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Abstract—This paper proposes a fuzzy Manhattan distance-

based similarity for gang formation of resources (FMDSGR)

method with priority task scheduling in cloud computing. The

proposed work decides which processor is to execute the cur-

rent task in order to achieve efficient resource utilization and

effective task scheduling. FMDSGR groups the resources into

gangs which rely upon the similarity of resource character-

istics in order to use the resources effectively. Then, the

tasks are scheduled based on the priority in the gang of pro-

cessors using gang-based priority scheduling (GPS). This re-

duces mainly the cost of deciding which processor is to ex-

ecute the current task. Performance has been evaluated in

terms of makespan, scheduling length ratio, speedup, effi-

ciency and load balancing. CloudSim simulator is the toolkit

used for simulation and for demonstrating experimental

results in cloud computing environments.

Keywords—clustering, pre-processing, quality of service, re-

source allocation.

1. Introduction

In recent years, cloud computing has been used for devel-

oping a manner for providing assorted services and com-

putational resources to the customers [1]. The Internet

and central remote servers were used in cloud computing

to produce scalable services for its customers. There is

a requirement to establish an autonomic resource manage-

ment approach that enhances both QoS targets: resource

centric (reliability, availability, utilization) and user centric

(budget, implementation time) [2]. Task scheduling is per-

formed by the cloud computing platform. Firm resources,

computational power and allocated tasks are used to restrict

the task node. The job management node has various sub-

tasks when a cloud computing task is assigned and stored

in the task pool [3].

The process of resource allocation in cloud computing may

be divided into two categories. The first one is static al-

location. In this type, the cloud customer needs to create

a prior demand for the resources. In this scenario the cus-

tomer recognizes which resources are essential and in how

many cases the resources are required. All that is performed

prior to employing the system. Such an approach leads to

overutilization or underutilization of resources, depending

on the time of application. This is one of the disadvantages

of using static allocation [4].

The other type is dynamic allocation. Here, cloud resources

are required by the cloud customer when there is a demand

for application. At this point, overutilization and underuti-

lization may be prevented [5]. The service provider has

to allocate resources from an alternative cloud information

center [6], [7]. Cloud computing performs most important

tasks between virtual machine (VM) placements, which is

considered to be one of the most severe problems. This

method will select the perfectly suited physical hosts with

respect to energy efficiency and resource consumption –

from the point of view of the cloud provider.

Calculations concerned with the capacity of each resource

node are commonly unstable in heterogeneous or homoge-

neous multi-cluster and multi-resource environments [8].

Therefore, cloud computing scenarios need a consistent

job scheduling scheme and a suitable resource management

model [9], [10].

Scheduling algorithms which are commonly run on dedi-

cated and homogeneous resources, in parallel, and on dis-

tributed systems, cannot perform well in the new cloud

computing scenarios [11]. Transmission delay is a signifi-

cant issue that disturbs the scheduling algorithm in cloud

task scheduling [12], [13]. The creation and full usage

of resources are also significant factors during schedul-

ing [14]–[17].

Gang scheduling is used in distributed systems, and it is

a very useful function [18]. The scheduling algorithm is

necessary for assigning processors to the current activities

in a distributed system. A scheduling algorithm assigns

the functions that need to be performed simultaneously in

the case of similar events, meaning mainly in communi-

cation operations. It is a powerful method for scheduling

such activities, and it depends on time-space sharing [19].

The major role of the scheduling policy of gang schedul-

ing algorithms is to collect the functions of a parallel job,

and to perform them instantaneously on various proces-
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sors. So, the threat of having wait for a function that is

not currently working on any processor is eliminated [20].

In light of the above, one may notice that the quantity of

functions within a gang cannot surpass the number of ac-

cessible processors.

The main objective of this paper is to address an efficient

resource allocation aspect of cloud computing for select-

ing proper resources from a specific gang. It supports task

scheduling with the aim of reducing the selection time.

In this paper, a novel fuzzy Manhattan distance similarity-

based ganging of resources (FMDSGR) technique, devel-

oped for gang formation of resources, with its charac-

teristics aiming to attain better resource scheduling re-

sults in cloud computing, is discussed. Then, gang prior-

ity scheduling (GPS) is proposed to schedule tasks within

a gang of processors.

The subsequent parts of the paper are ordered as follows.

Section 2 reviews the various related works. Section 3

presents proposals for effective pre-processing of resources

and task scheduling. The results are presented and dis-

cussed in Section 4. Lastly, the relevant research work is

described in Section 5.

2. Related Work

In manufacturing relying on cloud systems, there is a con-

siderable amount of assets which have comparable useful

qualities, as indicated by the requirements of the manufac-

turing task at hand. Step-by-step instructions to choose the

ideal assets series or assets combinations to finish the man-

ufacturing task with a number of distributed subtasks was

a key consideration in the investigation of cloud manufac-

turing. Cao et al. [21] had developed a multivariate pro-

cess capability indicator to assess the manufacturing pro-

cess with the unwavering quality of information on cloud

scheduling. As indicated by the fuzzy quality theory, the

strength level of intuitionistic fuzzy esteem was considered

in decision making while selecting the ideal asset chain.

Another technique was proposed for ideal determination of

assets based on the multivariate process indicator and on the

predominance level of intuitionistic fuzzy esteem. A prac-

tical contextual investigation was relied upon to outline the

proposed strategy and technique.

Due to the burstiness of VM in computing clouds, real

application workloads are characterized by spikes that are

more often characterized by periodic occurrence, low fre-

quency and a brief span. Zang et al. [22] explored the

burstiness-mindful server solidification issue from the view-

point of asset reservation, i.e. holding an accurate mea-

sure of additional assets on every physical machine (PM)

to maintain a strategic distance from live movements. The

creator first modeled the asset necessity pattern of each VM

as a two-state Markov chain to catch burstiness, then an as-

set reservation system was intended for every PM, based

on the stationary distribution of the Markov chain.

With the promotion and advancement of cloud computing,

loads of logical computing applications have been devel-

oped in cloud scenarios. A general elastic resource pro-

visioning and task scheduling mechanism performing the

logical work in the cloud was used to address this issue.

Shi et al. [23] had proposed elastic resource provisioning to

perform logical work process employments in the cloud en-

vironment. The issue of elastic resource provisioning was

displayed as a problem that consisted of elastic resource

provisioning algorithms related to VM occupancy.

Saraswathi et al. [24] had proposed a technique that con-

centrated on the assignment of VM to the customer. This

work sets a fundamental standard for low priority occu-

pations (due date of the employment was high), without

postponing the execution of high priority occupations (due

date of the employment was low) and progressively allo-

cated VM assets to the customer who was able to complete

the work within the deadline.

Cloud computing offers the ability to share resources over

various geographical destinations. Cloud resource schedul-

ing has been a task that needs to be performed on a repet-

itive basis, as the issue of finding the best match for the

workload needs to be tackled. Proficient management of the

dynamic nature of resources should be possible with the as-

sistance of cloud workloads. Very few effective resource

scheduling strategies for energy, cost and time-imperative

cloud workloads have been accounted for in writing. Singh

et al. [25] had proposed an effective cloud workload admin-

istration framework, in which cloud workloads have been

recognized, dissected and clustered through K-means on

the premise of weights relegated and their QoS necessi-

ties. The execution of the proposed algorithm had been

assessed with the existing scheduling strategies through the

CloudSim toolkit. While clustering the cloud workloads

utilizing K-means, diverse preparatory allotments can bring

various final clusters, and it does not work well with clus-

ters of different sizes and clusters prone to minimization.

Sfrent and Pop [26] dealt with the problem of schedul-

ing a set of jobs across a set of machines and specifically

analyzed the behavior of the system at very high loads,

which was specific to big data processing. Under certain

conditions, they could easily discover the best scheduling

algorithm, prove its optimality and compute its asymptotic

throughput. Vasile et al. [27] proposed a scheduling al-

gorithm for different types of computation requests: inde-

pendent tasks, like a bag of tasks model, or tasks with de-

pendencies modeled as directed acyclic graphs, and they

will be scheduled for execution in a cloud data center.

The tasks in the requests are scheduled based on the avail-

able resources using the scheduling algorithm suitable for

each request.

Vasile et al. in [28] proposed a resource-aware hybrid

scheduling algorithm for different types of applications,

such as batch jobs and workflows. The proposed algorithm

considers hierarchical clustering of the available resources

into groups in the allocation phase. Task execution was

performed in two steps. In the first phase, tasks were as-

signed to groups of resources and in the second phase,

a classical scheduling algorithm was used for each group
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of resources. The proposed algorithm was suitable for het-

erogeneous distributed computing, especially for modern

high-performance computing systems in which applications

were modeled with various requirements (both IO and com-

putationally intensive), with a particular emphasis on data

from multimedia applications.

Li [29] approach was to design and analyze the performance

of heuristic algorithms based on the equal-speed method.

Pre-power and post-power determination algorithms were

developed for both energy and time-constrained scheduling

of precedence-constrained parallel tasks on multiple-core

processors with continuous or discrete speed levels.

Rimal and Maier in [30] proposed a new cloud-based work-

flow scheduling policy for compute-intensive workflow ap-

plications in multi-tenant cloud computing environments,

which helps minimize the overall workflow completion

time, tardiness, cost of execution of the workflows, and

utilize idle cloud resources in an effective manner. The

proposed algorithm was compared with the state-of-the-art

algorithms, i.e. first come first serve (FCFS), easy back-

filling, and minimum completion time (MCT) scheduling

policies to evaluate the performance levels.

Keshanchi et al. [31] proposed a powerful and improved ge-

netic algorithm to optimize task scheduling solutions. The

proposed algorithm uses the advantages of evolutionary ge-

netic algorithm and heuristic approaches.

Taking into consideration the work mentioned above, we

can say that there is a need to develop a resource man-

agement technique that optimizes both QoS targets: user-

centric (cost and execution time) and resource-centric (re-

liability, availability, and utilization). Due to unavailability

of the required resources at a point in time, some sub-tasks

are stuck in a deadlock condition and continue to struggle

for resources, which further leads to customer dissatisfac-

tion (increasing execution time and cost). The QoS-aware

resource management technique needs to be decentralized.

In centralized distributed systems, it is tough to manage

large numbers of user requests in multiple service queues,

which further leads to performance degradation (decreased

reliability and scalability). Due to the difficulty in predict-

ing the behavior (regarding QoS requirements) and demand

(in terms of resources) of the workload/application, there

is a need for an effective QoS-aware resource management

technique that can easily make the right decision concern-

ing the dynamic scaling of resources.

3. Proposed Resource Pre-processing

and Task Scheduling

The proposed work is divided into in two stages: pre-

processing and task scheduling. Fuzzy clustering is done in

the first stage, where resource characteristics, such as pro-

cessing performance, average communication ability, max-

imum transmission capacity, network position, and many

links are grouped into a gang of resources. Resources with

a similar computing capability are grouped into one gang

Fig. 1. Architecture of the proposed scheme.

by separating all resources into many gangs based on the

Manhattan distance similarity. The resources in one gang

have a similar data transfer rate, as they share a similar

network for communicating with each other. In the sec-

ond stage, the tasks from the users are scheduled based on

gang priority scheduling in order to minimize the schedul-

ing length or makespan. The architecture of the proposed

work is given in Fig. 1.

3.1. Resource Pre-processing using FMDSGR algorithm

There are many typical workflow task scheduling algo-

rithms which are deployed in a heterogeneous environment.

Those methods are based on quantitative characteristics of

the task and do not consider the service-oriented resources.

Moreover, it is hard to describe exactly the task’s demand

for resources. Meanwhile, resource attributes cannot be

described accurately. The fuzzy theory provides various

effective means to solve the uncertain problems in the real

world. Therefore, fuzzy clustering is used to divide the

resources, and the Manhattan distance is used to group the

resources into gangs based on similarity to improve the

efficiency of task scheduling.

Also, computation and communication ability of resources

allocated by the task affects the completion of the sub-

sequent task. Therefore, distinguishing the performance

of resources is conductive to choosing the appropriate re-

sources for workflow task scheduling. However, it is diffi-

cult to describe the attributes of resources accurately, and

there are no attributes to distinguish the processing units

strictly. Fuzzy clustering is an effective method to divide

resources.

Design objective: The purpose of the resource pre-

processing method is to minimize the distance vector of

the processor’s characteristics to achieve effective utiliza-

tion of resources. We can dynamically group the resources

as gangs during scheduling in cloud systems, partitioning

the given data by minimizing the distance objective func-

tion:

f (x) = min(Mt) ∈ ε . (1)
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We have to gang the processing unit with minimum Man-

hattan distance Mt of the n-th characteristic feature t de-

pendent upon the threshold value ε .

Initialization of resources: Consider the original dataset

U with the processing unit {p1, p2, . . . , pM} in which

each processor has its separate characteristics u =
{t1, t2, . . . , tN}. In which, pM is the x-th processor of the

M-th process unit and tN is the y-th characteristic value in

the N-th characteristic elements. The performance of the

scheduling process is improved by forming the resources in

the cloud system as a gang. Qualitative characteristics refer

to qualities or properties of cloud computing resources.

Data standardization and extreme standardization: We

obtain the standardization data U ′ to deal with the data U in

the target system using mean and standard deviation. The

standardized value uik of each data is equal to:

u′xy =
uxy −µxy

σxy
, (2)

where uik denotes the k-th eigenvector of original data. In

the Eq. 2, µxy =
1

MN

M
∑

x=1

N
∑

y=1
uxy is the mean value of uxy and

σxy =

√

1
MN

M
∑

x=1

N
∑

y=1
(uxy −µxy)2 is the standard deviation

of uxy. The final value of the standardized data u′
xyis not

in the range [0, 1]. Therefore, in order to normalize the U ′

to U ′′ an extremely standardized method is presented. The

extreme standardized method is defined as:

u′′xy =
u′xy −u′ymin

uymax′ −u′ymin
, (3)

where u′ymin is the minimum value in u′1y, u′2y, . . . , u′Ny and

u′ymax is the maximum value in u′1k, u′2k, . . . , u′Nk.

Fuzzy similarity matrix: The correlation coefficient be-

tween the elements in the fuzzy matrix includes the similar

index coefficient method. The similar index coefficient can

be calculated as:

Ixy =
1
N ∑ e

3(uxk−uyk)2

4σ ′′2
xk , (4)

where n denotes the number of characteristic features. The

values of x and y belongs to the processing units. The value

of k fits with the characteristic feature.

Consequently, a fuzzy similarity matrix is obtained as a re-

sult of the correlation coefficient between the elements and

is expressed as:

F =[Ixy]2(n+1) =















I11 I12 · · · I1(n+1)

I21 I22 · · · I2(n+1)

...
...

...
...

I(n+1)1 I(n+1)2 · · · I2(n+1)















2(n+1)

.

(5)

Then, fuzzy relation F among x and y is established as

a fuzzy subset of x × y, in which Ixy is the member-

ship function in the interval [0, 1]. The fuzzy similarity

between the processing units is referred to as Ixy in the

formula:

Ixy =







1 x = y
[0, 1] x 6= y . (6)

The fuzzy similarity is based upon the fuzzy relations, such

as equivalence relation, fuzzy relation and similarity rela-

tion, which are necessary for reflexivity and symmetry.

Manhattan distance based gang formation: The process

of grouping the elements or objects into clusters for a prob-

lem with a certain objective is called gang formation. It can

expose formerly hidden relations in a multifaceted data set.

Finding the similarity between two objects is the main is-

sue in gang formation, so that the gang can be formed with

a high similarity between the objects. Manhattan distance

computes the absolute differences between the coordinates

of a pair of objects. This means that the distance between

two items is the total sum of the differences of their par-

allel elements. Figure 2 presents the process flow of the

proposed FMDSGR.

The similarity between the data items of a gang is mea-

sured using the Manhattan distance M. The formula for

this distance between a standardized data item and a center

point is:

Mt =
M

∑
x=1

N

∑
y=1

‖I′xy − ct‖ . (7)

In Eq. (7) ct =

M
∑

x=1

N
∑

y=1
u′′xy

MN
represents the center point of the

t characteristic value calculated after the extremely stan-

dardized output.

The maximum number of center points depends upon the

minimum value of the objective function. Then, the gangs

are formed using those center points represented as a gang.

Members other than the center point could not be assigned

to any gang. Therefore, they belong to two or more gangs.

After forming the gang, we have to decide, which gang

executes the task. Hence, we have to add the separate

characteristics of each gang and sort it in the descending

order. We can decide, which gang processes the task based

on the arrangement.

The objective of this algorithm is to reduce the comple-

tion time of every task in the workflow, whereas the start

time and the finish time are the two important factors af-

fecting the completion time. If the task is allocated to the

different processing units, the execution implementation is

also different. We schedule each task based on its suit-

able processing unit, which minimizes the finishing time of

the task.
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Fig. 2. Process flow of proposed FMDSGR.

Algorithm 1 : FMDSGR flowchart

Input: N number of processors with characteristics

Output: gang

The algorithm comprises the following steps:

1. Random selection of the gang center

2. Initialization of resources U = [ui j] matrix, U (0)

3. Data standardization

u′xy =
uxy −uxy

δxy
4. Extreme standardization

u′′xy =
u′xy −u′ymin

u′ymax −u′ymin
5. Fuzzy similarity matrix

Fe = [I′xy](n+1)×(n+1) =

=















I′11 I′12 · · · I′1(n+1)

I′21 I′22 · · · I′(n+1)(n+1)

...
...

...
...

I′(n+1)1 I′(n+1)2 · · · I′2(n+1)















(n+1)×(n+1)

6. At k-step: calculate the centers vectors C(k) = [ct ]
with U (k)

ct =

M
∑

x=1

N
∑

y=1
u′′xy

MN
7. Update U (k), U (k+1)

Mt =
M
∑

x=1

N
∑

y=1
‖I′xy − ct‖

If ‖U (k+1)−U (k)‖ < ε or the minimum objective is

achieved, then Stop. Otherwise return to step 2.

3.2. Task Scheduling Using GPS Algorithm

Gang based priority scheduling is used to reduce the

scheduling length (makespan) of the task scheduling work-

flow. The scheduling length gets reduced every time the

task is performed and a ready task list (RTL) is established

for priority allocation. If there is any task in the RTL that

denotes the scheduled tasks of the parent node, the priority

of the task is based up on the current-to-exit length (CEL)

value. It represents the largest distance from the present

node to the existing node:

CEL(tx) =
W (tx)

Mp
+ max

ty∈succ(tx)

{

Txy

Mc
+CEL(ty)

}

, (8)

where Mp is the median of the computing ability of the pro-

cessing units, Mc is the median of the transmission ability

between processing units, Txy is the inter-task communica-

tion between tx, and ty ∈ succ(ty) is the closest successor or

child of the task tx. The larger the CEL, the greater its pri-

ority. If greater the attribute priority value of a task means

priority is also greater. After that, group the workflow task

into gangs or jobs based on their priority.

Let us consider all the tasks within the same job being

allocated at the same time. The job consists of a set of

tasks called gangs and each task in the gang starts at the

same time. Assume that every gang G consists of x tasks

and 1 ≤ x ≤ P
s , in which s = 2 and P denotes the processor.

Gang thus formed by cluster the task of parallel jobs and

allocate the tasks simultaneously to different processors.

The degree of parallelism of a gang is the number of the

task in a job. The size of the gang is equal to the number of

tasks in a gang G. If p is the number of processors required

by gang G, then 1 ≤ x ≤ p ≤ P
s . Before scheduling, we

should know that a small gang requires a limited number

of the processing units, and a large gang requires a large

processing unit.

3.2.1. Gang Size Dissemination

The number of tasks of the gang (job) is evenly dissemi-

nated with in the range b1, . . . ,
P
s c. The mean of the gang

size is represented as:

γ =

[

1+ P
s

2

]

. (9)

The number of jobs that can be processed in parallel de-

pends on the gang size and the scheduling policy. The
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scheduling algorithm selects the task in the gang which is

on the top of RTL. The tasks will be released after execut-

ing each task from the first gang, so the RTL is updated

after each task allocation process. The task from the gang

with the highest priority completes the task with a min-

imum completion time during scheduling. The processor

with the nearest center unit is selected when two processors

have the same completion time.

3.2.2. Computing the Primitive Begin Time (PBT)

While allocating tasks to the suitable processor, in order to

achieve the smallest PBT value, calculate all the processing

units’ PBT assigned by ti to decide about the processing

unit p1.

PBT (tx, py) = max
{

RFT (tx,Py), max
ty∈PRED(tx)

(AT (tx, ty, py)
}

,

(10)

where pred(tx) is the nearest predecessor of tx, RFT (tx) is

the real finish time of the task tx.

RFT (tx, py) = RST (tx, py)+
w(tx)
w(py)

. (11)

When ty ∈PRED(tx) and tasks tx and ty on px and py. w(tx)
is the computation time of the task tx, the processing unit

py computation time is represented as w(py). The obtained

time on tx and ty on px and as py is:

AT (tx, py) = RST (tx, py)+
C(tx, ty)

C(px, py)
. (12)

In Eq. (12) C(tx, ty) is the inter-task communication time

between tx and ty, C(px, py) is the communication time of

the processing unit between px and py.

3.2.3. Computing the Primitive Completion Time

In the same way, the processing unit p2 is selected and

provides the minimum PCT value:

PCT (tx, py) = PBT (tx, py)+wxy , (13)

where wxy is the computing cost of the processing unit.

If the selected processing units are the same, then each

task from the high priority gang is allocated to the first

processor. Then, simultaneously update the LRT. If the

selected processing unit is different, then select the nest

gang of the task in the RTL with a low priority. Continue

the step until the processors p1 and p2 become equal, and

simultaneously update RTL.

The task with the highest priority is scheduled on the pro-

cessing unit that can complete the task with the minimum

completion time. When there is no vacancy in the optional

set, we choose the processing unit of the cluster with the

highest comprehensive performance in the backup set and

calculate the completion time of the current task on this

processing unit. If the completion time of this processing

unit in the backup set is lower than the smallest comple-

tion time of the processing unit in an optional set, we put

the current task schedule on the one in the backup set. If

there are two processing units that have the same comple-

tion time, we can choose the processing unit whose network

location is nearer to the center unit. Because of the con-

sideration of communication cost, whenever possible, we

place the tasks on the critical workflow path of the same

processing unit.

Algorithm 2 : Gang based priority scheduling

Input: Current LRT[LRT= G1,G2, . . . ,Gn];

G1 – largest gang, Gn – smallest gang;

G = p1, . . . , pn

Task: Still exist tasks that haven’t been allocated,

T = t1, t2, . . . , tn
LRT [head]: Head of the LRT

LRC [tail]: Tail of the LRT

Output: Refresh LRT to improve the resources schedul-

ing performance

1: Cluster the processing unit with fuzzy theory

2: Compute each node’s CEL

3: Establish the LRT

4: Choose the first LRT

5: While (Gang) do
{

6: If (LRC→LRT [head]) Then
{

Compute the EST and choose the minimum

value processing unit p1.

Compute the EFT and choose the minimum

value processing unit p2.

7: If (p1 = p2) Then
{

Allocate each task of ti to p1
Remove task of ti from LRT,

update the LRT

Else

To the next task in LRT
}

Else

//LRC→LRT[tail]

Go back to the first task

in LRT,

Compute the difference, and

Choose the processing unit.

8: Allocate ti to pi and delete ti from LRT
} }

4. Results and Discussion

The experimental results were achieved by using the

CloudSim toolkit as a simulation platform to simulate het-

erogeneous cloud environments. CloudSim [26] was also

proposed by R. Buyya, extending the range of features of

GridSim end enabling, modeling and simulating cloud en-

vironments, data centers, virtual machines, cloudlets, etc.
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Five characteristic features have been employed in this pa-

per to improve scheduling performance in the resource net-

work:

• processing performance t1: the average computing

ability among processing units in the resource sys-

tem, it represents the average time per task executed

by a processing unit. If the resultant value is small,

this means that the processing unit costs are also

lower during computation;

• average communication ability t2: the average com-

munication ability value of the processor-connected

links that can be calculated from the average weight

of edges connected to the processing elements;

• maximum transmission capacity t3: the maximum

number of edges connected to a processing unit with

the transmission capacity;

• network position t4: position of the processing ele-

ment in the network, defined as the network position.

If the processing unit is far away from the center of

the network, then the value is greater;

• number of links t5: the number of links that are con-

nected to a processing element.

Table 1 shows the characteristics of the original data U for

the processing units. The cloud resources should be formed

as gangs to use the resources effectively and to divide the

processing units.

Table 1

Original dataset

Processing unit
Characteristic features

t1 t2 t3 t4 t5

P0 20 0.05 0.05 6 1

P1 30 0.08 0.05 9 2

P2 35 0.1 0.1 10 2

P3 50 0.13 0.1 14 4

P4 45 0.13 0.1 13 4

P5 50 0.13 0.1 14 3

P6 30 0.1 0.1 9 1

P7 28 0.1 0.1 8 1

P8 48 0.11 0.03 13 5

P9 33 0.1 0.1 9 1

P10 30 0.08 0.08 8 1

P11 35 0.1 0.1 10 1

P12 40 0.12 0.1 11 1

In the proposed work, first the original data U can be stan-

dardized. Then, the similarity is calculated based on the

Manhattan distance, and we obtain the overall gang for-

mation results as gang 1: {P0,P2,P6,P7,P7,P9,P10,P11,P12}
and gang 2: {P1,P3,P4,P5,P8}. The first gang result forms

gang 1, and the next gang result forms gang 2.

The proposed work ensures better performance when the

data sets are different or detached from one another. Man-

hattan distance-based similarity of the presented method is

compared with the arithmetic mean method in Table 2. The

successful result has not been achieved due to the random

selection of gang center in the arithmetic mean method,

and this method does not work well for categorical data,

i.e. it is applicable only when the mean is defined.

Table 2

Comparison of gangs in Manhattan distance and

arithmetic mean methods

Manhattan distance (MFC) Arithmetic mean

Gang 1 Gang 2 Gang 1 Gang 2

P0 P1 P0 P3

P2 P3 P1 P4

P6 P4 P2 P5

P7 P5 P6 P6

P9 P8 P7 –

P10 – P9 –

P11 – P10 –

P12 – P11 –

– – P12 –

In order to decide which gang to choose to execute the

task at hand, we have to add any of the characteristics

of the processor in the gang and sort the results in the

descending order. In this paper, we have used the average

communication ability t2, and the maximum transmission

capacity t3 as our characteristics, and added all t2 and t3
features of the gang 1 and gang 2 separately.

The total average communication ability equals 0.74 for

gang 1 and 0.59 for gang 2. The total maximum trans-

mission capacity amounts to 0.75 for gang 1 and 0.38 for

gang 2.

After calculating the characteristics, gangs with high aver-

age communication and transmission capacity values have

been sorted in the descending order as [0.75, 0.59] and

[0.75, 0.38]. From this, we can decide that gang 1 is to

to execute the task. Thus, the Manhattan distance based

fuzzy clustering (MFC) is an effective technique for gang

formation enabling a considerable reduction in the cost of

deciding which processor is to execute the task and the

selection of the gang depends on the performance charac-

teristics.

The various performance metrics to compute the results

are:

Makespan: makespan (M) is referred to as the scheduling

length. It is measured by calculating the ending time of the

final task using the proposed algorithm:

M = max
{

PCT (t)
}

, (14)

in which PCT (t) is the primitive completion time of the

task.
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Scheduling length ratio: the scheduling length ratio (SLR)

in the lower bound is the time taken to execute the task on

a serious path. SLR is defined to normalize the schedule

length:

SLR =
M

n
∑

ti∈CPmin

min
p j∈P

{wi, j}
. (15)

SLR is defined as the ratio of makespan to the total sum of

minimum computation cost CPmin of all tasks. The resultant

graph value of SLR is not less than one. When the SLR

output is low, then the scheduling algorithm provides better

performance.

Speed up: the ratio of parallel execution time and the se-

quential execution time is the speedup (S). The scheduling

length on a limited number of processors is the parallel

execution time and the sum of entire computation time of

every task is the sequential execution time:

S = min
p j∈P















n
∑

i=1
wi, j

M















, (16)

where the total sum of the computational time of tasks is

defined as
n
∑

i=1
wi, j , i = 1, 2, 3, . . . , n.

Efficiency: the efficiency is the measure of the utilization

of the processor of a parallel program:

η =
S

NP
, (17)

where S stands for speed up and NP is the number of pro-

cessors.

Fig. 3. Performance comparison of the proposed GPS method

for different number of processors.

Fig. 4. Comparison of the existing LJFS scheduling.

Load Balancing: the ratio of the overall makespan of pro-

cessors and the average execution time is the measure of

load balancing (LB):

LB =
M
A

, (18)

where M is scheduling length. The average A is taken from

the ratio of a sum of the processing time of each processor

and the number of processors used.

The proposed fuzzy-based gang priority scheduling method

is compared with the largest come first serve (LJFS), Yarn,

and Mesos scheduling method.

Fig. 5. Comparison of the proposed GPS method with the LJFS

scheduling.

The comparison of the various performance metrics shows

that the proposed method provides better performance when
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compared with the LJFS method, as presented in Figs. 3

and 4.

The overall comparison of the proposed method with the

LJFS, Yarn, and Mesos scheduling is given in Fig. 5. As

a result, the proposed method minimizes the waiting time

between tasks and reduces the idle time interval among the

processing elements.

5. Conclusion

The work proposed in this paper has led to developing ef-

ficient pre-processing (gang forming) and task scheduling

of cloud resources. Similar resources are ganged based on

the FMDSGR approach to reduce the scheduled time while

selecting the processor. The proposed pre-processing algo-

rithm is fast, robust and easier to understand. When data

sets are different or separated from each other, improved

results are achieved. Thus, the resultant method enables to

form gangs more effectively when compared with the exist-

ing arithmetic mean method. The resources can be utilized

effectively with the resultant gang. The scheduling length

of the workflow is prioritized using the GPS algorithm. Fi-

nally, the QoS performance metrics have been evaluated

in terms of makespan, SLR, speedup, efficiency and load

balancing. The proposed method provides improved perfor-

mance when compared with the existing LJFS, Yarn, and

Mesos method.
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