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Abstract—Accurate detection of spectrum holes is the most

important and critical task in any cognitive radio (CR) com-

munication system. When a single spectrum sensor is assigned

to detect a specific primary channel, then the detection may

be unreliable because of noise, random multipath fading and

shadowing. Also, even when the primary channel is invisible

at the CR transmitter, it may be visible at the CR receiver (the

hidden primary channel problem). With a single sensor per

channel, a high and consistently uniform level of sensitivity

is required for reliable detection. These problems are solved

by deploying multiple heterogeneous sensors at distributed lo-

cations. The proposed spectrum hole detection method uses

cooperative sensing, where the challenge is to properly assign

sensors to different primary channels in order to achieve the

best reliability, a minimum error rate and high efficiency. Ex-

isting methods use particle swarm optimization, the ant colony

system, the binary firefly algorithm, genetic algorithms and

non-linear mixed integer programming. These methods are

complex and require substantial pre-processing. The aim of

this paper is to provide a simpler solution by using simpler bi-

nary integer programming for optimal assignment. Optimal

assignment minimizes the probability of interference which

is a non-linear function of decision variables. We present

an approach used to linearize the objective function. Since

multiple spectrum sensors are used, the optimal constrained

assignment minimizes the maximum of interferences. While

performing the optimization, the proposed method also takes

care of the topological layout concerned with channel accessi-

bility. The proposed algorithm is easily scalable and flexible

enough to adapt to different practical scenarios.

Keywords—channel accessibility matrix, cognitive radio net-

work, optimal assignment, probability of interference, secondary

users, spectrum sensing.

1. Introduction

Cognitive Radio Networks (CRNs) have become attractive

solutions that are suitable for different applications [1]–[4].

At present, with a few exceptions, almost the entire radio

spectrum available is regulated and allocated exclusively

to licensed users who are called primary users (PUs), i.e.

TV broadcasters, mobile communication service providers.

In general, the radio spectrum is not fully utilized by its

PUs. The unused spectrum bands with respect to time,

space and frequency, are called spectrum holes [5]. These

spectrum holes are utilized by secondary users (SUs) for

communication-related purposes.

In a CRN, SUs have to detect the presence or the absence of

a primary radio transmission within a specified channel, in

order to identify spectrum holes. Efficient sensing of spec-

trum holes is an important prerequisite in a CRN. Spectrum

hole sensing by measuring the received energy level over

a certain time interval is a well-known basic method [6].

The received signal strength depends on existing noise lev-

els, which are random and may vary considerably. There-

fore, statistical methods for efficient spectrum sensing are

used here.

When cooperative sensing is used to sense multiple pri-

mary channels, optimal matching of secondary sensors to

primary channels is an optimization problem encountered

in the permutation space. Several articles have already been

published in this regard. In [7], binary particle swarm op-

timization (BPSO) is used. This method provides channel

assignment that maximizes the total bandwidth utilization

by SUs. BPSO is basically an iterative algorithm that may

take relatively more time to achieve convergence. The bi-

nary firefly (BF) algorithm is used in [8]. Here, both band-

width utilization and fairness among SUs are fitness func-

tions that are maximized. In BF, authors use the coding

method to reduce the search space. This is also an iterative

algorithm. The ant colony system is described in [9]. The

genetic algorithm is used in [10]–[11]. Non-linear mixed

integer programming is used in [12]. A survey of various

mathematical programming methods for solving channel

selection in CRNs is given in [13].

2. Basic CRN Model

Consider a multi-channel multi-user CRN, over a certain

geographical area, with M licensed primary transmitters

(PTs) designated as PT(1), PT(2), . . . , PT(M). The non-

overlapping radio frequency channels used by these M PTs

are respectively designated as ch(1), ch(2), . . . , ch(M).
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Each transmitter uses a single primary channel. Each PT

covers a certain spatial region designated as its coverage

area as shown in Fig. 1. When PT( j) covers area( j) using

ch( j), it means that the primary and secondary receivers

within this area can receive the transmitted signal with

a sufficient signal-to-noise ratio (SNR) for successful re-

ception. In this context, when the radio signal from PT( j)
covers area( j), we also say that ch( j) covers area( j) for

j = 1 to M.

Fig. 1. Layout of a primary wireless channel ch( j) with SUs and

SAP( j).

In Fig. 1, the coverage area( j) is indicated by the enclosing

circle designated as ch( j). SUs within coverage area( j) are

su( j, 1), su( j, 2). pu( j, 1), pu( j, 2) and pu( j, 3) are the

PUs. We assume that the SUs within ch( j) are served by

their own secondary access point SAP( j), for j = 1 to M.

Fig. 2. Primary channels covering the SUs. (For color pictures

visit www.nit.eu/publications/journal-jtit)

2.1. Multi-channel Multi-user Layout

A multi-channel multi-user layout is shown in Fig. 2. The

areas covered by individual channels are overlapping, while

their frequency bands are non-overlapping. The SUs (also

called nodes) are globally identified by 1, 2, . . . , N and is

simply the integer set {1 : N}. We use su(k) to denote the

SU whose ID is k. The SUs are assumed to be static. In

Fig. 2, the number of primary wireless channels is M = 4,

and the number of secondary users is N = 6. The secondary

access points are not shown here.

The subset of SUs covered by channel ch( j) is denoted

by SS( j) for j = 1 to M. The subsets of SUs covered by

different channels (subnets) are shown in Table 1. An SU

can belong to more than one channel. Thus, in Fig. 2 SUs 1

and 2 belong to ch(1), ch(2) and ch(4).

Table 1

Channels and their corresponding subsets

2.2. Channel Model

A specific wireless communication channel is a radio fre-

quency band with center frequency fc and a bandwidth BW.

Each wireless transmitter has an isotropic antenna. We as-

sume that the primary transmission power and its antenna

gain are known directly or indirectly, so that the coverage

area of each transmitter is made available to the secondary

network. The propagation delay is neglected. Received

power is calculated using the simplified two-ray ground

propagation loss model [14] as:

Pr(d) = Pr(1) ·d−4
, (1)

where Pr(0) is the received power in watts at a distance

of 1 m from the source, d is the distance from the source

to the receiver in meters, and Pr(d) is the received power

in watts. We assume that the SNR is above the minimum

threshold of the receivers within the coverage area. For

simplicity, we assume that all devices are static and the

parameters of the system do not change with time.

2.3. Secondary Users or Cognitive User Nodes

These nodes are equipped with Software Defined Radio

(SDR) [15], where transceivers can dynamically adjust their

radio communication parameters. Each secondary node is

fitted with special spectrum sensing circuits (spectrum sen-

sors) to detect the presence or the absence of available

primary channels.
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2.4. Channel Accessibility Matrix

At a specified time t, an SU may have access to several

primary channels. This information is represented by the

Channel Accessibility Matrix CA(t) [16], sized M×N. The

rows represent the channels, while the columns represent

the SUs. CA(t) is a binary matrix and its element ca( j, k, t)
at row j and column k at time t is defined as:

ca( j, k, t)=

{

1 if su(k) is within the communication
range of ch( j)

0 otherwise
. (2)

For the configuration shown in Fig. 2, matrix CA(t) is given

by the values as shown in Table 2. The element CA(t) de-

pends on the geographical locations of SUs and on the loca-

tions of primary base stations. For non-mobile SUs, CA(t)
is independent of t. Then, we use the symbol CA instead of

CA(t). Matrix CA represents the topological information.

Table 2

Channel accessibility matrix elements for the topology

shown in Fig. 1

su(1) su(2) su(3) su(4) su(5) su(6)

ch(1) 1 1 1 0 0 0

ch(2) 1 1 0 1 1 0

ch(3) 0 0 1 0 0 1

ch(4) 1 1 0 0 1 1

2.5. Channel Sensing Model

For a given primary channel, we introduce two mutually

exclusive and exhaustive hypotheses H(0) and H(1) as:

• H(0) – the channel is not occupied by the PU and it

is available for SUs,

• H(1) – the channel is being engaged by the PU and

is not available for SUs.

The received signal sample at the specific SU is given

by [6]:

y(i) =

{

η(i) : H(0)
s(i)+η(i) : H(1)

. (3)

Here, η(i) is the noise sample, s(i) is the received signal

sample and y(i) is the resultant, for i = 1 ,2, . . . , n, where

n is the number of signal samples. The decision variable

W at the sensing receiver after normalization of y(i)’s is

given by [6]:

W =
1
n

n

∑
i=1

(y(i)
σ

)2
. (4)

Here, σ is the standard deviation of the noise samples.

Let T be the detection threshold, which is assumed to be

known. If W > T , then the SU declares the presence of

the primary channel, else its absence. Because of the dy-

namic nature of the radio propagation environment and the

ambient noise, W > T is a probabilistic event.

2.6. Probability of Detection and Probability

of Interference

The conditional probability of detection under H(1) is de-

fined as:

PD = prob
(

W > T |H(1)
)

. (5)

The conditional probability of interference with the primary

channel [6] is:

PI = prob
(

W ≤ T |H(1)
)

. (6)

PI is the probability that the spectrum sensor at that SU

decides that the primary channel is free while it is actu-

ally occupied. PI is same as the probability of misdetec-

tion [17]. Note that PD +PI = 1. The ideal case is PD = 1
and PI = 0. A large value of PI means more interference

with the PU. The PI value of a specific SU with respect to

a specific PTs depends on the statistical properties of W ,

which depend on several factors, such as distance between

the secondary sensor and the transmitter, transmitter power,

radio environment, etc.

2.7. Probability of Interferences in Multi-channel

Multi-user Layout

Our multi-channel multi-user optimization problem has M
primary channels (transmitters) and N SUs. In general,

N ≥M. The spatial layout is such that multiple SUs can

access signals from multiple PTs, as shown in Fig. 3.

Fig. 3. Multi-channel multi-user layout (M = 2, N = 3).

Let PI( j, k) represent the probability of interference with

the PT( j) by SU(k). This occurs when the SU(k) fails to

detect ch( j) under H(1). Therefore, from Eqs. (5) and (6):

PI( j, k) = 1−PD( j, k) . (7)

We assume that the PI( j, k)’s values are known (either by

calculations or estimation) for j = 1 to M and k = 1 to N.

The collection of PI( j, k)’s in a matrix format is denoted

by the PI matrix, where j is the row and k is the column.

Example 1. As an example, PI( j, k) values for M = 2 and

N = 3 are shown in a matrix form in Table 3.

In this example, all sensors can access all primary channels,

and all CA elements are ones.
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Table 3

Example of a PI matrix

( j, k) 1 2 3

1 0.45 0.1 0.2

2 0.35 0.3 0.4

To improve channel detection capability, one or more

sensors can be assigned to detect a single channel [1].

Let SS( j) be a set of sensors simultaneously assigned

to sense ch( j), same as PT( j). Here, SS( j) is a subset

of SUs. Theoretically, all possible simultaneous assign-

ments will form the power set of {1 : N}, that is, P({1 : N}).
The number of subsets in a power set is 2N . Therefore,

SS( j) can be any one of the possible subsets out of 2N ,

except for the empty set. These SS( j) sensors send their

sensed information to a fusion centre (FC). The FC deter-

mines the overall probability of detection of ch( j) based

on hard decision combining. There are several combining

rules, such as AND, OR, the majority rule [1], etc. In the

presented scheme, we use the OR combining rule.

We assume that sensor detection events are statistically in-

dependent. Therefore, the probability that all simultane-

ously assigned sensors fail to detect ch( j), denoted by the

overall probability of interference, represented by OPI( j),
is the joint probability due to the SUs that belong to the

subset SS( j). Hence, OPI( j) can be represented using the

multiplication rule for independent events as:

OPI( j) = PI
[

j,u(1)
]

·PI
[

j,u(2)
]

· . . . ·PI
[

j,u(|SS( j)|)
]

,

(8)

where u(1), u(2), . . . , u(|SS( j)|) are the members of set

SS( j), and |SS( j)| is the size of SS( j) or the number of

SUs in SS( j).
Since 0≤ PI( j, k)≤ 1 for all j’s and k’s, the product term

OPI( j) also lies between 0 and 1. Thus, OPI( j) is non-

negative.

Equation (8) can be concisely expressed as:

OPI( j) = ∏
u(i)∈SS( j)

PI
[

j, u(i)
]

. (9)

3. Basic Objective and Constraints

The objective is to minimize the worst case interference

at PTs due to SUs. The worst case scenario occurs when

OPI( j) is at its maximum, and the optimal assignment is

one that minimizes the maximum of OPI. This is a mini-

max assignment problem [17]–[21].

From Eq. (9) one can see that the OPI( j) value depends

on the composition of SS( j). The objective is to choose

the SS( j) set optimally, so that the maximum of OPI( j)
over j is minimized. Therefore, the objective function to

be minimized can be expressed as:

OF1 = max
j∈{1:M}

OPI( j) . (10)

3.1. Assignment Matrix X

We introduce the assignment matrix X of size M×N with

N > M. Its elements x( j,k) are defined for j = 1 to M and

k = 1 to N as:

x( j, k) =

{

1 if su(k) is assigned to PT( j)
0 otherwise . (11)

The objective is to determine X to minimize the objective

function given by Eq. (10).

3.2. Constraints on X

There are several constraints on x( j,k).

Removal of unassignable SUs: When ca( j,k) = 0, that

assignment is impossible because su(k) is outside the cov-

erage area of PT( j). To take care of this condition, we

make x( j,k) = 0 (no assignment) when ca( j, k) = 0 and

x( j, k) = 0 or 1 (can take any value) when ca( j, k) = 1.

This can be expressed by the constraint as:

[

1− ca( j, k)
]

· x( j, k) = 0 , (12)

for j = 1 to M and k = 1 to N.

Equation (12) can be expressed in a matrix notation as:

(1−CA).∗X == 0 . (13)

Here “ . *” represents the element-wise multiplication in the

Matlab notation.

Row sum of X: The number of 1s in row j of X represents

the number of SUs assigned to PT( j). We have to assign

at least one SU (sensor) to each j, otherwise we cannot

monitor that channel. Of course, we can assign more than

one to reduce the probability of interference. Therefore,

the row-sum of X should be greater than or equal to one:

N

∑
k=1

x( j, k)≥ 1 for j = 1 to M . (14)

This constraint can be expressed, using the matrices, as:

X∗EN×1 ≥ FM×1 , (15)

where EN×1 and FM×1 are column vectors of all 1s of size

N×1 and M×1. The corresponding transposes are:

(EN×1)
T = [1, 1, . . . , 1] ,

(FM×1)
T = [1, 1, . . . , 1] ,

where N number of 1’s, and M number of 1’s.

Column sum of X: An SU assigned to, say PT( j), has to

monitor PT( j) regularly. It cannot monitor other channels.

Therefore, not more than one ch( j) or PT( j) can be as-

signed to each SU. In addition, when N > M, some SUs

may be left out of assignment because of some other con-
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siderations. Therefore, a sensor may be assigned either to

one primary channel or to none, as:

M

∑
j=1

x( j, k)≤ 1 for k = 1 to N > M . (16)

This means that any column cannot contain more than one

1, i.e. the sum of columns is either 0 or 1. The constraint

represented by inequality (16) can be expressed in the ma-

trix notation as:

(FM×1)
T ∗X≥ (EN×1)

T
. (17)

Linearization of the objective function: The objective

function given by Eq. (10) contains OPI( j) which is a prod-

uct term given by Eq. (8). Therefore, it is non-linear and

its optimization is complex and may not converge. Hence,

we convert the non-linear objective function into an equiv-

alent linear format by taking the logarithm of OPI( j). From

Eq. (8):

log
[

OPI( j)
]

= log
[

PI
(

j, u(1)
)]

+ log
[

PI
(

j, u(2)
)]

+ log
[

PI( j, u
(

|SS( j)|)
)]

. (18)

Since OPI( j) is non-negative, log
[

OPI( j)
]

is a monotoni-

cally increasing function of OPI( j). Therefore, maximiza-

tion or minimization of OPI( j) is the same as maximization

or minimization of log
[

OPI( j)
]

, respectively. That is, if V
is a vector of real numbers, log

[

max(V )
]

= max
[

log(V )
]

.

Hence, the objective function given by Eq. (10) can be

reformulated as:

OF2 = max
j∈{1:M}

[

log
(

OPI( j)
)]

. (19)

In the light of Eq. (10), Eq. (19) can be expressed as,

OF2 = log(OF1) . (20)

Obviously, minimization of OF2 implies the minimization

of OF1.

Objective function in terms of X: Consider row j of ma-

trix X. The ones represent the SUs assigned to that PT( j). If

x( j, k) = 0 for certain k, then that PI( j, k) term is absent on

the right hand side (RHS) of Eq. (18). On the other hand,

if x( j, k) = 1, then, PI( j, k) term is present on the RHS.

Therefore, Eq. (18) can be expressed as:

log
[

OPI( j)
]

=
N

∑
k=1

x( j, k) · log
[

PI( j, k)
]

, (21)

for i = 1 to M.

Let us introduce matrix Y of size M×N whose elements

are y( j, k) to represent the product term on the RHS of

Eq. (21) as:

y( j, k) = x( j, k) log
[

PI( j, k)
]

, (22)

for j = 1 to M and k = 1 to N. We can see that the RHS

of Eq. (22) is an element by element product of matrices X

and log(PI). Therefore Eq. (22) implies:

Y = X .∗ log(PI) . (23)

Substituting Eq. (22) in Eq. (21) gives:

log
(

OPI( j)
)

=
N

∑
k=1

y( j, k) , (24)

for j = 1 to M.

The RHS of Eq. (24) is the sum of row j of matrix Y.

Therefore it can be expressed as:

N

∑
k=1

y( j, k) = Y ( j, :)∗EN×1 . (25)

In Eq. (24), Y( j, :) represents row j of Y in Matlab

notation.

From Eqs. (25) and (24):

log
(

OPI( j)
)

= Y ( j, :)∗EN×1 (26)

for j = 1 to M. Let OPI be the column vector made up of

OPI( j)’s for j = 1 to M. Then Eq. (26) can be rewritten

as:

log(OPI) = Y ∗EN×1 . (27)

Now, max j∈{1:M}
[

log
(

OPI( j)
)]

is the same as the maxi-

mum of the column vector log(OPI). Therefore, Eq. (20)

can be expressed as:

OF2 = max
[

log
(

OPI)
]

. (28)

From Eqs. (26) and (27):

OF2 = max
(

Y∗EN×1
)

. (29)

Substituting Y from Eq. (23) in (29), we get OF2 in terms

of X as:

OF2 = max
[(

X.∗ log(PI)
)

∗EN×1
]

. (30)

Now, the optimization problem can be stated.

Minimize the objective function over the binary assignment

matrix X, where the objective function given by Eq. (30)

is:

OF2 = max
[(

X.∗ log(PI)
)

∗EN×1
]

Minimize OF2

subjected to: (1−CA).∗X == 0, as given by Eq. (13),

X∗EN×1 ≥ FM×1 , as given by Eq. (15),

(FM×1)
T ∗X≤ (EN×1)

T , as given by Eq. (17) .

This mini-max optimization problem can be solved using

different methods mentioned in Section 1. Here, the bi-

nary integer programming is applied using the intlinprog()

function from the optimization tool box in Matlab [22].
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Once the optimal Xopt which minimizes OF2 is obtained,

the best assignment is found based on Eq. (11) as:

su(k) is assigned to PT( j), if xopt( j, k) = 1
No assignment , if xopt( j, k) = 0

}

. (31)

Once Xopt is found, the optimal value of OPI from

Eqs. (27) and (23) can be obtained:

log(OPIopt) = Yopt ·EN×1 =
[

Xopt .∗ log(PI)
]

·EN×1 . (32)

Then the optimized OPIopt is:

OPIopt = exp
[(

Xopt .∗ log(PI)
)

·EN×1
]

. (33)

The proposed algorithm called multi assignment is given

as Algorithm 1 and is shown by examples 2 and 3.

Algorithm 1: Multi assignment

Input: CRN layout. Values of M and N with N ≤M, chan-

nel accessibility matrix CA and the probability interference ma-

trix PI.

Output: Optimal assignment matrix Xopt and the minimized

maximum overall probability of interference OPIopt.

1. Formulate the multi-assign problem using Eqs. (30), (13),

(15), and (17).

2. Solve multi-assign problem to get Xopt using binary inte-

ger non-linear programming provided by YALMIP.

3. Get the optimal assignment, using Eq. (31).

4. Get the optimal overall probability of interference, OPIopt
using Eq. (33).

5. Done

In example 2, M = 4 and N = 6. The CA matrix is taken

as all ones. PI matrix of size M×N is taken (assumed to

be given) as shown in Table 4.

Table 4

PI values of example 2

( j, k) 1 2 3 4 5 6

1 0.424 0.209 0.499 0.393 0.103 0.431

2 0.322 0.279 0.309 0.203 0.229 0.235

3 0.045 0.288 0.372 0.228 0.012 0.338

4 0.198 0.364 0.318 0.294 0.372 0.141

Here, (EN×1)
T =[1, 1, 1, 1, 1, 1] and (FM×1)

T =[1, 1, 1, 1].
On solving the multi-assign problem for this PI, using

YALMIP we get the optimal assignment matrix Xopt whose

elements are found to be:

Xopt =









0 0 0 0 1 0
0 1 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1









.

The optimal assignment for ch( j) is given by the loca-

tions of 1’s in row j of matrix Xopt. Thus, the optimal

assignment is
{(

PT(1)←5
)

,
(

PT(2)←2, 3
)

,
(

PT(3)←1
)

,
(

PT(4)← 4, 6
)}

. The value of OPIopt is found to be:

OPIopt =









0.103
0.087
0.045
0.042









.

Here the minimized max value of the objective function

is 0.103. Any other combination would result in a higher

value for the overall interference.

In example 3 the values are same as in example 2, ex-

cept CA, taken as shown in Table 2. Now, Xopt and the

corresponding value of OPIopt are found to be:

Xopt =









0 1 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1
1 0 0 0 1 0









, OPIopt =









0.109
0.103
0.126
0.074









.

Here, the minimized max value of objective function

is 0.209.

4. Alternative Objectives and

Constraints

4.1. Minimizing the Total Number of Assigned SUs

Consider a case where the aim is to minimize the total

number of SUs assigned, subjected to the condition that

max(OPI) should be less than a certain given upper bound,

say OPIUB. This condition can be expressed as:

max(OPI)≤ (OPIUB) . (34)

Taking logarithm on both sides, Eq. (33) is rewritten as:

log
[

max(OPI)
]

≤ log(OPIUB) . (35)

Since log is a monotonic function, Eq. (27) can be ex-

pressed as:

OF2 = max
[

log(OPI)
]

= log
[

max(OPI)
]

. (36)

From Eqs. (36) and (35):

OF2 ≤ log(OPIUB) . (37)

From Eqs. (30) and (37):

max
[(

X .∗ log(PI)
)

∗EN×1
]

≤ log(OPIUB) , (38)

where constraint (38) represents (34) in terms of X.

Now, the optimization problem is to minimize OF3 where:

OF3 = (FM×1)
T ∗X∗ (EN×1) (39)

subjected to: (1−CA) .∗X == 0 , as given by Eq. (13),

X∗EN×1 ≥ FM×1 , as given by Eq. (15),

(FM×1)
T ∗X≤ (EN×1)

T , as given by Eq. (17),

max
[

X .∗ log(PI)
]

≤ log(OPIUB) , as given by Eq. (38) .
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In Eq. (39), OF3 simply gives the total number of 1’s in X

which is the total number of SUs assigned to monitor the

primary channels (note that the total number of available

SUs is N). Here, the minimization of OF3 is called the

min OF3 method. Minimization of OF3 also means the

minimization of total energy consumption by the SUs.

In example 4, the M = 4, N = 11, CA = all ones. OPIUB

is taken as 0.02. Then, the solution for X is found to be:

Xopt =









0 0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0









.

The actual optimized max(OPI) is found to be 0.0192. The

minimum number of SUs assigned is found to be 8. As the

OPIUB value is increased (relaxed), the minimum number

of SUs required to achieve that target decreases.

In example 5, the M = 4, N = 17, CA = all ones. OPIUB

is varied from 0.01 to 0.10 in steps of 0.01. The minimum

number of SUs needed, designated as min SUs, is calcu-

lated using our method min OF3 and the lazy method. In

the lazy method, the SUs are assigned as they are available

in the order su(1), su(2), and so on.

Table 5

Min SUs for different values of OPIUB

OPIUB .01 .02 .03 .04 .05 .06 .07 .08 .09

Min

Min
10 8 8 7 6 6 6 6 6

SUs

OF3

Lazy
16 14 13 13 11 11 9 9 7

method

The relationship between the min SUs needed and the

OPIUB values is shown in Table 5 and the corresponding

bar graph is shown in Fig. 4.

Fig. 4. Minimum number of SU’s versus OPIUB.

In the case of min OF3, the decrease in the minimum num-

ber of SUs could not fall below 6 because of other con-

straints (15) and (17). From Table 5, we see that min OF3

is much better compared to the lazy method, in terms of

the min SUs needed to meet the target.

4.2. Minimization of OF2

In the next step, the minimization of OF2 with pre-fixed

number of SU’s for each primary channel is analyzed.

In this case, constraint (15) which fixes the number of SUs

for each channel can be reframed as:

X∗EN×1 =
[

g(1), g(2), . . . , g(M)
]T

.∗FM×1 . (40)

Here, g( j) is the number of SUs assigned to the primary

transmitter PT( j), for j = 1 to M. Obviously, to satisfy

Eq. (39), sum of g(i)’s should be less than or equal to N.

Other conditions and objective functions are same as (13),

(17) and (30).

5. Comparison with other Methods

Minimization OF2, as given by Eq. (30) can be solved

by the greedy method [23], [24]. We compare the greedy

method method with our multi-assign method. Here, M=4
and CA= all ones. The number of available SUs N is var-

ied from 10 to 17. The calculated values of minimized OF2
(minimized max(OPI)) for these N’s are shown in Table 6

and the corresponding values are shown in Fig. 5.

Table 6

Variation of Min OF2 as N varies from 10 to 17

N Min OF2

Multi assign Greedy method

10 0.01088 0.01292

11 0.00566 0.00992

12 0.00239 0.00896

13 0.00208 0.00896

14 0.00093 0.00277

15 0.00071 0.00277

16 0.00052 0.00233

17 0.00023 0.00227

Fig. 5. Minimum number of SUs versus OPIUB.
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From Fig. 5 we see that our multi-assign method gives

lower interference and is much better than the greedy

method.

Next, the multi-assign algorithm is compared with the par-

ticle swarm optimization (PSO) method and the genetic

algorithm (GA) method with reference to the time taken to

solve the optimization problem. We took M = 4 and N is

varied from 6 to 15. The result is shown in Fig. 6.

Fig. 6. Optimization process time vs. number of spectrum sensors.

From the result of Fig. 6, we find that the multi-assign

algorithm is substantially faster compared to the PSO and

GA algorithms. For a relatively large number of densely

populated nodes, our method has not much advantage over

other methods, because the complexity of our method de-

pends on finding the best permutation of M sensors out

of N.

6. Conclusion

A new method of optimal assignment, in a co-operative

spectrum sensing CRN where multiple SUs and multiple

primary channels are present, is described. The main con-

tribution of this work is to convert the product term in the

objective function to linear format by using the logarithm

of product terms. Compared to the average of PSO and

GA methods, the proposed method takes, on the average,

70% less time to calculate the optimal assignment when the

number of SUs is relatively small. The minimized maxi-

mum interference value is lower in the presented method

compared to the greedy algorithm or lazy methods.

References

[1] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum

sensing in cognitive radio networks: a survey”, Phys. Commun.,

vol. 4, no. 1, pp 40–62, 2011 (doi: 101016/j.phycom.2010.12.003).

[2] I. F. Akyildiz, W. Y. Lee, M. Vuran, and S. Mohanty, “NeXt gen-

eration/dynamic spectrum access/cognitive radio wireless networks:

a survey”, Comput. Netw., vol. 50, no. 13, pp. 2127–2159, 2006

(doi: 10.1016/j.comnet.2006.05.001).

[3] B. Wang and K. J. Ray Liu, “Advances in cognitive radio networks:

a survey”, IEEE J. of Selec. Topics in Sig. Process., vol. 5, no. 1,

pp. 5–23, 2011 (doi: 10.1109/JSTSP.2010.2093210).

[4] Y.-C. Liang et al., “Guest editorial – cognitive radio: theory and

application”, IEEE J. on Selec. Areas in Commun., vol. 26, no. 1,

pp. 1–4, 2008 (doi: 10.1109/JSAC.2008.080101).

[5] R. Tandra, S. M. Mishra, and A. Sahai, “What is a spectrum hole

and what does it take to recognize one?”, Proc. of the IEEE, vol.

97, no. 5, pp. 824–848, 2009 (doi: 10.1109/JPROC.2009.2015710).

[6] Y. Chen, “Improved energy detector for random signals in Gaussian

noise”, IEEE Trans. on Wirel. Commun., vol. 9, no. 2, pp. 558–563,

2010 (doi: 10.1109/TWC.2010.02.090622).

[7] H. M. Abdelsalam and A. Al-shaar, “An enhanced binary particle

swarm optimization algorithm for channel assignment in cognitive

radio networks”, in Proc. 5th Int. Conf. on Modell., Identif. and

Control ICMIC 2013, Cairo, Egypt, 2013, pp. 221–226.

[8] Q. Liu, W. Lu, and W. Xu, “Spectrum allocation optimization for

Cognitive Radio networks using Binary Firefly Algorithm”, in Proc.

of the 2014 Int. Conf. on Innov. Design and Manufact. ICIDM 2014,

Montreal, QC, Canada, 2014, pp. 257–262, 2014

(doi: 10.1109/IDAM.2014.6912704).

[9] F. Koroupi, S. Talebi, and H. Salehinejad, “Cognitive radio networks

spectrum allocation: an ACS perspective”, Scientia Iranica, vol. 19,

no. 3, pp. 767–773, 2012 (doi: 10.1016/j.scient.2011.04.029).

[10] J. Elhachmi and Z. Guennoun, “Cognitive radio spectrum alloca-

tion using genetic algorithm”, EURASIP J. on Wirel. Commun. and

Netw., pp. 133–143, 2016 (doi: 10.1186/s13638-016-0620-6).

[11] S. Chatterjee, S. Dutta, P. P. Bhattacharya, and J. S. Roy, “Optimiza-

tion of spectrum sensing parameters in cognitive radio using adaptive

genetic algorithm”, J. of Telecommun. and Inform. Technol., no. 1,

pp. 21–27, 2017.

[12] R. M. Eletreby, H. M. Elsayed, and M. M. Khairy, “Optimal spec-

trum assignment for cognitive radio sensor networks under coverage

constraint”, IET Communications, vol. 8, no. 18, pp. 3318–3325,

2014 (doi: 10.1049/iet-com.2014.0423).

[13] A. S. Alfa, B. T. Maharaj, S. Lall, and S. Pal, “Mixed-integer pro-

gramming based techniques for resource allocation in underlay cog-

nitive radio networks: a survey”, J. of Commun. and Netw., vol. 18,

no. 5, pp. 744–761, 2016 (doi: 10.1109/JCN.2016.000104).

[14] T. S. Rappaport, Wireless Communications: Principles and Practice,

2nd ed. Upper Saddle River, NJ: Prentice Hall PTR, 2002 (ISBN

978-0130422323).

[15] F. K. Jondral, “Software-defined radio-basic and evolution to cog-

nitive radio”, EURASIP J. on Wirel. Commun. and Netw., vol. 3,

pp. 275–283, 2005 (doi: 10.1155/WCN.2005.275).

[16] R. Urgaonkar and M. J. Neely, “Opportunistic scheduling with re-

liability guarantees in cognitive radio networks”, IEEE Trans. Mob.

Comput., vol. 8, no. 6, pp. 766–777, 2009

(doi: 10.1109/TMC.2009.38).

[17] Y. Liang, L. Lai, and J. Halloran, “Distributed cognitive radio net-

work management via algorithms in probabilistic graphical models”,

IEEE J. on Selec. Areas in Commun., vol. 29, no. 2, pp. 338–348,

2011 (doi: 10.1109/JSAC.2011.110207).

[18] L. Y. Yang, M. H. Nie, Z. W. Wu, and Y. Y. Nie, “Modeling and

solution for assignment problem”, Int. J. of Mathem. Models and

Methods in Appl. Sci., vol. 2, no. 2, pp. 205–212, 2008.
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