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Abstract—In this paper, the product of three random vari-

ables (RVs) will be considered. Distribution of the product

of independent random variables is very important in many

applied problems, including wireless relay telecommunication

systems. A few of such products of three random variables

are observed in this work: the level crossing rate (LCR) of

the product of a Nakagami-m random variable, a Rician ran-

dom variable and a Rayleigh random variable, and of the

products of two Rician RVs and one Nakagami-m RV is cal-

culated in closed forms and presented graphically. The LCR

formula may be later used for derivation of average fade du-

ration (AFD) of a wireless relay communication radio system

with three sections, working in the multipath fading channel.

The impact of fading parameters and multipath fading power

on the LCR is analyzed based on the graphs presented.

Keywords—level crossing rate, Nakagami-m fading, Rayleigh

fading, relay telecommunication systems, Rician fading.

1. Introduction

Statistical characteristics of products and ratios of random

variables (RVs) are essential in analyzing the performance

of contemporary wireless telecommunications systems, as

well as in solving numerous applied problems. The prod-

ucts of RVs are encountered naturally in such applications

as: channel modeling, multihop wireless relaying systems,

cascaded fading channels, MIMO keyhole systems [1],

quantum physics, signal processing, tensor sensing prob-

lem, the rate offset of the hybrid automatic repeat request

(H-ARQ) transmission, and even in biological and physical

sciences, econometrics, classification, ranking and selec-

tion [2].

Because of that, in recent years, the products and ratios

of random processes are investigated in the literature by

many researchers [1]–[6]. In the 1960s, Donahue, Springer,

Thompson and Lomnicki started with derivations concern-

ing the distributions of the products of two RVs [7]–[10].

At the beginning of this century, interest in this area has

increased again [11]—[13]. The latest works, with sig-

nificant application in wireless communications systems,

are [14]–[17].

Computational algorithms for derivating the distribution of

the product of two RVs are given in [9]. The product and

the ratio of two independent, Student’s t distributed RVs,

are observed in [10]. The derivation of the probability

density function (PDF) of the product of two independent,

non-identical, and triangularly distributed RVs, by using

integral calculation, is presented in [11].

The problem of characterizing products of independent

RVs is investigated for normal RVs, products of their abso-

lute values, and products of their squares in [13]. Power-

log series expansions of cumulative distribution functions

(CDF), based on the theory of Fox H functions, is com-

puted. It is numerically shown that CDF is well approx-

imated by the lowest orders of this expansion for small

arguments. The moment generating functions (MGF) in

terms of Meijer G functions are also computed for two

non-negative RVs. In that paper, the fading amplitudes of

cascaded fading channels have the distribution of the prod-

uct of Nakagami-m RVs, as in [5] and [6], and of the prod-

uct of Rician RVs, as in [18] and [19].

Signal envelope variations, called fading, are results of re-

flections, refractions, diffraction and scattering. They can

be described by several distributions. So, Rayleigh [20]

and Nakagami-m [21] distributions are used when no dom-

inant component is present. Signal envelope variation is

modeled by Rician distribution when a line-of-sight (LOS)

dominant component exists in the channel [22].

Level crossing rate (LCR) of a product of two Nakaga-

mi-m random processes is analyzed in [6]. Then, the av-
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erage fade duration (AFD) of a wireless relay communica-

tions system consisting of two sections in a Nakagami-m

short term fading channel is obtained. The performance of

the product of arbitrary and independent RVs with a gen-

eral α–µ distribution is given in [15]. The closed-form

expressions for PDF, CDF and moments are obtained and

the calculation process used to obtain the amount of fading

(AoF) and outage probability (OP) in cascaded channels is

presented.

An analysis of the performance of the product of two

independent and non-identically distributed κ–µ RVs is

presented in [17], where analytical formulations for PDF,

CDF and MGF are obtained. By using these formulations,

closed-form expressions for higher order moments, AoF

and channel quality estimation index are derived, as are

analytical formulas for OP, average channel capacity, av-

erage symbol error probability (SEP) and average bit er-

ror probability. This applies to different fading scenarios,

such as double Rayleigh, double Rician, double Naka-

gami-m, κ–µ /Nakagami-m, and Rician/Nakagami-m, iden-

tified as special cases.

The cascaded keyhole channels may be modeled using

the product of individual channels [23]. Further, indepen-

dent and identically distributed (i.i.d.) double fading chan-

nels in a line-of-sight (LOS) environment, typical for key-

hole Multiple input multiple output (MIMO) systems, are

analyzed in [24]. LOS double fading, i.e. double Rician

fading in MIMO channels, is investigated and the density

function of the signal-to-noise ratio (SNR) is discussed.

After obtaining the exact expression in a form with infinite

series, an approximation formula of SNR density is pre-

sented by using the Nakagami-m approximation of Rician

distribution.

In [25], the product of Nakagami-m RV, Rician RV and

Rayleigh RV is analyzed. LCR of this product is calculated.

The results obtained may also be used for the evaluation the

AFD of a relay wireless communications system with three

sections in the presence of Nakagami-m fading in the first

section, Rician fading in the second section and Rayleigh

fading in the third section. LCR of the product of three

independent Rician RVs is observed in [26].

In this article, except for the results from [25], the product

of two Rician RVs and one Nakagami-m RV is processed.

The result can be applied for derivation, in a closed form,

of the second order performance of a wireless relay com-

munications system with three sections operating in Rician

and Nakagami-m fading environments. The formulas are

validated by numerical results and impact of the individual

parameters is analyzed.

This work is composed of four sections. Section 1 serves

as an introduction and describes previous works in the

area. In two next sections, the product of three random

variables is given and an expression for LCR in a closed

form is performed for two different sets of RVs. The in-

fluence of parameters is shown via several graphics for

both sets. The work ends with conclusions presented in

Section 4.

2. Derivation of LCR of Product of

Nakagami-m, Rician and Rayleigh

Random Variables

Here, we examine the scenario involving a wireless re-

lay communications system with three sections. The sig-

nal envelope at the output of the relay communications

system with three sections is the product of envelopes at

the individual sections. In the first example observed, the

Nakagami-m signal envelope is at the first section, the Ri-

cian signal envelope at the second section and the Rayleigh

signal envelope at the third section.

As a rule, it is first necessary to calculate the probability

density function. By using PDF, bit error probability (BEP)

can be evaluated, and by using CDF, outage probability can

be obtained [27], [28]. OP and BEP are the first order per-

formance measure of the wireless communications system.

OP may be calculated as probability that the signal envelope

is below the threshold [27], [29]. Level crossing rate is the

second order statistic measure of the wireless communica-

tions system and is associated with envelope fading, as well

as with average fade duration. LCR shows how often the

envelope crosses a specified level and may be calculated as

the number of crossings at this defined level. AFD shows

how long the envelope remains below a specified level and

can be evaluated as the ratio of OP and LCR. These two

quantities are second order statistics because they are af-

fected not only by the scattering in environment, but also

by the speed of mobile stations. Here, PDF of the product

of Nakagami-m RV, Rician RV and Rayleigh RV will be

obtained by using the transformation method. Further, us-

ing this PDF, CDF and moments can be evaluated, as can

be the level crossing rate.

2.1. Distribution of Random Variables

Nakagami-m random variable x1 follows the distribution

defined in [21]:

px1(x1)=
2

Γ(m)

( m
Ω1

)m
x2m−1

1 e−
m

Ω1
x2

1 , m ≥
1
2
, x1 ≥ 0 , (1)

where Γ(.) is a gamma function. This distribution has two

parameters. The first parameter controls spread. Actually,

Ω1 = E[x2
1] is the average power of the multipath scattering

field. m is the fading depth parameter or the shape factor

of the Nakagami distribution [30]. For RV x1 the shape

parameter is:

m =
Ω2

1

E
{

[

x2
1 −Ω2

1

]2
} .

It describes the fading degree of the propagation environ-

ment caused by the interference of scattering and multipath

phenomena. So, the severity of fading is indicated by the

Nakagami parameter m.
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Random variable x2 follows Rician distribution [22]:

px2(x2) =
2(κ +1)

Ω2

∞

∑
i1=0

(

κ(κ +1)

Ω2

)i1

×
1

(i1!)2 x2i1+1
2 e−

κ+1
Ω2

x2
2 , x2 ≥ 0 , (2)

where Ω2 is the average received power for x2 and κ is the

Rician factor. Rician factor κ is defined as a ratio of dom-

inant component’s power and the scattering components’

powers. This type of fading, called Rician fading, is very

often observed in microcellular and mobile satellite appli-

cations [27].

Rayleigh distribution can be easily derived from Rician dis-

tribution for Rician factor κ = 0. For κ = ∞ we have no

fading, i.e. a channel with no multipath and only a LOS

component. The fading parameter κ is therefore a measure

of the severity of fading: a small κ implies severe fading,

a large κ implies more mild fading [31].

Two-dimensional isotropic scattering, where the arriving

waves arrive to the receiver from all directions, with equal

probability, is a scattering model that is often used for the

communication channel in a macrocellular system. For this

type of scattering environment, the received envelope is

Rayleigh distributed at any time, and is said to be Rayleigh

fading.

Random variable x3 follows Rayleigh distribution [31]:

px3(x3) =
x3

Ω3
e−

x3
3

Ω3 , x3 ≥ 0 , (3)

where Ω3 is the average received signal power of signal x3,

i.e. the received power based alone on path loss and shad-

owing alone [31].

2.2. Product of Three Random Variables

The product of three random variables x1, x2 and x3 is:

x = x1x2x3 . (4)

Then, it is valid that:

x1 =
x

x2x3
. (5)

The first time derivative of x is:

ẋ = ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3 . (6)

The first time derivative of xi has Gaussian distribution:

pẋi(ẋi) =
1

√

2πσ̇2
i

e
−

ẋ2
i

2σ̇2
i , −∞ < ẋ1 < ∞ ,

where σ̇2
1 = π2 f 2

mΩi
m and fm being maximal Doppler fre-

quency. The processes xi and ẋi are considered to be inde-

pendent, as Rice demonstrated in [32].

This is a very interesting result which shows that, in the

Nakagami case and in the Rayleigh and Rice cases, xi and

ẋi are mutually independent random variables [33], i.e., it

is valid that [32]:

pxiẋi(xiẋi) = pxi(xi)pẋi(ẋi) .

Moreover, the probability density function of the time

derivative of the Nakagami envelope is also Gaussian dis-

tributed as are the time derivatives of both Rayleigh and

Rice envelopes [34].

So, all random variables ẋ1, ẋ2, and ẋ3 have Gaussian dis-

tribution. A linear combination of Gaussian RVs is a Gaus-

sian RV. The mean signal level of ẋ is:

ẋ = ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3 = 0 , (7)

because:

ẋ1 = ẋ2 = ẋ3 = 0 . (8)

The variance of ẋ is:

σ2
ẋ = x2

2x2
3σẋ1 + x2

1x2
3σẋ2 + x2

1x2
2σẋ3 , (9)

where:

σẋ1 = π2 f 2
m

Ω1

m
,

σẋ2 = π2 f 2
m

Ω2

κ +1
, (10)

σẋ3 = π2 f 2
mΩ3 .

After substituting, the expression for variance becomes:

σ2
ẋ = π2 f 2

m

(

x2
2x2

3
Ω1

m
+ x2

1x2
3

Ω2

κ +1
+ x2

1x2
2Ω3

)

= π2 f 2
mx2

2x2
3

Ω1

m

(

1+
x2

x4
2x2

3

Ω2

Ω1

m
κ +1

+
x2

x2
2x4

3

Ω3

Ω1
m
)

. (11)

The joint probability density function of x, ẋ, x2 and x3 is:

pxẋx2x3(xẋx2x3)= pẋ(ẋ/xx2x3)px(x/x2x3)px2(x2)px3(x3), (12)

where

px(x/x2x3) =

∣

∣

∣

∣

dx1

dx

∣

∣

∣

∣

px1

(

x
x2x3

)

, (13)

dx1

dx
=

1
x2x3

. (14)

The joint probability density function of x and ẋ is:

pxẋ(xẋ) =

∞
∫

0

dx2

∞
∫

0

dx3 pẋ(ẋ/xx2x3)
1

x2x3

× px1

(

x
x2x3

)

px2(x2)px3(x3) . (15)
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2.3. LCR of Product of Three Random Variables

Level crossing rate of x in a fading environment is [35]:

Nx =

∞
∫

0

dẋẋpxẋ(xẋ) . (16)

For our case LCR is:

Nx =

∞
∫

0

dx2

∞
∫

0

dx3
1

x2x3
px1

(

x
x2x3

)

px2(x2)px3(x3)

×
∞
∫

0

dẋẋpẋ(ẋ/xx2x3) =

∞
∫

0

dx2

∞
∫

0

dx3
1

x2x3
px1

(

x
x2x3

)

px2(x2)

× px3(x3)
1

√
2π

σẋ =

∞
∫

0

dx2

∞
∫

0

dx3
1

x2x3
px1

(

x
x2x3

)

px2(x2)

× px3(x3)
1

√
2π

π fmx2x2
Ω

1
2

m
1
2

(

1+
x2

x4
2x2

3

Ω2

Ω1

m
κ +1

+
x2

x2
2x4

3

Ω3

Ω1
m
)

1
2

=
1

√
2π

π fm
Ω

1
2
1

m
1
2

∞
∫

0

dx2

∞
∫

0

dx3

× px1

(

x
x2x3

)

px2(x2)px3(x3)

(

1+
x2

x4
2x2

3

Ω2

Ω1

m
κ +1

+
x2

x2
2x4

3

Ω3

Ω1
m
)

1
2

=
1

√
2π

π fm
Ω

1
2
1

m
1
2

2
Γ(m)

(

m
Ω1

)m

× x2m−1 2(κ +1)

Ω2

∞

∑
i1=0

(

κ(κ +1)

Ω2

)i1 1
(i1!)2

2
Ω3

×
∞
∫

0

dx2

∞
∫

0

dx3x−2m+1+2i1+1
2 x−2m+1+1

3 e
− m

Ω1
x2

x2
2x2

3
− κ+1

Ω2
x2

2−
1

Ω3
x2

3

×
(

1+
x2

x4
2x2

3

Ω2

Ω1

m
κ +1

+
x2

x2
2x4

3

Ω3

Ω1
m
) 1

2
. (17)

The previous two-fold integral may be solved using the

Laplace approximation theorem for the solution the two-

fold integrals [36], [37]:

∞
∫

0

dx2

∞
∫

0

dx3(x2,x3)eλ f (x2,x3) =
πg(x20,x30)

λB(x20,x30)
eλ f (x20,x30), (18)

where B is the matrix:

B(x20,x30) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ 2 f (x20,x30)

∂x2
20

∂ 2 f (x20,x30)

∂x20∂x30

∂ 2 f (x20,x30)

∂x20∂x30

∂ 2 f (x20,x30)

∂x2
30

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (19)

and x20 and x30 are solution of the equations:

∂ f (x20,x30)

∂x20
= 0 ,

∂ f (x20,x30)

∂x30
= 0 . (20)

For considered case, it is:

g(x2,x3)= x−2m+2i1+2
2 x−2m+2

3

×
(

1+
x2

x4
2x2

3

Ω2

Ω1

m
κ +1

+
x2

x2
2x4

3

Ω3

Ω1
m
) 1

2
, (21)

f (x2,x3) = −
m
Ω1

x2

x2
2x2

3
−

(κ +1)

Ω2
x2

2 −
1

Ω3
x2

3 , (22)

∂ f (x2,x3)

∂x2
=

2m
Ω1

x2

x3
2x2

3
−

2(κ +1)

Ω2
x2 , (23)

∂ f (x2,x3)

∂x3
=

2m
Ω1

x2

x2
2x3

3
−

2
Ω3

x3 , (24)

The solutions of the next two equations are x20 and x30:

2m
Ω1

x2

x3
2x2

3
−

2(κ +1)

Ω2
x2 = 0 , (25)

2m
Ω1

x2

x2
2x3

3
−

2
Ω3

x3 = 0 . (26)

They should be introduced in Eq. (18) for solving two-fold

integral from Eq. (17). In this manner LCR of the product

of Nakagami-m, Rician and Rayleigh random variables will

be obtained in a closed form.

2.4. Numerical Examples and Discussion

The level crossing rate of the product of Nakagami-m ran-

dom variable, Rician RV and Rayleigh RV is shown in the

next few figures versus resulting signal x for different values

of fading parameters and signal powers.

Fig. 1. LCR normalized by fm depending on signal envelope x
for various values of parameters m and Ω1.
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Dependence of the LCR, normalized by fm, on the result-

ing signal x, for various values of parameters m and Ω1
is presented in Fig. 1. It is possible to notice that LCR

increases for lower values of resulting signal and decreases

for greater values of the resulting signal. All curves reach

the maximum and start to decline. Lower values of the

resulting signal have a greater impact on LCR. LCR in-

creases for low values of Nakagami-m small scale fading

parameter m. The impact of resulting x on LCR is larger

for smaller magnitudes of parameter m. LCR is larger for

smaller values of m.

From this picture, the influence of power Ω1 can also be

observed. For low values of x, LCR increases with the re-

duction of power Ω1, but for bigger values of x, LCR in-

creases along with the growth of power Ω1.

Fig. 2. LCR normalized by fm for different parameters κ and Ω2.

Figure 2 shows the influence of the other two parameters:

Rician factor κ and signal power Ω2. LCR becomes bigger

as the Rician factor κ grows. The influence of x on LCR

is greater for lower values of Rician factor κ . The impact

of Nakagami-m fading parameter m on LCR is higher for

bigger values of Rician factor κ . From this figure, one can

also see that LCR is larger for greater values of power Ω2.

In Fig. 3 the impact of power Ω3 is shown. Based on the

image, one may remark that LCR is higher for bigger values

of Ω3 and low values of x. For higher values of x, LCR is

greater for smaller Ω3. The small resulting signal x exerts

a greater impact on LCR.

The results obtained may be used to evaluate LCR of the

product of Nakagami-m and two Rayleigh RVs, LCR of

Rician and two Rayleigh RVs, and LCR of the product of

three Rayleigh (3* Rayleigh) RVs. This can be achieved

because Nakagami-m and Rician distributions are of the

general variety. For the same reason, LCR of the product

of three independent Rician RVs from [26] can be used

for determination of LCR of the product of three Rayleigh

RVs, or the LCR of the product of two Rician RVs and

Fig. 3. LCR normalized by fm for various values of Ω3.

Rayleigh RV, or LCR of the product of Rician RV and two

Rayleigh RVs, because Rayleigh distribution may be easily

derived from Rician distribution for Rician factor κ = 0.

If Nakagami fading severity parameter m = 1
2 , Nakagami

distribution is reduced to unilateral (one-sided) Gaussian

distribution. For m = 1, Nakagami distribution reduces to

Rayleigh distribution, and for m > 1, Nakagami distribution

is reduced to Rician distribution. The ratio between Rician

factor κ and parameter m is [27], [38]:

κ =

√
m2 −m

m−
√

m2 −m
, m > 1 .

On the other hand, for [31]:

m =
(κ +1)2

2(κ +1)
,

the distribution in Eq. (1) is approximately Rician fading

with parameter κ . For m = ∞ we get an additive white

Gaussian noise (AWGN) channel without fading. We see

that as m increases, fading decreases.

As the Nakagami distribution does not contain a Bessel

function, it can get the close form solution more convenient

than Rician distribution [30].

Thus, the Nakagami distribution may model Rayleigh

distribution and Rician distribution, with certain restric-

tions [21]. Note that some empirical measurements support

values of the m parameter being equal to less than one, in

which case the Nakagami fading causes a more severe per-

formance degradation than Rayleigh fading.

3. LCR of Product of Two Rician and

Nakagami-m Random Variables

In the second example, presented in this section, Rician fad-

ing exists in the first two sections and Nakagami-m fading

is present in the third section. These results are applicable
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in analyzing the performance of multi-hop relay wireless

telecommunications systems when the signal level is much

higher than the noise level. In such a case, the noise level

can be ignored. For that matter, the output signal is a prod-

uct of as many random variables as there are sections in

the relay system [38].

3.1. Distribution of the Second Set of Random Variables

Let random variables x4 and x5 have Rician distribu-

tion [22]:

px4(x4) =
2(κ1 +1)

Ω1

∞

∑
i2=0

(

κ1(κ1 +1)

Ω1

)i2

×
1

(i2!)2 x2i2+1
4 e−

κ1+1
Ω1

x2
4 , x4 ≥ 0 , (27)

px5(x5) =
2(κ2 +1)

Ω2

∞

∑
i3=0

(

κ2(κ2 +1)

Ω2

)i3

×
1

(i3!)2 x2i3+1
5 e−

κ2+1
Ω2

x2
5 , x5 ≥ 0 , (28)

and let random variable x6 have Nakagami-m distribu-

tion [29]:

px6(x6)=
2

Γ(m3)

(

m3

Ω3

)m3

x2m3−1
3 e−

m3
Ω3

x2
6 , x4 ≥ 0, x6 ≥ 0 , (29)

where Ωi, i = 1, 2, 3, are powers of RVs xi, i = 4, 5, 6,

κ1 and κ2 are Rician factors for variables x4 and x5, and

m3 is Nakagami-m fading severity parameter of RV x6.

3.2. Product of Three Random Variables

Here, the random variable x is defined as a product of xi,
i = 4, 5, 6:

x =
6

∏
i=4

xi . (30)

The first time derivative of x is:

ẋ = ẋ4x5x6 + x4ẋ5x6 + x4x5ẋ6 , (31)

the average value of x is:

ẋ = ẋ4x5x6 + x4ẋ5x6 + x4x5ẋ6 = 0 , (32)

because [29]

ẋ4 = ẋ5 = ẋ6 = 0 . (33)

The variance of ẋ is given by:

σ2
ẋ = x2

5x2
6σ2

ẋ4
+ x2

4x2
6σ2

ẋ5
+ x2

4x2
5σ2

ẋ6
, (34)

with:

σ2
ẋ4

= π f 2
m

Ω1

κ1 +1
, (35)

σ2
ẋ5

= π f 2
m

Ω2

κ2 +1
, (36)

σ2
ẋ6

= π f 2
m

Ω3

m3
. (37)

After transformation of Eqs. (35)–(37) into Eq. (34), the

variance is:

σ2
ẋ = π2 f 2

m

(

x2
5x2

6
Ω1

κ1 +1
+

x2

x2
5

Ω2

κ2 +1
+

x2

x2
6

Ω3

m3

)

= π2 f 2
mx2

5x2
6

Ω1

κ1 +1

×
(

1+
x2

x4
5x2

6

Ω2

κ2 +1
κ1 +1

Ω1
+

x2

x2
5x4

6

Ω3

m3

κ1 +1
Ω1

)

. (38)

Joint PDF of x, ẋ, x5 and x6 is:

pxẋx5x6(xẋx5x6) = pẋ
(

ẋ/xx5x6
)

× px
(

x/x5x6
)

px5(x5)px6(x6) , (39)

and joint PDF of x and ẋ:

pxẋ(xẋ) =

∞
∫

0

dx5

∞
∫

0

dx6 pxẋx5x6(xẋx5x6)

=

∞
∫

0

dx5

∞
∫

0

dx6 pẋ/xx5x6

(

ẋ/xx5x6
)

px
(

x/x5x6
)

px5(x5)px6(x6),

(40)

with:

px
(

x/x5x6
)

=

∣

∣

∣

∣

dx4

dx

∣

∣

∣

∣

px4

(

x
x5x6

)

, (41)

dx4

dx
=

1
x5x6

. (42)

The expression for pxẋ(xẋ) in Eq. (40), after some replace-

ments is:

pxẋ(xẋ) =

∞
∫

0

dx5

∞
∫

0

dx6 pẋ
(

ẋ/xx5x6
)

×
1

x5x6
px4

(

x
x5x6

)

px5(x5)px6(x6) . (43)

3.3. LCR of Product of the Second Set of Random

Variables

Level crossing rate of x is defined by Eq. (16) [39]. LCR

of product x from Eq. (30), with pxẋ(xẋ) from Eq. (43), is:

Nx =

∞
∫

0

dx5

∞
∫

0

dx6

( ∞
∫

0

dẋẋpẋ
(

ẋ/xx5x6
)

×
1

x5x6
px4

(

x
x5x6

)

px5(x5)px6(x6)

)

. (44)

After introducing Eqs. (27)–(29) and Eq. (38) into Eq. (44),

we obtain LCR as:
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Nx =
1

√
2π

π fm
Ω

1
2
1

(κ1+1)
1
2

x2i1+1 2(κ1 +1)

Ω1

∞

∑
i2=0

(

κ1(κ1 +1)

Ω1

)i2

×
1

(i2!)2
2(κ2 +1)

Ω2

∞

∑
i3=0

(

κ2(κ2 +1)

Ω2

)i3 1
(i3!)2

2
Γ(m3)

×
(

m3

Ω3

)m3
∞
∫

0

dx5

∞
∫

0

dx6x−2i2−1+2i3+1
5 x−2i2−1+2m3−1

6

× e
− κ1+1

Ω1
x2

x2
5x2

6
− κ2+1

Ω2
x2

5−
m3
Ω3

x2
6

×
(

1+
x2

x4
5x2

6

Ω2

κ2 +1
κ1 +1

Ω1
+

x2

x2
5x4

6

Ω3

m3

κ1 +1
Ω1

)
1
2

. (45)

Now we need to use the Laplace approximation theorem for

the solution of double integrals, defined in Eqs. (18)–(20),

for x5 and x6, and x50 and x60 as solutions [39], to solve

last integrals in Eq. (45).

For this case the following is valid:

g(x5,x6) = x−2i2+2i3
5 x−2i2+2m3−2

6

×
(

1+
x2

x4
5x2

6

Ω2

κ2 +1
κ1 +1

Ω1
+

x2

x2
5x4

6

Ω3

m3

κ1 +1
Ω1

)
1
2

, (46)

f (x5,x6) = −
κ1 +1

Ω1

x2

x2
5x2

6
−

κ2 +1
Ω2

x2
5 −

m3

Ω3
x2

6 , (47)

∂ f (x5,x6)

∂x6
=

2(κ1 +1)

Ω1

x2

x3
5x2

6
−

2(κ2 +1)

Ω2
x5 , (48)

∂ f (x5,x6)

∂x6
=

2(κ1 +1)

Ω1

x2

x2
5x3

6
−

2m3

Ω3
x6 . (49)

3.4. Numerical Examples and Discussion

Level crossing rate of the product of two Rician random

variables and a Nakagami-m random variable is calcu-

lated and shown in the next few figures. The influence that

Rician factors κ1 and κ2, Nakagami-m fading severity pa-

rameter m3, Rician multipath fading powers Ω1 and Ω2,

and Nakagami-m fading power Ω3 exert on LCR is dis-

cussed.

LCR, normalized by fm, depending on the signal enve-

lope x, is presented in Fig. 4, for different values of Rician

factor κ1 and Rician fading power Ω1. It is obvious from

the picture that LCR achieves the maximum for small val-

ues of signal envelope x, and starts to decrease for higher

values of x. So, it is evident that the impact of the signal

envelope on LCR is bigger for small values of the signal

envelope. It is also visible from this figure that LCR in-

creases along with the increase in Rician factor κ1 and in

power Ω1. It is known that system performance is better

for smaller values of LCR.

In Fig. 5, the normalized LCR is shown versus signal en-

velope for different values of parameters κ1 and Ω2. It is

Fig. 4. LCR normalized by fm versus signal envelope x for

various values of parameters κ1 and Ω1.

Fig. 5. LCR normalized by fm versus signal envelope x for

several values of parameters κ2 and Ω2.

possible to see from this figure that when κ1 grows, LCR

increases as well, but the increase is insignificant. On the

other hand, with the increase in Ω2, LCR increases visibly,

the curves become wider and the maximums move towards

higher values of the signal envelope x.

The last figure, Fig. 6, presents the LCR, normalized

by fm, depending on signal envelope for various values

of Nakagami-m fading severity parameter m3, and Naka-

gami-m fading power Ω3. It can be noticed that LCR grows

with an increase in fading power Ω3 and with a reduction

in the Nakagami-m fading parameter m3.
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Fig. 6. LCR normalized by fm versus signal envelope for different

values of parameters m3 and Ω3.

4. Conclusion

The product of RVs is applied in multiple relay channels

in the presence of composite fading. In this work, we fo-

cused on a wireless relay communications channel with

three sections, where the product of three RVs describes

the amplitude at the output of the cascaded fading channel

with three sections. A closed form LCR has been calculated

for that channel. The formula obtained has been checked

for different values of fading and power parameters.

The results are valuable for scientists and system de-

signers dealing with fading models for different wireless

channels. It is possible to verify the proposed distribu-

tion of the products of other fading amplitudes by mea-

suring parameters in real wireless relay channels in the

presence of multipath fading, and also due to the fact that

Nakagami-m and Rician distributions are of the general va-

riety. By entering adequate values of fading parameters,

other fading distributions in the individual sections may be

obtained.
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