical behavior of a given type of processes.

Differences in behavior could indicate a successful attack

on the application, resulting in execution of potentially ma-

licious code. A recently proposed extension of this idea

is based on evolutionary distance between sequences, de-

fined as the sum of costs of substitutions, deletions and

insertions. Instead of creating a model of the behavior of

the monitored process, a “replica” of the process is cre-

ated and executed in parallel. A difference in behavior of

the two processes may be a symptom of an attack. Since

an effect of the same attack on two identical processes on

identical platforms must, by definition, be the same, diver-

sification of replicas is necessary. Thus, good candidates

for a replica are: the same process running on a different

platform (e.g., Windows instead of Linux), or even a dif-

ferent process with the same functionality (e.g., a different

WWW server) on a different platform. The authors of the

idea assume that even though the processes will use differ-

ent system calls, the function of those calls will be similar.

It is possible to correlate different system calls from dif-

ferent processes/platforms. A description of the method of

computing the behavioral distance between processes and

of the experimental results can be found in the paper [6]. In

the next paper [7] the authors used hidden Markov models

for this task.

5. Threat signature generation

Bioinformatics are much more often mentioned in the liter-

ature on network threats in the context of threat signature

generation systems. This area of research has gained a lot

of attention in the recent years. New, unknown threats ap-

pear very often. They are initially not recognized by the

traditional intrusion detection systems based on threat sig-

natures, since a signature has not been created yet. In this

24

Application of bioinformatics methods to recognition of network threats

case a very useful tool is an automatic system, capable

of recognizing a new threat and generating its signature,

preferably without human intervention.

The first system to automatically generate threat signatures

was honeycomb [8], a plug-in for honeyd. While the sys-

tem itself was not based on bioinformatics methods, it did

use some algorithms for detection of repeating similar se-

quences. The system applied the longest common sub-

string1 algorithm to find common sequences of bytes in

different packets sent to the system. As the system was

a part of a honeypot, all incoming packets were by def-

inition suspected to be part of an attack. Unfortunately,

the system did not scale well in real honeypot networks,

it generated a lot of repeating signatures and was com-

pletely useless against polymorphic attacks. Additionally,

lack of implemented signature management methods meant

that with time it was difficult to tell, which signatures (and

attacks) are indeed new.

Honeycomb had many successors, using different methods

to recognize repeating sequences in the data stream, using

them as the basis for signature generation. However, more

advanced bioinformatics algorithms were not proposed un-

til polymorphic attacks were targeted. In a polymorphic

attack there are, by definition, few constant substrings

(subsequences without gaps), common among all instances

of the attack. Furthermore, the longest such substring, if

found, is not necessarily the best sequence describing the

attack.

For many years identification of a polymorphic attack us-
ing signatures expressed as subsequences of the attack was
thought impossible. Signature-based intrusion detection
systems were expected to disappear soon. However, in pa-
per [9] it was shown, that every polymorphic attack must
contain constant, repeating values, allowing the attack to
successfully exploit a given vulnerability. Some constants
are also required to use a given protocol to communicate
with the attacked application. Description of such an attack
is, therefore, possible, although difficult – a good descrip-
tion of the attack is neither a single common substring,
nor the longest common subsequence, which might contain
too many random individual characters. A local alignment
is necessary to find a common region in all variants of
a polymorphic attack. This approach was suggested in the
polygraph system. It is a signature generation system,
using information from another system to identify suspect
flows. Using a set of such flows a signature is created as
a set of short separate character sequences. For example,
a signature for the Apache-Knacker exploit was as follows
(expressed as a regular expression):

GET .* HTTP/1.1\r\n.*:.* \r\nHost:.* \r\n

.*:.*\r\nHost:.*\xFF\xBF.*\r\n

To find common characters for the flows the authors

used a modified version of the Smith-Waterman algorithm.

1A different term than longest common subsequence (LCS) – it is by

definition continuous, while the LCS may contain gaps. The resulting

alignment is therefore different – the longest common substring usually is

not simply the longest continuous part of the LCS.

The modification included rewarding continuous alignment,

since such signatures are less likely to cause false positives.

Groups of characters were rewarded, while gaps were pe-

nalized, where gaps are not only the maximal length of

subsequences matched with spaces, but also the maximal

length of subsequences of non-matching characters. The

penalties were selected so that character sequences were

more likely to be aligned if their grouping is typical for

a given protocol. In practice this would mean that different

scoring functions for different protocols should be devel-

oped.

In the experiment carried out by its authors, the system

was tested on three real exploits – two for httpd servers

(the Apache-Knacker exploit and the ATPhttpd exploit) and

one for BIND server (the BIND-TSIG exploit). Clet, a well

known tool for polymorphic attack generation was used. It

was found, that Clet had many weaknesses – in each variant

of the exploit many constant sequences were found. Since

the goal of the experiment was to test the system with the

assumption of nearly perfect polymorphism, the code of the

exploit was manually changed using random values, leav-

ing the sequences necessary for its functioning intact. The

signature generator based on the modified Smith-Waterman

algorithm produced the correct signature in all tests, giving

0.0008% false positives for Apache-Knacker, and 0% for

the BIND-TSIG exploit – verified against a test pool of

“proper” traffic. Results for the ATPhttpd exploit were not

published. Only 3 samples of the exploit were necessary

to reach such a high level of precision. The generated sig-

natures can be used in many modern intrusion detection

systems like snort.

Another approach to polymorphic worm detection was

used in [10]. Like in the previous case, common regions

were searched for – using Gibbs sampling and creating sig-

natures based on the frequencies of individual characters.

Gibbs sampling is also used in bioinformatics to find mo-

tifs – unchanged by evolution regions in protein sequences.

6. Honeypot development

Bioinformatics methods can be of great value for honey-

pot developers. Honeypots are often the main source of

information on new threats and a basis for early warning

systems. The best honeypots are real systems with real ap-

plications. However, their installation and management is

complicated and time consuming. This led to the creation

of honeypots like honeyd and nepenthes [11], emulating

the attacked services. They are easy to deploy and man-

age, even on a large scale, because the attacks on emulated

services are – by definition – never successful, so the hon-

eypots themselves are not infected. The downside of emu-

lation are its limitations – it is never perfect (bug-for-bug

compatibility is difficult to attain, especially for unknown

bugs), and a honeypot is only as good as the emulation.

The problem is how to create new emulation modules for

services and their vulnerabilities in a fast and easy way. Au-

tomatic tools have been proposed – including ScriptGen,

25

Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk

which can generate new honeyd scripts and aims to add

the ability to generate nepenthes modules. It functions in

three steps:

– running a real system as honeypot, registering incom-

ing traffic;

– traffic analysis without knowing the semantics of the

observed protocols, by aligning many sequences of

requests and answers and building a state automata

based on the result of this analysis;

– creating a honeyd script based on the state automata.

A full description of the methods can be found in pa-

pers [12] and [13].

7. Summary

Bioinformatics methods are a promising approach to the

problem of network threat detection and recognition. How-

ever, in most cases their only application are tests in lab-

oratories. It seems that their most promising application

from the practical point of view would be the generation

of signatures for polymorphic attacks, more general signa-

tures with a low level of false positives, creation of tools

for management of automatically generated signatures and

for extending the capabilities of honeypots (in tools like

ScriptGen). An important conclusion is that bioinfor-

matics methods have shown that the popular opinion that

polymorphic attacks will make description and detection

based on signatures of characteristic sequences obsolete is

wrong.

References

[1] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics

Algorithms. Cambridge: MIT Press, 2004.

[2] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Com-

puter Science and Computational Biology. Cambridge: Cambridge

University Press, 1997.

[3] V. I. Levenshtein, “Binary codes capable of correcting insertions and

reversals”, Sov. Phys. Dokl., vol. 10, no. 8, pp. 707–710, 1966.

[4] P. Kijewski, “Zastosowanie metod bioinformatyki do rozpoznawania

zagrożeń sieciowych”, in SECURE 2006 Bezpieczeństwo – czas na

przełom, Warsaw, Poland, 2006 (in Polish).

[5] S. Coull, J. Branch, B. Szymański, and E. Breimer, “Intrusion detec-

tion: a bioinformatics approach”, in Proc. 19th Ann. Comput. Secur.

Appl. Conf., Washington, USA, 2003.

[6] D. Gao, M. K. Reiter, and D. Song, “Behavioral distance for intru-

sion detection”, in Proc. 8th Int. Symp. Recent Adv. Intrus. Detect.

RAID 2005, Seattle, USA, 2005.

[7] D. Gao, M. K. Reiter, and D. Song, “Behavioral distance mea-

surement using hidden Markov models”, in Proc. 9th Int. Symp.

Recent Adv. Intrus. Detect. RAID 2006, Hamburg, Germany,

2006.

[8] C. Kreibich and J. Crowcroft, “Honeycomb – creating intrusion de-

tection signatures using honeypots”, in Proc. 2nd Worksh. Hot Top.

Netw. Hotnets II. ACM SIGCOMM, Boston, USA, 2003.

[9] J. Newsome, B. Karp, and D. Song, “Polygraph – automatically

generating signatures for polymorphic worms”, in Proc. IEEE Symp.

Secur. Priv. SP 2005, Washington, USA, 2005, pp. 226–241.

[10] Y. Tang and S. Chen, “Defending against Internet worms:

a signature-based approach”, in Proc. 24th Ann. Conf. IEEE IN-

FOCOM 2005, Miami, USA, 2005.

[11] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The

nepenthes platform: an efficient approach to collect malware”, in

Proc. 9th Int. Symp. Recent Adv. Intrus. Detect. RAID 2006, Ham-

burg, Germany, 2006.

[12] C. Leita, K. Mermoud, and M. Dacier, “ScriptGen: an automated

script generation tool for honeyd”, in Proc. 21st Ann. Comput. Secur.

Appl. Conf. ACSAC 2005, Tucson, USA, 2005.

[13] C. Leita, M. Dacier, and F. Massicotte, “Automatic handling of pro-

tocol dependencies and reaction to 0-day attacks with ScriptGen

based honeypots”, in Proc. 9th Int. Symp. Recent Adv. Intrus. De-

tect. RAID 2006, Hamburg, Germany, 2006.

Adam Kozakiewicz graduated

from the Faculty of Electronics

and Information Technology of

Warsaw University of Technol-

ogy, Poland. Currently he works

as a Research Associate at Sys-

tems and Information Security

Methods Team in NASK Re-

search Division and an Assis-

tant at the Institute of Control

and Computation Engineering

at the Warsaw University of Technology, where he awaits

the defense of his Ph.D. thesis in telecommunications. His

main scientific interests includes security of information

systems, parallel computation, optimization methods and

network traffic modeling and control.

e-mail: adam.kozakiewicz@nask.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

Anna Felkner graduated from

the Faculty of Computer Sci-

ence of Białystok Technical

University, Poland. At present

she works as a Research As-

sistant at Systems and Informa-

tion Security Methods Team in

NASK Research Division. She

is a Ph.D. student in the Insti-

tute of Control and Computa-

tion Engineering at the Warsaw

University of Technology. Her main scientific interests con-

cerns the security of information systems.

e-mail: anna.felkner@nask.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

26

Application of bioinformatics methods to recognition of network threats

Piotr Kijewski holds an M.Sc.

degree in telecommunications

from the Warsaw University

of Technology. He works for

NASK since 2002, as an IT Se-

curity Specialist in the CERT

Polska team. His main inter-

ests in the computer and net-

work security include intrusion

detection, honeynets and net-

work forensics. He is the leader

of the team that designed, implemented and deployed the

nation-wide early warning system based on honeypots in

Poland. He has taken part in EU funded security projects

(eCSIRT.net, SpotSpam). He is the author of over two

dozen papers on security topics, and has spoken on confer-

ences both inside and outside of Poland.

e-mail: piotr.kijewski@cert.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

Tomasz Jordan Kruk gradu-

ated in computer science from

Gdańsk University of Technol-

ogy (M.Sc., 1994) and War-

saw University of Technology

(Ph.D., 1999). From 1994 to

2001 he was responsible for

supercomputers and services

administration in Warsaw Uni-

versity of Technology Com-

puting Centre. Since 1999 he

works as an Associate Professor (Adjunct) at the Warsaw

University of Technology. Since 2001 also Associate Pro-

fessor (Adjunct) at Research and Academic Computer Net-

work (NASK). His main areas of interests cover IT security,

operating systems and distributed/cluster systems. Currently

he heads the Systems and Information Security Methods

Team in NASK Research Division.

e-mail: T.Kruk@nask.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

27

