
Paper Performance Modeling

of Database Systems: a Survey
Antonina Krajewska

Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland

https://doi.org/10.26636/jtit.2018.128918

Abstract—This paper presents a systematic survey of the exist-

ing database system performance evaluation models based on

the queueing theory. The continuous evolution of the method-

ologies developed is classified according to the mathematical

modeling language used. This survey covers formal models –

from queueing systems and queueing networks to queueing

Petri nets. Some fundamentals of the queueing system the-

ory are presented and queueing system models are classi-

fied according to service time distribution. The paper intro-

duces queueing networks and considers several classification

criteria applicable to such models. This survey distinguishes

methodologies, which evaluate database performance at the

integrated system level. Finally, queueing Petri nets are intro-

duced, which combine modeling power of queueing networks

and Petri nets. Two performance models within this formal-

ism are investigated. We find that an insufficient amount of

research effort is directed into the area of NoSQL data stores.

Vast majority of models developed focus on traditional rela-

tional models. These models should be adapted to evaluate

performance of non-relational data stores.

Keywords—database systems, NoSQL data stores, performance

evaluation, queueing networks, queueing Petri nets.

1. Introduction

Database servers play a crucial role in information sys-

tem infrastructures. With the rapid expansion of Big Data

analytics, NoSQL data stores keep gaining strategic sig-

nificance and supplement traditional relational databases.

Extensive research has been conducted in the area of per-

formance of relational databases, which has been reviewed

thoroughly [1], [2]. The vast majority of existing models

is based on the queueing theory. Still, the performance of

NoSQL data stores remains unexplored. Therefore, existing

performance models should be revisited to identify their po-

tential in capturing the dynamics of non-relational systems.

This paper presents a survey of the existing database per-

formance models with their underlying queueing networks

and queueing Petri nets.

Several classification criteria may be considered in the

analysis of the performance models constructed. Exist-

ing models may be categorized according to the field of

study, i.e. concurrency control, replication mechanism or

database architecture. Depending on the phenomena inves-

tigated, researchers may choose different performance cri-

teria, such as request response time or transaction through-

put. Finally, analytical and simulation studies may be dis-

tinguished.

In this paper, existing models are classified according to

their mathematical modeling formalism. Firstly, models

which are based on the queueing system are considered,

then a review of the queueing network models is presented.

Lastly, the paper presents queueing Petri nets as a powerful

tool for qualitative and quantitative analysis of the perfor-

mance of database systems. With this approach adopted,

the article demonstrates the evolution of performance eval-

uation models. Section 2 presents fundamentals of the

queueing systems theory and a review of queueing system-

based representation of database dynamics. In Section 3,

queueing network models are considered and various as-

pects of such models, including the open and closed char-

acter of a network or service time distribution, are recorded.

Following Osman and Knottenbelt, we also classify them

according to the granularity of transaction modeling and

describe two performance evaluation models which enable

the mapping of database design specification at the inte-

grated system level to the queueing network structure [2].

Finally, in Section 4, queueing Petri nets are introduced

which combine the expressiveness of modeling of queue-

ing networks and Petri nets.

2. Queueing Systems

This section presents database performance evaluation

models with a single underlying queueing system node.

A queueing system is defined by the following: (i) stochas-

tic process describing the customer arrival stream A(t),
(ii) probability distribution of service time B(t) per cus-

tomer, (iii) number of service channels K and (iv) schedul-

ing discipline in the queue, i.e. first-come-first-serve

(FCFS), last-come-first-serve (LCFS), processor sharing

(PS), round robin (RR), etc. [3]. In this paper, the simple

Kendall’s notation is used: A/B/K [3]. If no other schedul-

ing discipline is denoted, the FCFS variety is adopted. The

queueing theory enables a probabilistic analysis of such

systems considering the average length, probability that the

queue has a given length, or average service time. The rela-

tion between the average number of customers in a system

is given by applying Little’s law. It claims that the aver-

age number of customers in a queueing system is equal to

the average arrival rate of customers to that system, times

37

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235205696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Antonina Krajewska

the average time spent in that system. Queueing system

models are capable of system-level workload evaluation for

both centralized and distributed database systems [3]. This

section focuses on Markovian models and classification ac-

cording to the service time distribution.

2.1. Markovian Models with Exponentially Distributed

Service Times

Firstly, we will discuss M/M/m models in which customers

arrive at rate λ , according to the Poisson process, and are

served by m servers. The service time for each customer has

an exponential distribution with parameter µ . The M/M/1
system with one server (Fig. 1) is a special kind of a Marko-

vian model with exponentially distributed service time.

Fig. 1. Queueing system: (a) M/M/1, (b) M/M/m.

Let N(t) denote the number of customers in a system at

time t, then N(t) is a continuous time Markov chain shown

in Fig. 2.

Fig. 2. State space diagram for the Markov chain for: (a) M/M/1,

(b) M/M/m systems.

Nicola and Jarke in [1] review the performance mod-

els of distributed and replicated database systems. They

record that first queueing models of distributed databases

were constructed by Coffmann et al. [4], Bacelli and

Coffman [5], as well as Nelson and Iyer [6]. Nelson and

Iyer [6] compare the performance of synchronous and non-

synchronous updating policies in the M/M/m system with

non-preemptive processing of write operations. By con-

trast, Bacelli and Coffmann et al. [5] analyze different repli-

cation policies in a system with preemptive priority for

write requests over read requests. Interruptions dynamics

was captured by the M/M/1 system in the following way:

read transactions could occupy m servers concurrently, un-

til write requests arrived with the rate λ , according to the

Poisson process, and were processed by all of the m servers

with exponentially distributed service time.

2.2. Markovian Models with Generally Distributed

Service Times

In a M/G/1, queueing system customers arrive accord-

ing to the Poisson distribution process and have generally

distributed service times. In contrast to M/M/1 queues,

general models do not a have closed form describing the

number of jobs in the system in a stationary state. However,

according to the Pollaczek-Khinchine formula, the average

M/G/1 queue length is given by Eq. 1 [3]:

L = ρ +
ρ2 +λ 2Var(S)

2(1−ρ)
, (1)

where λ is the arrival rate of the Poisson process, 1
µ is

the mean of the service time distribution S, ρ = λ
µ is the

utilization and Var(S) is the variance of the service time

distribution S.

Arzauga and Kaeli [7] construct M/G/1 model of a stor-

age area network (SAN) system that manages multiple ap-

plications stored in the same volume. Their experiments

included various types of workloads running in the same

system.

2.3. Load Dependent Systems M/M/m-LDS

Kihl et al. [8] have shown that the M/M/1 model does

not capture the high load dynamics of a database for the

write operations workload. Paper [9] proposes a model

which adds load dependency to the service time. Its au-

thors construct the M/M/m-LDS model in which service

time depends on the number of concurrent requests.

Let xt(n) be the service time at time t, and n be the number

of concurrent requests in the system. Then:

xt(n) = xbase(1+ f)n−1 , (2)

where xbase is exponentially distributed base service time

for a system containing one job and f ∈ [0,1] is a depen-

dency factor. The model has been validated with experi-

mental data and its accuracy in predicting response time for

a write-heavy workload has been proved. Figure 3 presents

Fig. 3. State space diagram for Markov chain for the M/M/m-

LDS system.

38

Performance Modeling of Database Systems: a Survey

Markov chain for N(t) process of the number of customers

in the M/M/m-LDS system.

3. Queueing Networks

Database models based on single queueing systems can cap-

ture only particular aspects of database system dynamics.

The authors of [1] have noted disadvantages of this ap-

proach in modeling replicated and distributed database sys-

tems, such as using the same queue by all database sites or

neglecting inter-site communication. Furthermore, in the

case of replicated database systems, full replication must

be assumed. These limitations do not have to apply to

queueing network models [3]. Queueing networks consist

of several queueing nodes. Customers are routed between

the nodes probabilistically. After being serviced at one

queue node, the customer may join another node to receive

additional service or may depart the network [3].

3.1. Open and Closed Queueing Networks

Open queueing networks allow external arrivals of cus-

tomers. The number of customers in the network is variable

and the arrival rate does not depend on the number of cur-

rently processed requests. To the contrary, closed queueing

networks consider s fixed number of customers in the sys-

tem. Once a request has been served, it is replaced with

another one.

Open queueing networks have been widely used in perfor-

mance modeling of database systems [10]–[13]. In [14],

Mei et al. represent a database with an open two-node

queueing network with a central processor-sharing node and

multiple multi-server nodes. Parallel access to the backend

database is modeled as a multi-service FCFS queue with

exponential service times.

Since the number of requests arriving at the database sys-

tem is not fixed, open queueing networks are generally

more adequate. However, in specific problems, closed net-

works simplify performance evaluation. Nicola and Jarke

record their significance in an analysis of concurrency con-

trol mechanisms. Performance of such methods depends

on the multiprogramming level and thus its evaluation be-

comes challenging in networks with a variable number of

jobs [1].

Liang and Tripathi in [15] introduce saga transactions –

a special case of long-lived transactions (LLTs) – which

release their locks as soon as possible. To evaluate the

performance of saga systems, authors define an analyt-

ical model with a closed queueing network underlying.

Carey and Livini [16] deploy a closed queueing network

to analyze the performance of different concurrency con-

trol mechanisms in distributed database systems.

3.2. Service Time Distribution

Exponentially distributed service time. The simplest net-

works consist of M/M/1 queues, thus service time of all

transactions is distributed according to the same exponen-

tial distribution. Ciciani et al. [17], [18] develop an analyt-

ical model to compare concurrency control in a replicated,

distributed environments. In the queueing network, each

database site is represented as an M/M/1 queue.

Generally distributed service time. More general mod-

els use M/G/1 queues. Banerjee et al. [19] use networks

of M/G/1 queue nodes to benchmark the concurrency con-

trol protocol developed in a distributed environment against

existing concurrency control schemes. Hwang et al. [20]

compare the performance of three replication schemes us-

ing a model in which each database site is represented by

an M/G/1/RR node with the round robin scheduling dis-

cipline.

M/Hn/∗M/Hn/∗M/Hn/∗ models. The above-mentioned models do not dis-

tinguish transactions according to service time distribution.

As a remedy for this unrealistic assumption, networks with

M/Hn/∗ queue nodes might be used. In such models, ar-

riving requests are divided into n categories with different

service times. Since the service time in each class has

exponential distribution, service time for the combined ar-

rival process follows an n-phase hyper-exponential distribu-

tion. Leung [21] assigns different exponentially distributed

service times for read and update requests. He uses a net-

work with M/H2/1 queueing nodes with 2-phase hyper-

exponentially distributed service times.

Nicola and Jarke [1] introduce an analytical model which

emphasizes the mutual influence between replication and

inter-site communication. Each database site is represented

by an M/Hn/1 queueing node.

Deterministic service time. Born in [22] uses an M/D/1
queueing network to investigate trade-offs of different im-

plementation strategies for distributed lock management.

The algorithms compared differ in the management of the

lock database, in its optimization and in the communication

protocol.

3.3. Granularity of Transaction Modeling

Osman and Knottenbelt [2] classify queueing database per-

formance models according to the granularity of transaction

modeling. In their exhaustive survey, the authors distin-

guish four types of performance evaluation models: black

box, transaction processing, transaction size and transac-

tion phase.

Black box models. Such models categorize transactions

according to their service demands at the system level.

Fig. 4. Black box model: transaction class i is defined by arrival

rate λi and service rate µi.

39

Antonina Krajewska

Transaction Ti from class i arrives to the database with

the rate λi and a service rate µi (Fig. 4).

Black box models may represent both centralized and dis-

tributed database systems. The former design type is rep-

resented by a queueing system, whereas the latter one can

be modeled both with a queueing system with multiple

servers [5], [6] or as a queueing network with multiple

nodes [17], [18]. Such a model can vary in service time

distribution as discussed in the previous subsection.

Transaction processing models. In transaction processing

models, the queueing network represents hardware archi-

tecture which lies below the database system. Transactions

arriving to the system are classified according to their ser-

vice demands on particular components of the hardware

architecture, for example CPU or disk resources (Fig. 5).

For each transaction class Ti arrival rate λi is defined.

Transactions are routed throughout the network probabil-

istically.

Fig. 5. Transaction processing model. Transaction class i is

defined by arrival rate λi and resource demands: CPU service

rate µ1 and disk service rate µ2. Transactions are routed between

service stations probabilistically.

In the transaction processing approach, the main variables

to be optimized are capacity or quantity of physical re-

sources [2].

Menasce et al. [23] emphasize the impact of consider-

ing both software and hardware contention. Software con-

tention is caused by a limited number of threads that may

process arriving transactions. When all threads in the sys-

tem are busy, requests are placed in a queue. The num-

ber of active threads is defined by a birth-death process.

Hardware contention is captured by a closed queueing net-

work with nodes representing CPU and disk resources.

Authors study both single- and multi-class requests cate-

gorization.

Gijsen et al. [24] study sojourn times in an open queueing

network with a single processor sharing node and an ar-

bitrary number of multi-server FCFS nodes. PS-node rep-

resents the front-end application server, while multi-server

FCFS nodes stand for distributed database sites. The Pois-

son process defines the processor sharing node’s arrival

stream. After being processed by the front-end node, the

request is routed to one of a database site nodes or departs

the system. After customer has been serviced in one of

FCFS nodes, it jumps back to a processor sharing node.

Transaction size model. In this approach, transaction class

Ti is defined by the number ni of data objects it accesses.

Osman and Knottenbelt in [2] mention various object types

including table rows, data pages or locks. Resource de-

mands on hardware resources depend on n (see Fig. 6).

Fig. 6. Transaction size model. Transaction class i is defined

by arrival rate λi and number of objects n it accesses. Resource

demands depends on n: CPU service rate µ1(n) and disk service

rate µ2(n).

Thomasian and Ryu [25] develop a model predicting the

maximum throughput of both locking and optimistic con-

currency control algorithms in a centralized database en-

vironment. Each transaction class accesses a fixed number

of randomly chosen data objects. This set is then used to

determine locking conflict probability. A closed queueing

network represents the hardware architecture of a system

with processor sharing and disks queues. Authors define

the lock scheduling overhead as a function of the num-

ber of idle and active transactions. The same approach has

been used by Morris and Wong [26]. However, the authors

neglected the concurrency overhead.

Transaction phase. In the transaction phase model, trans-

actions are categorized according to execution phases they

consist of. Phases might be parallel or sequential. Queue

nodes in a network represent these phases and transactions

are routed between them probabilistically (see Fig. 7).

Fig. 7. Transaction phase model. Transaction class i is defined

by arrival rate λi and number of phases n (pi – probability of

moving from phase i to phase i+1 and µi service rate in phase i).

Yu et al. [27] distinguish three processing phases: front-

end, application and database request. In their study, the

authors investigate dynamic transaction routing in locally

distributed databases.

3.4. Database System Performance Evaluation Models

Following Osman and Knottenbelt [2], we would like to

describe performance analysis methodologies which do not

focus on particular database management system (DBMS)

40

Performance Modeling of Database Systems: a Survey

components or constructs, but evaluate DBMS performance

of the integrated system. Such an approach allows mapping

database system specifications onto queueing network mod-

els. In their survey shown in paper [2], the authors present

eight methodologies. In this paper, attention is focused on

the two most recent of them.

Parallel relational database system performance evalu-

ation. Tomov et al. [28] describe an analytical methodol-

ogy for response time estimation. The queries analyzed

execute within a shared-nothing parallel DBMS. The pro-

posed approach consists of three steps: preparation, mean

resource time estimation and mean query response time es-

timation. In the first step, the query is transformed into

a query resource profile. Via an execution plan transaction,

it is reduced to a set of low-level resource usage specifi-

cations which determines its demands for hardware com-

ponents. In the second stage, response time of particular

resources is estimated. Each hardware resource is a M/M/1
or M/M/G node in the queueing network. Synchroniza-

tion between query execution phases, including pipelined

execution or partitioned parallelism, is not taken into con-

sideration during this stage. At the last stage, the mean

time of a query is estimated by accommodating hardware

resource times for the entire query usage profile. In this

stage, intra-operator parallelism, such as pipelined or par-

titioned execution, determines the way usage time is accu-

mulated.

QuePED model. Osman et al. [29] define a database de-

sign as a set of tables and transaction types accessing these

tables. Authors introduce QuePED – a queueing network

performance evaluation model for database designs. Each

table in the database is represented as a system of queues in

a network. It is noted that partitioned or replicated tables

are treated as separate nodes. Each table is characterized

by the following qualities: the attribute data types and se-

lectivity, the expected number of rows and row length, as

well as index type and structure. Customers arriving to

the network correspond to transactions and are categorized

according to their service demands in terms of the number

of I/O pages required to process the transaction. To obtain

this value, a query optimizer is used to return an optimal

execution plan comprising SQL statements. Then, for each

SQL statement, I/O cost is calculated with the approach

described by Ramakrishnan and Gehrke [30]. Thus, the

cost depends on the file structure of the table, for example

heap file with no index, sorted file, cluster B+ tree file, and

the type of SQL operation, such as scan, equality or range

search, insert, update or delete. QuePED was validated

with a TPC-C benchmark. Since the model assumes the

mean time for read/write page requests, the strace utility

was used to measure the time in which the kernel fulfilled

a database page request.

4. Queueing Petri Nets

Queueing Petri Net (QPN) models combine queueing net-

works and Petri nets formalism and were introduced by

Bause [31]. They extend Petri nets with queueing places

which consist of two parts: the queue and the depository.

Tokens arriving to the queueing place are firstly placed in

a queue according to the scheduling strategy of the queue

server. After being serviced, each token is placed in a de-

pository for future transitions. Bause [31] distinguishes two

types of queueing places. In timed queueing, service time

distribution is given, while in immediate queueing places,

the scheduling strategy is implemented without any delay.

The motivation behind QPN is to fuse the modeling power

of quantitative and qualitative analysis provided by queue-

ing networks and Petri nets, respectively. Several other ad-

vantages were listed by Kounev et al. [32], such as ability to

model simultaneous resource possession, synchronization,

asynchronous processing and software contention. These

models may capture hardware- and software-related aspects

of system behavior. Moreover, the graphical representation

of QPN is intuitive.

4.1. Notation and Definitions

Following Kounev et al. [32], we will now provide a formal

definition of QPN.

Definition 1: A queueing Petri net is an 8-tuple QPN =
(P, T, C, I+, I−, M0, Q, W) where:

1. P = p1, . . . , pn is a finite and non-empty set of places;

2. T = t1, . . . , pm is a finite and non-empty set of tran-

sitions, P∩T = /0;

3. C is a color function that assigns a finite and non-

empty set of colors to each place and a finite and

non-empty set of modes to each transitions;

4. I+ and I− and forward and backward incidence func-

tions defined on P×T , such that I−(p, t), I+(p, t) ∈
[C(t) →C(p)MS], ∀(p, t) ∈ P×T , where C(p)MS de-

notes the set of all finite multisets of C(p);

5. M0 is a function on P describing initial marking such

that M0(p) ∈C(p)MS;

6. Q =
(

Q1, Q2, (q1, . . . , q|P|)
)

where:

• Q1 ⊆ P is the set of timed queueing places,

• Q2 ⊆P is the set of immediate queueing places,

• Q1 ∩Q2 = /0,

• qi denotes the description of a queue taking

all colors of C(pi) into consideration if pi is

a queueing place or equals keyword ’null’, if pi
is an ordinary place;

7. W =
(

W1, W2,(w1, . . . , w|T |)
)

where:

• W1 ⊆ T is the set of timed transitions,

• W2 ⊆ T is the set of immediate transitions,

• T = W1 ∪W2,W1 ∩W2 = /0 and

41

Antonina Krajewska

• wi ∈ [C(ti)→R
+], ∀ti ∈ T, c∈C(ti) wi(c)∈ R+

is interpreted as a rate of a negative exponential

distribution specifying the firing delay due to

color c, if ti ∈W1 or a firing weight specifying

the relative firing frequency due to color c, if

ti ∈W2.

A more detailed information about QPN may be found

in [31].

4.2. Cassandra Replication Modeling

Osman and Piazzola [33] adapt the queueing Petri nets

formalism to model asynchronous replication in a Cassan-

dra data store. Cassandra is a column-based, scalable data

store which offers following multi-master replication and

data distribution [34]. The key-value space is mapped onto

a ring. The ring is then split into ranges and each of the

cluster members is assigned to one or more key subsets.

Database clients can contact any of the cluster nodes, which

then becomes a coordinator node. Each of the cluster nodes

has the knowledge about the mapping between other nodes

and data ranges. Cassandra allows to configure a repli-

cation factor (RF) variable which determines number of

nodes that store replicated data. The replication process

is asynchronous and thus offers lower response times. It

may result, however, in the lack of data consistency. The

trade-off between those two behaviors is controlled by the

user-defined consistency level (CL), denoting the number

of nodes in which a given operation must succeed before

the coordinator node responds to the client.

Osman and Piazzola [33] point out the significant role of

QPNs in capturing crucial aspects of asynchronous repli-

cation: scheduling, synchronization and blocking request

in a particular node. The model was validated for read

operation workload.

In the QPN (see Fig. 8), the database client is represented

with a queueing place with exponential think time. The

client sends read tokens and enter-cluster immediate tran-

sition fires. This results in random distribution of the in-

coming requests. Let i be the index of the node chosen to

be the coordinator. A read token is placed in the enter-
nodei – a timeless queueing place with the FIFO schedul-

ing strategy. The number of parallel requests which may

be processed by the node is controlled with thread to-

kens. The model was initialized with 32 tokens placed in

threadsi ordinary place. When at least one thread token is

in the threadsi place, at cluster node i is modeled by the

timed queueing place nodei with exponentially distributed

service time, single server and processor sharing disci-

pline. The mechanism caused by process-requesti differs

depending on whether node i stores data for the requested

key or not.

Local and Non-Local Requests Processing. Since each

of the nodes stores only a subset of data, coordinator

nodei might not hold data for the requested key. The QPN

model described differentiates processing local and non-

local requests. For local operations, an immediate tran-

sition process-requesti relocates the read token from the

enter-nodei place to the nodei timed queueing place. It is

noted that the remote request does not affect the nodes’

ability to process local operations, as it does not use thread

tokens. Coordinator node i routes the request and blocks

it until it receives responses from CL other nodes. This is

done by firing the immediate transition distribute-requesti.

As a result, one read token is placed in blockedi ordi-

nary place and each of CL contacted servers receives readi.

Let j be the index of one of the contacted members, the

token of color readi is put in its enter-node j. The replica

nodes contacted are chosen according to the consistency

level and replication factor.

When readi token leaves the node j place, the distribute-

request j immediate transition returns the thread token to

threads j place and deposits response token in the replica-

responsei place of nodei. When the number of tokens in the

replica-responsei place equals CL, the immediate transition

unblocki fires. One read token is passed from the blockedi
place to the the exit-cluster place and CL tokens are re-

moved from the replica-responsei place. The read request

is then transferred back to the client.

In contrast to remote requests, local requests address keys

that are stored by nodei. When the immediate transition

process-requesti fires, it removes both the read token from

the enter-nodei place and the thread token from the threadsi
place. Additionally, it deposits a local-read token in the

timed queueing place nodei. In order to synchronize replies,

a read token is placed in blockedi. After node i pro-

cesses the local request, it fires the distribute-requesti tran-

sition. Thread token is returned and one token is placed

in replica-responsei. If CL > 1, the distribute-requesti tran-

sition will deposit a readi token in the enter-node places

of CL−1 other nodes and the request is processed as

a remote request. When the number of tokens in the replica-

responsei place reaches a consistency level, unblocki tran-

sition fires. One read token is replaced from the blockedi
place to the exit-cluster place and CL tokens are removed

from the replica-responsei place. The read request is then

transferred back to the client.

4.3. MongoDB Replication Modeling

The model described can be adapted to evaluate the per-

formance of other NoSQL data stores which have imple-

mented asynchronous replication. Although MongoDB [35]

is a document-oriented database and uses different high

availability and scalability mechanisms, the request re-

sponse time may be obtained with an analogical QPN. To

avoid a single point of failure and to ensure the balanc-

ing of load among data clusters, MongoDB has developed

replica sets [35]. Replica set is a group of mongod pro-

cesses which hold the same set of data. In the group, one

of the nodes acts as a master node and receives all write

operations. Such a node is called the primary replica set

member. Secondary replica set members are slave nodes

to which all write operations are asynchronously replicated

from the primary member. Read operations may be routed

42

Performance Modeling of Database Systems: a Survey

Fig. 8. QPN model of replication in a Cassandra cluster.

both to primary or secondary nodes, depending on the

user-defined read preference variable. In the case of failure

of the primary node, one of the running servers is chosen

to be the new primary node. To allow horizontal scalability,

MongoDB introduces sharding [35]. Sharding is automated

data partitioning at the collection level which is based on

the arbitrary shard key values. A shard key has to be an im-

mutable field which exists in every document in the sharded

collection. A shard is a subset of the collection data and

is advised to be deployed as a replica set. Another com-

ponent of a sharded cluster is the config database, storing

meta data of the cluster. In particular, it contains mapping

between data subsets and shards. A client sends a query

to the router process mongos, which contacts the config

server to retrieve information necessary for correct routing

of the query to the shards. Depending on the requested

shard key values, queries might be performed in one shard

or distributed to several shards.

Applying the Osman and Piazzola [33] model for a replica

set of a non-sharded database is straightforward. The

number of the nodes holding the data in the replica set

is equal to the replication factor RF. Similarly to the Cas-

sandra data store, MongoDB allows the user to configure

consistency level CL by setting read and write concerns.

Depending on the read preference, the primary node or one

of the secondary nodes receives the read request. Then, the

read operation is processed similarly to a local request in

the coordinator node, as described in the previous model.

The QPN formalism described sheds a light on the way

future sharded cluster models may be constructed. Once

a request arrives to the mongos process, it might be eval-

uated in a similar manner as remote requests processed by

the coordinator node. However, communication between

the router and the config database should be incorporated.

Based on the knowledge from the config server, the router

distributes the request to one or more shards. The num-

ber of target shards plays a role that is analogical to the

consistency level of the previous model.

The above consideration may lead to the construction

of a QPN model of replication and data distribution in

the MongoDB cluster. However, such a work requires ad-

ditional research. The complexity of QPN for a cluster

composed of shards deployed as replica sets should be

examined.

4.4. Database Contention Performance Modeling

Coulden et al. [36] construct a QPN model of a table-

level database concurrency control through a strict two-

phase locking protocol (Strict 2PL). Write operations hold

exclusive locks on data objects, while read requests hold

Fig. 9. QPN model of table level locking.

43

Antonina Krajewska

shared locks. A shared lock on a given data object may

be acquired only when the object is not covered with an

exclusive lock. An exclusive lock may be acquired on an

object only when it is not covered with any other lock. This

phenomenon can be captured with an ordinary repository

place containing lock tokens. A shared transaction uses one

lock token, while exclusive request requires the maximum

number of tokens in the system. The database client is

represented as a timed queueing place. The table accessed

is represented as a timed G/M/∞ queueing place with an

infinite server queue. Figure 9 presents QPN of a table-

level contention. The model was validated with the use of

the PostgreSQL database management system [36].

5. Conclusion

In this paper a review of existing database performance

models developed within the queueing theory approach was

presented. The vast majority of conducted studies investi-

gate the performance of relational databases. Only one of

the models presented deals with the replication mechanism

in the NoSQL Cassandra data store. The above-mentioned

approach can be used to model performance of other repli-

cated and distributed non-relational data stores, such as

MongoDB. We claim that future studies should be pursued

to rearrange the presented methodologies in order to evalu-

ate the performance of NoSQL data stores. Moreover, while

extensive research focuses on particular database compo-

nents or constructs, the number of methodologies capable

of mapping database system specifications onto queueing

network models continues to be low. We believe that such

studies should be pursued to develop methodologies for

industrial applications.

Acknowledgements

This research was supported by the Polish National Science

Centre (NCN) under the grant no. 2015/17/B/ST6/01885.

References

[1] M. Nicola and M. Jarke, “Performance modeling of distributed and

replicated databases”, IEEE Trans. on Knowl. and Data Engin.,

vol. 12, pp. 645–672, no. 4, 2000 (doi: 10.1109/69.868912).

[2] R. Osman and W. J. Knottenbelt, “Database system performance

evaluation models: A survey”, Perform. Eval., vol. 69, pp. 471–493,

no. 10, 2012 (doi: 10.1016/j.peva.2012.05.006).

[3] L. Kleinrock, Queueing Systems. Volume 1: Theory. New York:

Wiley-Interscience, 1975 (ISBN: 9780471491101).

[4] E. G. Coffmann, E. Gelenbe, and B. Plateau, “Optimization of the

number of copies in a distributed data base”, IEEE Trans. on Soft-

ware Engin., vol. SE-7, no. 1, pp. 78–84, 1981

(doi: 10.1109/TSE.1981.234510).

[5] F. Bacelli and E. Coffmann, “A database replication analysis using

an M/M/m queue with service interruptions”, in Proc. of the 1982

ACM SIGMETRICS Conf. on Measur. and Model. of Comp. Syst.

SIGMETRICS’82, Seattle, VA, USA, 1982, pp. 102–107

(doi: 10.1145/1035332.1035309).

[6] R. Nelson and R. Iyer, “Analysis of a replicated data base”, Perform.

Eval., vol. 5, no. 3, pp. 133–148, 1985

(doi: 10.1016/0166-5316(85)90008-2).

[7] E. Arzuaga and D. S. Kaeli, “An M/G/1 queue model for multiple

applications on storage area networks”, in Proc. for the 11th Worksh.

on Comp. Architec. Eval. using Commercial Workloads CAECW-11,

Salt Lake City, UT, USA, 2008, pp. 25–32.

[8] M. Dellkrantz, M. Kihl, and A. Robertsson, “Performance modeling

and analysis of a database server with write-heavy workload”, in

Proc. 1st Eur. Conf. on Serv.-Orient. and Cloud Comput. ESOCC

2012, Bertinoro, Italy, 2012, pp. 184–191, 2012

(doi: 10.1007/978-3-642-33427-6 13).

[9] M. Kihl, P. Amani, A. Robertsson, G. Radu, M. Dellkrantz,

and B. Aspernas, “Performance modeling of database servers in

a telecommunication service management system”, in Proc. 7th Int.

Conf. on Digit. Telecommun. ICDT 2012, Chamonix, France, 2012,

pp. 123–129.

[10] J. Mc Dermott and R. Mukkamala, “Performance analysis of transac-

tion management algorithms for the SINTRA replicated architecture

database systems”, in Proc. of the IFIP WG11.3 Working Conf. on

Datab. Secur. VII, Lake Guntersville, Alabama, USA pp. 215–234,

1993.

[11] B.-C. Jenq, B. C. Twichell, and T. W. Keller, “Locking performance

in a shared nothing parallel database machine”, IEEE Trans. on

Knowl. and Data Engin., vol. 1, no. 4, pp. 530–543, 1989

(doi: 10.1109/69.43427).

[12] H. Garcia-Molina, “Performance of the update algorithms for repli-

cated data in a distributed database”, Ph.D. Thesis, Stanford Univer-

sity, Stanford, CA, USA, 1979 [Online]. Available:

http://www.dtic.mil/dtic/tr/fulltext/u2/a075268.pdf

[13] H. Garcia-Molina and G. Wiederhold, “Read-only transactions in

a distributed database”, ACM Trans. on Datab. Syst., vol. 7, no. 2,

pp. 209–234, 1982 (doi: 10.1145/319702.319704).

[14] R. D. van der Mei, A. R. de Wilde, and S. Bhulai, “A method

for approximating the variance of the sojourn times in star-shaped

queueing networks”, Stochastic Models, vol. 24, no. 3, pp. 487–501,

2008 (doi: 10.1080/15326340802232327).

[15] D. Liang and S. Tripathi, “Performance analysis of long-lived trans-

action processing systems with rollbacks and aborts,” IEEE Trans.

on Knowl. and Data Engin., vol. 8, no. 5, pp. 802–815, 1996

(doi: 10.1109/69.542031).

[16] M. J. Carey and M. Liviny, “Distributed concurrency control per-

formance: A study of algorithms, distribution, and replication”, in

Proc. of the 14th Int. Conf. on Very Large Datab. VLDB’88, Los

Angeles, CA, USA, 1988, pp. 13–25.

[17] B. Ciciani, D. M. Dias, and P. S. Yu, “Analysis of replication in dis-

tributed database systems”, IEEE Trans. on Knowl. and Data Engin.,

vol. 2, no. 2, pp. 247–261, 1990 (doi: 10.1109/69.54723).

[18] B. Ciciani, D. Dias, M., and P. S. Yu, “Analysis of concurrency-

coherency control protocols for distributed transaction processing

systems with regional locality”, IEEE Trans. on Knowl. and Data

Engin., vol. 18, no. 10, pp. 899–914, 1992 (doi: 10.1109/32.163606).

[19] S. Banerjee, V. O. Li, and C. Wang, “Performance analysis of the

send-on-demand: A distributed database concurrency control pro-

tocol for high-speed networks”, Comp. Commun., vol. 17, no. 3,

pp. 189–204, 1994 (doi: 10.1016/0140-3664(94)90005-1).

[20] S. Y. Hwang, K. Lee, and Y. H. Chin, “Data replication in a dis-

tributed system: A performance study”, in Proc. 7th Int. Conf.

Database and Expert Systems Applications, Zurich, Switzerland,

1996, pp. 708–717 (doi: 10.1007/BFb0034724).

[21] K. K. Leung, “An update algorithm for replicated signaling databases

in wireless and advanced intelligent networks”, IEEE Trans. on

Comp. – Special issue on mobile computing archive, vol. 46, no. 3,

pp. 362–367, 1997 (doi: 10.1109/12.580431).

[22] E. Born, “Analytical performance modelling of lock management in

distributed systems”, Distributed Systems Engineering, vol. 3, no. 1,

pp. 68–76, 1996 (doi: 10.1088/0967-1846/3/1/008).

[23] D. A. Menascé and M. N. Bennani, “Analytic performance models

for single class and multiple class multithreaded software servers”,

in Proc. 32nd Int. Computer Measur. Group Conf., Reno, NV, USA,

2006, pp. 475–482.

44

Performance Modeling of Database Systems: a Survey

[24] B. M. M. Gijsen, R. D. van der Mei, P. Engelberts, J. L. van den

Berg, and K. M. C. van Wingerden, “Sojourn time approximations

in queueing networks with feedback”, Perform. Eval., vol. 63, no. 8,

pp. 743–758, 2006 (doi: 10.1016/j.peva.2005.08.002).

[25] A. Thomasian and K. Ryu, “A decomposition solution to the queue-

ing network model of the centralized DBMS with static locking”,

in Proc. of the Int. Conf. on Measur. and Model. of Comp. Syst.

SIGMETRICS 1983, Minneapolis, MN, USA, 1983, pp. 82–92, 1983

(doi: 10.1145/800040.801397).

[26] R. J. T. Morris and W. S. Wong, “Performance analysis of lock-

ing and optimistic concurrency control algorithms”, Perform. Eval.,

vol. 5, no. 2, pp. 105–118, 1985

(doi: 10.1016/0166-5316(85)90043-4).

[27] P. S. Yu, S. Balsamo, and Y. Lee, “Dynamic transaction routing

in distributed database systems”, IEEE Trans. on Software Engin.,

vol. 14, no. 9, pp. 1307–1318, 1988 (doi: 10.1109/32.6174).

[28] N. Tomov et al., “Analytical response time estimation in paral-

lel relation database systems”, Parallel Computing, vol. 30, no. 2,

pp. 249–283, 2004 (doi: 10.1016/j.parco.2003.11.003).

[29] R. Osman, I. Awan, and M. E. Woodward, “QuePED: Revisiting

queueing networks for the performance evaluation of database de-

signs”, Simulation Modelling Practice and Theory, vol. 19, no. 1,

pp. 251–270, 2011 (doi: 10.1016/j.simpat.2010.06.010).

[30] R. Ramakrishnan and J. Gehrke, Database Management Systems.

Boston: McGraw-Hill, 2002 (ISBN: 9780072465631).

[31] F. Bause, “Queueing Petri nets – a formalism for the combined

qualitative and quantitative analysis of systems”, in Proc. of 5th Int.

Worksh on Petri Nets and Perf. Models, Toulouse, France, 1993

(doi: 10.1109/PNPM.1993.393439).

[32] S. Kounev, S. Spinner, and P. Meier, “Introduction to queueing Petri

nets: Modeling formalism, tool support and case studies”, in Proc.

of the 3rd ACM/SPEC Int. Conf. on Perform. Engin. ICPE 2012,

Boston, MA, USA, 2012, pp. 9–18

(doi: 10.1145/2188286.2188290).

[33] R. Osman and P. Piazzolla, “Modeling replication in noSQL datas-

tore”, in Proc. 11th Int. Conf. Quantitat. Eval. of Syst. QEST 2014,

Florence, Italy, 2014, pp. 194–209

(doi: 10.1007/978-3-319-10696-0 16).

[34] R. Cattell, “Scalable SQL and noSQL data stores”, ACM SIGMOD

Record, vol. 39, no. 4, pp. 12–27, 2010

(doi: 10.1145/1978915.1978919).

[35] K. Chodorov, MongoDB: The Definitive Guide, 2nd ed. Sebastopol,

CA, USA: O’Reilly Media, Inc., 2013 (ISBN 9781449344795).

[36] D. Coulden, R. Osman, and W. J. Knottenbelt, “Performance mod-

elling of database contention using queueing Petri nets”, in Proc.

of the 4th ACM/SPEC Int. Conf. on Perform. Engin. ICPE 2018,

Prague, Czech Republic, 2013 (doi: 10.1145/2479871.2479919).

Antonina Krajewska is a sec-

ond-year Ph.D. student at the

Systems Research Institute of

the Polish Academy of Sci-

ences and a fellow working on

a research project titled “An

energy-aware computer system

for HPC computing” at the

Faculty of Electronics and In-

formation Technology of the

Warsaw University of Technol-

ogy. She has been with the Research and Academic

Computer Network (NASK) since 2016. She holds an

M.Sc. in Mathematics and an M.Sc. in Psychology from

Warsaw University. Her research areas focus on modeling

of performance of database systems, Markov chains and

NoSQL data stores.

https://orcid.org/0000-0001-6626-5667

E-mail: antonina.krajewska@nask.pl

Research and Academic Computer Network (NASK)

Kolska 12

01-045 Warsaw, Poland

45

