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Abstract—This paper presents an overview of techniques de-

veloped to improve energy efficiency of grid and cloud com-

puting. Power consumption models and energy usage profiles

are presented together with energy efficiency measuring meth-

ods. Modeling of computing dynamics is discussed from the

viewpoint of system identification theory, indicating basic ex-

periment design problems and challenges. Novel approaches

to cluster and network-wide energy usage optimization are

surveyed, including multi-level power and software control sys-

tems, energy-aware task scheduling, resource allocation algo-

rithms and frameworks for backbone networks management.

Software-development techniques and tools are also presented

as a new promising way to reduce power consumption at the

computing node level. Finally, energy-aware control mecha-

nisms are presented. In addition, this paper introduces the

example of batch scheduler based on ETC matrix approach.

Keywords—batch scheduling, cloud computing, energy efficient,

grids, power consumption, resource allocation.

1. Introduction

In the context of a continuous increase in the demand

for computing resources, the resource allocation solutions

should aim not only to allocate computing resources so that

they offer satisfactory service level agreements (SLAs) but

also to consume the energy in an efficient way. Therefore,

efficient energy-aware scheduling and resource allocation

techniques are very important.

The reduction of energy consumption is one of the ma-

jor challenges arising with development of grid and cloud

computing infrastructures. To meet the ever-increasing de-

mand for computing power, recent research efforts have

been taking holistic views to energy-aware design of hard-

ware, middleware and data processing applications. Indeed,

advances in hardware layer development require immediate

improvements in the design of system control software. For

this to be possible new power management capabilities of

hardware layer, need to be exposed in the form of flexi-

ble Application Program Interfaces (APIs). Consequently,

novel APIs for clouds and cluster management allow for

system-wide regulation as far as energy consumption. They

are capable of collecting and processing detailed perfor-

mance measurements, and taking real-time coordinated ac-

tions across the infrastructure.

The paper is organized as follows. Section 2 presents tech-

niques for power consumption measurement. Section 3 is

the overview of resource allocation, tasks scheduling and

load balancing methods for grid and clouds considering en-

ergy expenditure control. In Section 4 the example of Ex-

pected Time to Compute (ECT) matrix scheduling process

for chosen Amazon Cloud instances and its impact on the

energy consumed by this environment is described. Sec-

tion 5 presents a short summary of the methods presented

in the paper.

2. Power Consumption Measurement

and Control

In this section we present approaches for measuring, esti-

mating, and modeling the power consumption of computing

resources. The power consumption is given by the aggre-

gated power consumed by CPU, disk, memory, network and

cooling system [1], [2].

Fan et al. [3] investigate the power provisioning for a dat-

acenter, and find that the actual peak power is less than

60% of the total power budget. The research shows that

the CPU and the memory are the main contributors to the

peak power, followed by the disk. The authors propose

a model for estimating the power usage of a server based

on a linear relationship between the power consumption and

CPU utilization, namely they take into account the power of

busy and idle servers. The evaluation shows that the model

approximates the total power usage. However, for each cat-

egory of servers a calibration is needed to obtain the power

usage model. In addition, two techniques are presented for

saving power: Dynamic Voltage/Frequency Scaling (DVFS)

and improving the efficiency of non-peak power as the idle

power is never lower than 50% of the peak power.

It is worth mentioning that often the power consumed by

an idle machine is high, over 50% and up to 70% of the

peak power consumed [3]. Therefore, to reduce the power

consumption a number of approaches relying on switching

idle nodes off [4] or to sleep [5] are used.

Nathuji and Schwan introduce VirtualPower [6], a system

for online power management for virtualized data centers.

This is a novel approach which enables virtual machines
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(VMs) to have access to “soft” power states and VM spe-

cific management policies with the aim of reducing the

power consumption.

Kusik et al. [7] propose a dynamic resource-provisioning

framework for virtualized computing environments. Their

approach is formulated as a sequential optimization, which

employs limited lookahead control to decide the number

and characteristics of the allocated resources. The goal of

the research is to maximize the revenue corresponding to

the provided resources by reducing the power consumption

and minimizing the number of SLA violations.

Dhiman et al. [8] propose a system for dynamic power pre-

diction in virtualized environments. The authors highlight

that the power consumption is different for each VM and

depends on the type of workload and the different charac-

teristics of each VM and physical machine. Based on this

insight they propose a solution to predict the active power

usage (i.e. the power used due to the execution of a work-

load) at both physical machine and VMs. The prediction

uses a Gaussian mixture model based predictor to estimate

the power consumption based on the architectural metrics

of the physical machine and its VMs. The implementation

and evaluation of the proposed solution shows that the av-

erage prediction error for the power consumption is lower

than 10%.

3. Energy Efficient Task Scheduling

and Load Balancing

The problem of efficient task scheduling and balancing of

loads over computational nodes remains challenging in the

massive, extremely dynamic, elastic, diverse and heteroge-

neous computational environments such as computational

clouds. The main issue is to distribute workloads and per-

form the tasks on appropriate resources in order to optimize

selected objectives.

Task scheduling and workloads balancing are strongly con-

nected with resource allocation problem. This issue be-

comes even more complex when energy utilization, beyond

the most common optimization criteria, is treated as addi-

tional scheduling objective.

This Section highlights the most recent research in the en-

ergy efficient task scheduling and load balancing in cloud-

based environments. In addition, energy-aware resource

allocation approaches are also discussed.

3.1. Energy-aware Resource Allocation Heuristics

Models

Resource allocation is the key issue in every distributed

virtual environment. Especially energy-aware optimization

is very important. There are several approaches success-

fully dealing with this problem. A conceptual taxonomy

on energy efficient resource allocation techniques for cloud

computing systems is presented in [9]. The authors define

the following instances of the problem.

Resource allocation adaptation policy. An energy-aware

resource allocator is reacting and adapting to changing or

uncertain cloud environment. Three categories – predictive,

reactive, and hybrid – are considered.

• Predictive resource allocation adaptation policy.

Knowledge-driven machine learning techniques are

used. The aim is to dynamically anticipate and cap-

ture the relationship between users QoS targets, as-

sumed energy efficiency objective function, and given

hardware resources. The knowledge about system be-

havior must be recorded by the monitoring service,

running continuously. Resource usage planning is

done before task and jobs are performed. Several

machine-learning techniques such as neural networks,

genetic algorithms, or reinforcement learning [10] are

used.

• Reactive resource allocation adaptation policy.

These techniques are based on monitoring of the state

of a system and detecting predefined corrective ac-

tions when the negative specified event occurs. They

led to the increasing of the system energy cost. The

efficiency of reactive allocation depends on the abil-

ity to detect fluctuations. This approach is computa-

tionally appealing because no extensive model of the

system is necessary.

• Hybrid resource allocation adaptation policy.

This model combines predictive with reactive allo-

cation techniques. Predictive allocation resources is

performed before the processing the work. When the

system is operating the reactive allocation is switched

on when the monitoring system detected abnormality.

Objective function based scheduling and resource al-

location. This methodology assumes finding the mathe-

matical expression (cost function) according to the system

constraints that should be minimized by numerical meth-

ods. The value of the cost function corresponds to cost of

the energy utilization.

Two main closely related characteristics of cloud system

might be taken into consideration during “green” scheduler

constructing:

• power-aware methods, aiming on reducing power

dissipation, power consumption, and energy cost.

• thermal-aware methods, targeting on reducing the

thermal effects, lowering the temperature in the loca-

tion of the system hardware and increasing the energy

and cost to cool down the system.

3.2. Task Scheduling and Load Balancing Problem

Formulation

Task scheduling is one of the most crucial issue in cloud

processing. Effective scheduling approach should guaran-

tee users’ requirements and efficient resources utilization.

To ensure the last one, the balancing of task loads is used.
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Load balancing helps to distribute large processing load

among the computing nodes. This approach has a number

of goals, i.e. [11]:

• proper resources utilization,

• fair allocation of computing resources,

• support for scalability and stability of the environ-

ment,

• avoiding network and computing bottlenecks,

• extend the life of hardware resources.

We can divide load-balancing approaches into two cate-

gories: static (divides the traffic equivalently between all

nodes) and dynamic (divides the traffic depending on the

current state of the environment). The dynamic balanc-

ing considers two approaches: centralized, where only one

node manages and distributes the whole load, and dis-

tributed – each node independently builds its own local

load vector and makes all decisions [11].

In the general case, the balancing of task loads is achieved

through task scheduling. The goal of this issue is to dis-

tribute workloads and perform the tasks on appropriate ma-

chines that optimize selected objectives. The problem of

task scheduling in computational clouds can be reduced to

the mapping tasks on individual virtual machines. Sched-

ule can be represented by the vectors of virtual machines or

tasks labels. Two different encoding methods of schedules

are defined [12]:

• direct representation:

Definition 1: Let us denote by S the set of all per-

mutations with repetition of the length n over the set

of machine labels Ml . An element s ∈ S is termed

a schedule and it is encoded by the vector:

s = [i1, . . . , in]T , (1)

where i j ∈ Ml denotes the number of machine on

which the task labeled by j is executed.

• permutation-based representation:

Definition 2: Let us denote by S(1) the set of all per-

mutations without repetitions of the length n over

the set of task labels Nl . A permutation u ∈ S(1) is

called a permutation-based representation of a sched-

ule in CG and can be defined by the vector:

u = [u1, . . . ,un]
T , (2)

where ui ∈ Nl , i = 1, . . . ,n. The cardinality of S(1)

is n!.

Based on the scheduling terminology introduced in [13]

and [14] researchers adopted model in the form: A|B|C,

where A specifies the resource layer and architecture type,

B specifies the processing characteristics and the con-

straints, and C specifies the scheduling criteria. Formally,

the model can be defined as follows:

Rm
[

{(batch/on-line), . . . (3)

(indep/dep/w f ),(stat/dyn),(dist/centr)}
]

(ob j) , (4)

where:

• Rm – tasks are send into parallel resources of various

computing capabilities,

• batch/on-line – the task processing mode is batch

mode or on-line,

• indep/dep/wf – independency/dependency/workflow

as the task interrelation,

• stat/dyn – static/dynamic mode, when given number

and characteristics of VMs remains/not remains the

same during scheduling process,

• dist/centr – references that the scheduling objectives

are optimized for multi-cloud environment, where

a central meta-scheduler interacts with local cloud

schedulers in order to define the optimal schedules,

or the centralized mode for single cloud scheduling,

• ob j – denotes the set of the considered scheduling

objective functions.

Definition of the main scheduling attributes is necessary

for the specification of a particular scheduling problem in

clouds.

Scheduling procedure can be realized in the following six

steps [15]:

1. gathering the information on available resources,

2. assembling the details of pending tasks,

3. cumulating facts about data hosts where files for tasks

completion are required,

4. preparing a batch of tasks or single task and compute

a schedule for that batch/single mode on available

machines and data hosts,

5. allocating tasks to resources,

6. monitoring the energy spent on the process when

power-aware scheduling is incorporated or thermal

effects, when thermal-aware scheduling was as-

sumed.

Due to the three level services offered by the cloud ven-

dors, these procedures may be divided as far as the scale

of optimized system is concerned. Therefore, single server,

compute cluster, distributed virtualized infrastructure, data

centre, and the whole cloud system [16] may be taken into

consideration.
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3.3. Scheduling Measures and Criteria

In the problem of task scheduling we have to find schedules

that minimize chosen possible objectives. The most pop-

ular scheduling criteria, namely makespan, flowtime and

maximal lateness, are defined as [17]:

• makespan – the most popular time-based objective.

It indicates the finishing time of the last task from

task pool. The makespan can be calculated by:

Cmax = min
S∈Schedules

{

max
j∈Tasks

C j

}

, (5)

where C j denotes the time when task j is final-

ized (in other words, it is the machine completion

time), Tasks denotes the set of all tasks submitted

to the cloud, and Schedules is the set of all possible

schedules;

• flowtime – defines the sum of finalization times of

all the tasks. It can be defined as:

F = min
S∈Schedules

{

∑
j∈Tasks

C j

}

, (6)

where the variables are as above;

• maximal lateness – defines the maximum time

elapsed between the finalization and assumed dead-

line of a task. The maximum lateness is calculated

as:

Latmax = max
j∈Tasks

Lat j, (7)

where Lat j denotes the lateness for the task j and

Lat j = C j −d j, (8)

where C j denotes the time when task j is finalized,

and d j is the deadline for task j;

• total energy consumption – defines the cumulative

energy consumed during task batch processing. It

can be defined as:

Etotal =
{

∑
i∈Machines

Ei

}

, (9)

where Tasks denotes the set of all virtual machines,

and Ei the cumulative energy utilized by the machine

i for the completion of all tasks from the batch that

are assigned to this machine.

When the scheduling is made according to the energy con-

sumption one of the presented criterion – Eqs. (5)–(7) –

is considered as a primary scheduling criterion. The total

energy consumption by Eq. (9) is the second scheduling

criterion.

3.4. ETC Matrix Model Based Energy-aware

Independent Batch Scheduling

An example problem that is the subject of many studies

in modern task scheduling methods is Independent Batch

Scheduling (IBS) [12], [18], [19]. In this problem the tasks

are gathered into batches and independently processed on

assigned resources. According to the notation introduced

in formula (3), the problem can be defined as:

Rm[{batch, indep,(stat,dyn),centr}](ob j) . (10)

The problem of IBS can be considered under several crite-

ria. The most popular are makespan and flowtime Eqs. (5)

and (6), respectively. For estimating the execution times of

tasks on machines can be the ETC matrix model adopted.

The model is proposed in [20] and adapted for energy-aware

independent batch scheduling in [17] and [19].

In the general case, the entries of the ETC[ j][i] parameters

can be calculated as the ratio of the workload wl of task j
and computing capacity cc of machine i:

ETC[ j][i] =
wl j

cci
. (11)

According to [17] and [19], the average energy consump-

tion can be considered as a complementary scheduling cri-

terion along with the makespan – see Eq. (5) – as the

primary objective. The makespan is expressed as the max-

imum completion time of the machines. Completion time

also includes the time needed for reloading the machine

i after finalizing the previously assigned tasks. The min-

imization of the total energy consumed in the process of

tasks batch execution is considered as the second step of

the suboptimal schedule selection.

3.5. Energy Efficient Task Scheduling Methods for Grids

Proposed model considers two main scheduling scenarios.

Max-Min Mode, in which each machine works at the max-

imal DVFS during the execution and computation of tasks,

and enters into idle mode after the execution of all tasks

assigned to this machine. In this scenario the completion

time can be defined as:

completionI[i] = readyi + ∑
j∈Tasks(i)

ETC[ j][i] , (12)

where: readyi – the ready time of machine i and ETC[ j][i]
– the expected completion times for task j on machine i.
The makespan in this scenario is calculated as:

(Cmax)I =
m

max
i=1

completionI[i] . (13)

For Max-Min Mode the average energy consumed in the

system is defined as:

EI =
1
m
·

m

∑
i=1

γ · (completionI[i] · f ×

×[vsmax(i)]
2 + fsmin(i) · [vsmin(i)]

2 · IdleI [i]) . (14)
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where: m – number of machines, γ = A ·C (C is the total

capacitance load, A is the number of switches per clock

cycle), completionI[i] – completion time of the machine i,
f – frequency of the machine i, vsmax(i) – machine volt-

age supply, smin/max – minimum/maximum DVFS level,

IdleI [i] – the idle time for the machine i given by:

IdleI [i] = (Cmax)I − completionI[i] . (15)

Modular Power Supply Mode, in which each machine can

work at different DVFS levels during the task executions

and can then enter into idle mode. In this scenario the

completion time, makespan, and idle time at the level si

take specific forms given by:

completionII[i] = readyi + ∑
j∈Tasks(i)

1
fsl (i)

·ETC[ j][i] , (16)

(Cmax)II =
m

max
i=1

completionII[i] , (17)

IdleII [i] = (Cmax)II − completionII[i] . (18)

Whereas, the average cumulative energy is defined as:

EII =

m

∑
i=1

Ei

m
, (19)

where:

Ei = γ · f · ∑
j∈T(i)
l∈Li

([(vsl (i)) j ]
2 ·ETC[ j][i])+

+[vsmax(i)]
2 · readyi + fsmin(i) · [vsmin(i)]

2 · Idle[i] , (20)

where: T (i) – a set of tasks assigned to machine i, Li – set

of DVFS levels specified for tasks assigned to machine i,
and the remaining variables as in Eqs. (12)–(14).

The objective function was assumed as minimization of EI
and EII .

The above-mentioned scenarios are based on Dynamic

Voltage and Frequency Scaling (DVFS) technology. This

method is based on decreasing power consumption of hard-

ware by lowering the clock frequency and/or voltage of

the CPU and attached peripherals under the assumption of

known computational load. DVFS optimization is taking

into account only CPUs. The peripherals, i.e. interfaces,

memory, and disks, are being kept at the original operating

frequency [21].

For the case of control all the resources of the physical

machine is used less flexible technology – Dynamic Power

Management (DPM). DPM methods consist of technolo-

gies to improve power conservation capabilities of com-

puter system during runtime by shutting down the whole

servers. A scheduler used in cooperation with DPM tech-

nique have to find a minimum set of computing resources

for a given jobs. This approach is more efficient because

the power consumption of a each server is proportional to

its CPU utilization. When server is idle it still consumes

around two-thirds of its peak-load consumption. This en-

ergy is spend on keeping memory, disks, and I/O resources

running and ready for next task [21].

DVFS and DPM are the most popular technologies for

power management of in distributed high-performance en-

vironments.

3.6. Energy Efficient Task Scheduling Methods

for Clouds

There is a significant body of research on task schedul-

ing approaches that target an efficient energy usage [2],

[22]–[27]. Many of these approaches also employ switch-

ing the idle machines to sleep mode to save further on

energy consumption [5], [28], [29].

Beloglazov et al. [5] introduce an architectural frame-

work and principles for energy-efficient cloud computing.

The authors define policies and scheduling algorithms for

energy-efficient resource allocation ensuring that take into

account both the quality of service provided and the power

consumption. In that research the authors use the following

power model

P(u) = k ·Pmax +(1− k) ·Pmax ·u , (21)

where Pmax is the maximum power consumed of a fully

used server, k is the ratio of the power consumed by the

idle servers, i.e. 70% in that paper, and u is the CPU utiliza-

tion. The authors consider Pmax as 250 W based on results

offered by SPECpower benchmark1. The CPU utilization is

workload dependent, hence changes in time. Consequently,

the total energy consumed by a physical node E can be

defined as:

C =

∫ t1

t0
P
(

u(t)
)

dt . (22)

The authors evaluate the proposed heuristic using model-

ing and simulation, and they show that using a heuristic

based on minimizing the number of VMs to be migrated

and considering the performance-related SLA requirements

offers good energy savings.

Follow-up work by Beloglazov and Buyya [29] introduce

an optimal online deterministic algorithms and heuristics

for energy- and performance-efficient dynamic VM consol-

idation. In the context of dynamic VM consolidation, the

authors defined the cost as:

C =
T

∑
t=t0

(

Cp

n

∑
i=0

ati +Cv

n

∑
j=0

vt j

)

, (23)

where t0 is the initial time and T is the total time. ati shows

whether the host i is active at time t, and vti shows whether

the host j has a SLA violation at time t, the values of ati and

vti ∈ 0,1. The cost includes both the cost of power and the

cost of any violation of the SLA – in this work that is when

1https://www.spec.org/power ssj2008/
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the service level performance, measured as maximum al-

lowed CPU performance, cannot be met. The authors intro-

duce novel adaptive strategies based on historical resource

usage analysis for the energy efficient dynamic consolida-

tion of VMs that minimize the total cost C. The authors

propose a power-aware VM placement algorithm where all

the VMs are queued in decreasing order of their CPU uti-

lizations, and each VM will be allocated to the host that

offers the minimum increase of the power usage due to the

VM allocation. The evaluation of the proposed approach

uses CloudSim [30], a research cloud simulator toolkit. The

experiments are conducted against a simulated data center

of 800 heterogeneous physical nodes. The evaluation shows

that the proposed Local Regression (LR)-based algorithm

combined with the Minimum Migration Time (MMT) VM

selection policy provides better results for the minimiza-

tion of energy and the SLA violations because of a lower

number of SLA violations and VM migrations.

Mhedheb et al. propose ThaS [22] a load and thermal-aware

VM scheduling approach with the aim to both minimize

the energy consumption and ensure a good load-balancing.

ThaS has been implemented on top of CloudSim [30],

a research cloud simulator toolkit. The scheduler detects all

the hosts that exceed either a particular temperature thresh-

old or a CPU threshold. Next, the scheduler determines the

VMs to be migrated and the target hosts. The target hosts

are chosen based on temperature first, and the resources

requirements second.

3.7. Meta-heuristic Energy Efficient Task Scheduling

Methods

Modern energy-aware task scheduling methods are of-

ten based on a heuristic approach. These methods are

usually classified into three main categories: calculus-

based (greedy algorithms and ad-hoc methods), stochastic

(guided and non-guided methods) and enumerative methods

(dynamic programming and branch-and-bound algorithm).

According to [31], the most important and efficient schedul-

ing methods are ad-hoc, local search-based and population-

based meta-heuristics methods.

Basing on proposed taxonomy, the following exemplary

methods dedicated to the problem of energy aware task

scheduling can be classified as meta-heuristics methods:

• Hierarchic Genetic Strategy Based Scheduler

(HGS-Sched) is the model proposed in [17] and [19].

HGS-Sched model in the aforementioned papers was

defined as meta-heuristic scheduler for solving the

problem of IBS. This scheduling problem was de-

fined by using the ETC matrix model with estimated

time needed for the completion of the task j on the

machine i;

• PATC and PALS Energy-aware parallel task

schedulers [32] presented the Power Aware Task

Clustering algorithm for parallel task scheduling and

the Power Aware List-based Scheduling algorithm for

parallel tasks.

4. Example of Batch Scheduling

for Clouds Based on ETC

Matrix Approach

The example of such scheduler implementation is presen-

ted in [33], [34]. It is based on additional scheduling crite-

ria considering security of tasks computation. From among

the many cloud computing security issues, [35] the map-

ping the task security demand into the proper VM offer-

ing the required trust level was considered. Here, for the

clarity of presentation, the case considering two chosen

Amazon instances will be presented. The makespan cri-

terion, see Eq. (5), was used for scheduling. First VM

(VM1) is based on Amazon m4.16large instance with In-

tel Xenon E6-2686 v4 processor. Second VM (VM2) is

m4.large instance, equipped with Xenon E6-2676 v3 pro-

cessor. Computing capacities of both are: cc1 = 2.7 GHz ×
18 cores ×16 = 777.6 GFLOPS and cc2 = 2.4 GHz ×
12 cores ×16 = 460 GFLOPS.

The batch consisting thee tasks was considered. The work-

load of tasks was: wl1 = 2000, wl2 = 4000, wl3 = 10000.

The ECT matrix for such a batch is:

ECT =

[

2.57 5.14 12.86

4.36 8.68 21.70

]

. (24)

The possible schedules and makespans are presented in

Table 1. One can see that the proper scheduling enables to

save 30.38−8.68= 21.7 s. That is to shorten the makespan

of tasks by over 71%.

Table 1

Possible schedules and their makespans

Schedule VM1 V M2
Makespan

no. tasks [s]

1 1 2.3 28.38

2 2 1.3 26.04

3 3 1.2 13.03

4 1.2 3 21.70

5 1.3 2 8.68

6 2.3 1 30.38

Considering two time independent states of both VMs:

busy (100% computational power used for tasks calcula-

tions) and idle (70% of maximal power used for system

maintaining), we may calculate the energy necessary for

this tasks.

Let the t1
i and t2

i be the time when VMs are idle, and t1
busy

and t2
busy be the time when they are fully loaded. Let the

P1
i and P2

i be the power necessary for VMs to keep idle

state, and P1
busy and P2

busy be the power of VMs when they

are calculating tasks. Then:
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Etotal = E(VM1)+E(VM2) =

=

completiontime
∫

0

PowVM1(t)dt +

completiontime
∫

0

PowVM1(t)dt =

= P1
i · t1

i +P2
i · t

2
i +P1

busy · t
1
busy +P2

busy · t
2
busy . (25)

Following [14], the VM power is estimated as the most

simple linear function of virtual CPU power consumption.

According to [17], the power necessary for both VMs to

keep the idle state was assumed as the 70% percent of

working VM. Assuming levels of VM energy:

P1
i =231 W, P2

i =140 W,

P1
busy =330 W, P2

busy =200 W,
(26)

the energy consumed by each VM during processing as-

sumed batch can be calculated, see Table 2.

Table 2

Energy and energy efficiency for possible schedules

for the whole environment and particular VMs

Schedule
no.

Energy Eefficiency

1 12486.21 1.28

2 11732.10 1.36

3 6889.07 2.32

4 10412.99 1.53

5 454.37 32.21

6 14413.20 1.11

The last schedule saves 14413.2− 454.37 = 13958.83 W.

That is over 96% comparing the worst case scheduling.

Considering different energy levels for both VMs:

P1
i = 70% ·P1

busy, P2
i = 70% ·P1

busy , (27)

P1
busy ∈ [100,500] W P2

busy ∈ [100,500] W (28)

we may find the energy dynamics necessary for this batch

processing, for best (no. 5) and worst (no. 6) schedule,

see Fig. 1. It shows that even for the most simple energy

model, the gain from proper scheduling is significant. The

energy is saved for all power configurations. Moreover, the

Fig. 1. Energy of batch processing for different VMs power

levels for best and worst makespan schedules.

percentage savings are bigger when energy consumption of

VMs are high.

In the considered example, the power of VM was the linear

function of computing capacity for particular configuration

from Tables 1–2 problem of finding the schedule that min-

imizes the makespan is equal to the problem of finding the

schedule that minimizes the total energy.

In general, the problem of finding the schedule that mini-

mizes the makespan may be written in the form:

arg min
s∈Schedules

∑
i=1,2, j=1,2,3

wl j

cci
δi, j , (29)

where δi, j = 0 when the task number j is not scheduled for

the machine i, δi, j = 1 otherwise.

The problem of finding the schedule that minimizes the

total energy may be written in the form:

arg min
s∈Schedules

δi, j=1,i=1

∑
j=1,2,3

P1
busy

wl j

cci
δi, j +

+
δi, j=1,i=2

∑
j=1,2,3

P2
busy

wl j

cci
δi, j +

+
δi, j=0,i=1

∑
j=1,2,3

P1
i

wl j

cci
δi, j +

δi, j=0,i=2

∑
j=1,2,3

P2
i

wl j

cci
δi, j . (30)

One can see in this case the solution of finding the schedule

that minimizes the makespan and the energy expenditure

is the same. This is due to the fact that the power con-

sumption is increasing as the computer capacity is growing,

see Eq. (23).

For the schedule s and given tasks batch, the energy ef-

ficiency may be defined as the number of operations per-

formed per energy unit (see Table 2):

Ee ff iciency(s) =
∑ j=1,...,n wl j

Etotal(s)
. (31)

It reflects the quality of energy aware scheduling consider-

ing given energy usage by virtual environment.

5. Summary

In this paper we addressed the problem of energy effi-

cient task scheduling and load balancing in cloud envi-

ronments. We have reviewed and discussed the methods

and approaches applied for the reduction of energy con-

sumption. The analysis shows that the problem of energy-

aware task scheduling and load balancing are still very

challenging.

The described model considers the multi-objective opti-

mization problem. It focuses not only on energy consump-

tion, but also on taking into account the time-based ob-

jectives, which are crucial in the problem of energy con-

sumption. As a result, it considers the problem of finding

the right compromise between the makespan and energy

efficiency.

Additionally, we presented simple numerical example il-

lustrating the influence of proper scheduling into energy

saving.
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All presented models achieved effective results in this field

and are worthy of additional attention.

References

[1] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning

of cloud resources for real-time services”, in Proc. 7th Int. Worksh.

on Middleware for Grids, Clouds and e-Science MGC’09, Urbana

Champaign, IL, USA, 2009, pp. 1:1–1:6

(doi: 10.1145/1657120.1657121).

[2] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach

for energy-efficient consolidation of virtual machines in cloud data

centers”, in Proc. 8th Int. Worksh. on Middleware for Grids, Clouds

and e-Science MGC’10, Bangalore, India, 2010, pp. 4:1–4:6 (doi:

10.1145/1890799.189080333).

[3] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for

a warehouse-sized computer”, in Proc. 34th Ann. Int. Symp. on

Comp. Architec. ISCA’07, San Dieco, CA, USA, 2007, pp. 13–23.

[4] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, “Load balanc-

ing and unbalancing for power and performancee in cluster-based

systems” in Proc. of the Worksh. on Compilers and Operat. Syst. for

Low Power COLP’01, Barcelona, Spain, 2001, pp. 182–195.

[5] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource

allocation heuristics for efficient management of data centers for

cloud computing”, Future Gener. Comput. Syst., vol. 28, no. 5,

pp. 755–768, 2012.

[6] R. Nathuji and K. Schwan, “Virtualpower: Coordinated power man-

agement in virtualized enterprise systems”, in Proc. 21st ACM

SIGOPS Symposium on Operat. Syst. Principles SOSP’07, Steven-

son, WA, USA, 2007, pp. 265–278.

[7] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,

“Power and performance management of virtualized computing en-

vironments via lookahead control”, Cluster Comput., vol. 12, no. 1,

pp. 1–15, 2009.

[8] G. Dhiman, K. Mihic, and T. Rosing, “A system for online power

prediction in virtualized environments using Gaussian mixture mod-

els”, in Proc. 47th Design Autom. Conf. DAC’10 Anaheim, CA,

USA, 2010, pp. 807–812.

[9] A. Hameed et al., “A survey and taxonomy on energy efficient re-

source allocation techniques for cloud computing systems”, Comput-

ing, vol. 98, no. 7, pp. 751–774, 2016.

[10] S. Russell and P. Norvig, Artificial Intelligence. A modern approach.

Englewood Cliffs: Prentice-Hall, 1995.

[11] R. Kaur and P. Luthra, “Load balancing in cloud computing”, in

Proc. of Int. Conf. on Recent Trends in Inform., Telecom. and Com-

put. ITC ’12, Bangalore, India, 2012.

[12] D. Grzonka, J. Kołodziej, J. Tao, and S. U. Khan, “Artificial neural

network support to monitoring of the evolutionary driven security

aware scheduling in computational distributed environments”, Future

Gener. Comput. Syst., vol. 51, no. C, pp. 72–86, 2015.

[13] P. Fibich, L. Matyska, and H. Rudová, “Model of grid scheduling
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