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Abstract—In this paper an effective iterative method is pre-

sented for the power synthesis of reconfigurable antenna ar-

rays. The algorithm is suitable for arrays of arbitrary ge-

ometry, including the case where a large number of elements

is involved. The reconfigurability is achieved by phase-only

control, so that the excitation amplitude of each array el-

ement remains constant during the reconfiguration process.

Such amplitudes may be different from one array element to

the others, and they are not assigned a priori, but are opti-

mized. Furthermore, the electric field is imposed to vanish

in a number of prescribed points of the near-field region, so

that a strong field reduction is obtained in a neighborhood of

them.

Keywords—antenna arrays, near-field nulls, phase-only control,

power synthesis, reconfigurability.

1. Introduction

Nowadays, antenna arrays consisting of many elements are

very common structures in several applications, such as

radars [1], [2], satellites [3], [4] and wireless communica-

tions [5], [6]. One of their attracting features is the recon-

figurability, that is, the capability of generating different

radiation patterns by suitably modifying parameters, such

as for example the position and/or the excitation of the ra-

diating elements, so that many patterns can be radiated by

a single antenna. The position-control, also known as me-

chanical steering, requires a mechanical driving system and

is not very well suited in some applications such as automo-

tive and aeronautical ones. This makes fully electronically

steerable structures more interesting. Modifying both the

amplitude and phase of the excitations yields many degrees

of freedom, but may require the use of expensive feeding

networks. Usually, the reconfigurability from one pattern to

another is achieved by modifying only the phase of the ex-

citations. This allows the use of simpler feeding networks.

Many techniques have been proposed for the power pattern

synthesis of reconfigurable antenna arrays with phase-only

control [1], [7]–[13]. In [7], [8] a pre-assigned amplitude

distribution is assumed and only the optimum values for the

phase are calculated. This transforms an inherently coupled

problem into a number of (simpler) independent synthesis

problems (one for each pattern), but provides a non-optimal

solution because the pre-assigned amplitude distribution is

not the optimal one. A research of a common amplitude

distribution, in conjunction with the combination of a suit-

able phase distribution, is more convenient [1], [9]–[13].

Besides, antenna arrays are often mounted in complex en-

vironments, such as for example ships, aircrafts and satel-

lites, thus involving obstacles which can interfere with the

far-field patterns. It is important to take into account the

effects of the environment on the radiation patterns. This

can be done in two ways. The first one consists in in-

cluding the environment in which the antenna is operating

into the synthesis procedure [14], [15]. This approach,

however, requires a detailed material and geometrical de-

scription of the operating environment, as well as a sig-

nificant modification of the numerical code for the pat-

tern evaluation, necessary to evaluate the electromagnetic

coupling. The second approach consists in reducing the

radiated field in the zone where the obstacle is located,

in order to isolate it. The obstacle isolation can be real-

ized by minimizing the power radiated into the near-field

region that includes the obstacle [16]–[19]], or by impos-

ing an upper bound on the electric-field amplitude in the

region of interest [20]–[24], or finally by imposing that

the near-field vanishes in suitably chosen points [25]–[27],

thus reducing the field in a neighborhood of such points. It

has been demonstrated [16] that both these two approaches

give satisfactory results. However, the second one (i.e.,

reducing the radiated field in a given zone) is much sim-

pler. But although the near-field constraint has an increas-

ing relevance in practical applications involving arrays,

only [19]–[21], [23] propose synthesis techniques for re-

configurable arrays involving near-field constraints, and

following the above second approach.

The algorithm proposed in this paper allows to synthesize

a number of desired patterns for phase-only reconfigurable

antenna arrays of arbitrary geometry, in such a way that

the near-fields corresponding to all of the synthesized pat-

terns vanish at a prescribed number of points close to the

antenna. This results in a reduction of the near-field am-

plitude also in a neighborhood of these points.

2. The Problem Formulation

and the Solving Procedure

With reference to a Cartesian system O(x,y,z), let us con-

sider an antenna array of arbitrary geometry consisting of
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N arbitrary radiating elements. We want to find S (com-

plex) excitation vectors is = [i1s, . . . , iNs]
T such that the S

corresponding radiation patterns F(is;ϕ), where ϕ is the

azimuth angle of the generic direction of the xy-plane, have

a desired shape. This requirement is obtained by impos-

ing that the s-th pattern belong to a suitable mask Ks =
{

fs(ϕ) : K1
s (ϕ) ≤ | fs(ϕ)| ≤ K2

s (ϕ),−π ≤ ϕ ≤ π
}

, where

K1
s (ϕ) and K2

s (ϕ) are the lower and the upper bound of

the mask, respectively. Furthermore, we require that each

of the S array patterns can be transformed into any of the

others by keeping constant the excitation amplitude of each

array element (phase-only control). Finally, we impose that

the electric field radiated by the array in correspondence of

is, E(is;r), be zero in M suitable points rm located in the

near-field region, with M <
N
3

. If such points are close to

each other, then the field reduction is achieved in a neigh-

borhood of them.

This problem can be formalized as follows: find is =
[i1s, . . . , iNs]

T , s = 1, . . . ,S, in such a way as to satisfy the

following constraints:

F(is;ϕ) ∈ Ks, s = 1, . . . ,S , (1)

|in1| = · · · = |inS|, n = 1, . . . ,N , (2)

E(is;rm) = 0, s = 1, . . . ,S, m = 1, . . . ,M . (3)

We want to specify that the problem and the synthesis pro-

cedure are here formulated and described in the xy-plane

for simplicity. However, the extension to the (ϑ ,ϕ)-space

is straightforward. The array pattern F(is;ϕ) is given by:

F(is;ϕ) =
N

∑
n=1

insFn(ϕ) , (4)

where Fn(ϕ) is the array pattern corresponding to the exci-

tation vector en = [0, . . . ,1, . . . ,0]T having the unity in the

n-th position (active element pattern). The electric field

E(is;r) is given by:

E(is;r) =
N

∑
n=1

insEn(r) , (5)

where En(r) is the electric field radiated by the array in cor-

respondence of the excitation vector en. The constraint (1)

imposes the mask requirements, with the aim of generating

S patterns, each having a desired shape. Constraint (2) im-

poses the phase-only control. Condition (3) imposes that

the electric field vanishes at M prescribed points rm lo-

cated in the near-field region. If such points are close to

each other, the electric field amplitude will exhibit a strong

reduction in a neighborhood of them, as will be shown by

the numerical example. The reason for the requirement

M <
N
3

will be explained below.

The method of solution that we are presenting is an evolu-

tion of that proposed in [27], and is based on the alternating

projections method. We first formulate the problem as an

intersection finding problem. To do so, we introduce the

set H = {ĥ = (g1(ϕ), . . . ,gS(ϕ),h1, . . . ,hS)} where each

gs(ϕ) is an arbitrary complex scalar function defined in

the interval [−π ,π ] with square integrable modulus, and

hs = [h1s, . . . ,hNs]
T is a column vector with N arbitrary

complex components. We define the scalar product be-

tween two elements ĥ, ĥ′ ∈ H as:

<ĥ, ĥ′
>H =

S

∑
s=1

<gs(ϕ),g′s(ϕ)>+
S

∑
s=1

h′H
s hs , (6)

where the superscript indicates the components of the

column vector ĥ′, <gs(ϕ), g′s(ϕ)> =

∫ π

−π
gs(ϕ)g′s

∗(ϕ)dϕ ,

the asterisk denotes the complex conjugate and the super-

script H denotes transpose conjugate. The scalar product

in Eq. (6) yields the norm ‖ĥ‖H =

√

<ĥ, ĥ>H and the

distance ρ(ĥ, ĥ′) = ‖ĥ− ĥ′‖H , which becomes

ρ2(ĥ, ĥ′) =
S

∑
s=1

∫ π

−π
|(gs(ϕ)−g′s(ϕ)|2dϕ +

+
S

∑
s=1

N

∑
n=1

|hns −h′ns|
2
. (7)

In H we now introduce the sets:

K ={k̂ = ( f1(ϕ), . . . , fs(ϕ),k1, . . . ,ks) :

fs(ϕ) ∈ Ks, and |kn1| = · · · = |knS|,

s = 1, . . . ,S,n = 1, . . . ,N}, (8)

W = {ŵ = (F(w1;ϕ), . . . ,F(wS;ϕ),w1, . . . ,wS)} (9)

and

Z = {ẑ =(F(z1;ϕ), . . . ,F(zS;ϕ),z1, . . . ,zS) :

E(zs;rm) = 0,s = 1, . . . ,S, m = 1, . . . ,M}.(10)

Note that the elements of K consist of S arbitrary scalar

complex functions and of S arbitrary complex vectors sat-

isfying (1) and (2), respectively, but the functions fs(ϕ)
are not array patterns. Instead, the elements of W consist

of S array patterns and of S excitation vectors that pro-

duce such patterns, but such elements do not satisfy con-

straints (1) and (2). The set Z consists of those elements

of W whose electric field vectors satisfy condition (3). It

becomes now evident that each element belonging to the

intersection K∩Z is a solution to our problem. Since such

an intersection may be empty, we consider as a solution an

element of K minimizing the distance from Z. Such solu-

tion can be sought with the alternating projections method

as described below.

Starting from a suitable point k̂0 ∈ K, we follow the itera-

tion scheme:

k̂n+1 = TKTZ [k̂n], n = 0,1,2, . . . , (11)

where TK and TZ are the projection operators onto the

sets K and Z, respectively. By definition of distance,

and due to TK and TZ being two projectors, it results:

ρn ≥ ρn+1 [12], where ρn is the distance from k̂n to

the set Z. In other words, the non-negative sequence

{ρn} is non-increasing, and therefore is convergent. The
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iteration (11) generates a sequence of points k̂n of K,

which are closer and closer to Z. We stop the procedure

at a point k̂o
n =

(

f o
1 (ϕ), . . . , f o

S (ϕ),ko
1, . . . ,k

o
S

)

such that:

ρn < ε or
(ρn−1 −ρn)

ρn

< δ (12)

with ε and δ two suitable thresholds. As the optimal ex-

citation vectors we consider the S vector components ko
s

of k̂o
n which (being k̂o

n ∈ K) satisfy (2) rigorously, so that

phase-only control is guaranteed. The optimal radiation

patterns and the radiated fields are calculated replacing is
with ko

s in (4) and (5), respectively. With this choice, con-

straints (1) and (3) are satisfied only approximately. How-

ever, the accuracy is very good, as will be shown by the

numerical example.

3. The Projector Operators

In this section, formulas to implement the above projectors

are derived. We recall that the projector TC onto the closed

set C ⊂ H is the operator that associates with each point

ĥ ∈ H the point ĉ ∈C closest to ĥ, that is

TC : ĥ∈H 7→TC[ĥ] = ĉ∈C : ρ(ĉ, ĥ)= min
ŷ∈C

{

ρ(ŷ, ĥ)
}

. (13)

3.1. The Projector TKTKTK

It is easy to show [12] that k̂=( f1(ϕ), . . . , fS(ϕ),k1, . . . ,kS)
is the projection of ĥ = (g1(ϕ), . . . ,gS(ϕ),h1, . . . ,hS) onto

the set K if for each s = 1, . . . ,S, it results:

fs(ϕ) =























gs(ϕ) if K1
s (ϕ) ≤ |gs(ϕ)| ≤ K2

s (ϕ)

K1
s (ϕ)

gs(ϕ)

|gs(ϕ)|
if |gs(ϕ)| < K1

s (ϕ)

K2
s (ϕ)

gs(ϕ)

|gs(ϕ)|
if |gs(ϕ)| > K2

s (ϕ)

(14)

and ks = [k1e jϕ1s , . . . ,kNe jϕNs ]T , where for n = 1, . . . ,N,

kn =
1

S

S

∑
s=1

|hns| is the amplitude of the n-th array element

and ϕns = arg{hns} is the phase of the n-th element neces-

sary to radiate the s-th pattern.

3.2. The Projector TWTWTW

Let us note [27] that TZ[ĥ] = TZ[TW [ĥ]], so before expressing

TZ we express TW . The projection of ĥ =
(

g1(ϕ), . . . ,gS(ϕ),

h1, . . . ,hS

)

onto the set W is the point TW [ĥ] = ŵ =
(y1(ϕ), . . .yS(ϕ),w1, . . . ,wS), which minimizes the distance

ρW (w1, . . . ,wS) = ρ(ŵ, ĥ). From the definition of scalar

product and distance in H (see Section 2 and Eqs. (6)

and (7)), it results:

ρ2
W (w1, . . . ,wS) =

S

∑
s=1

<ys(ϕ)−gs(ϕ),ys(ϕ)−gs(ϕ)>+

+
S

∑
s=1

(ws −hs)
H(ws −hs) . (15)

By definition (9) of W , after some manipulations we find:

ρ2
W (w1, . . . ,wS) =

S

∑
s=1

{

wH
s Fws−wH

s gs−gH
s ws + gH

s gs

}

+

+
S

∑
s=1

{

wH
s ws −wH

s hs

}

−
S

∑
s=1

{

hH
s ws−hH

s hs

}

, (16)

where F = [Fmn], with Fmn =

∫ π

−π
Fn(ϕ) F∗

m(ϕ) dϕ and gs

is the s-th column of the [N × S] matrix G = [gms] with

gms =

∫ π

−π
gs(ϕ)F∗

m(ϕ)dϕ . Imposing the condition
∂ρ2

W

∂w∗
ps

=0,

p = 1, . . . ,N, s = 1, . . . ,S, yields the S matrix equations:

Jws = ms , (17)

or equivalently the matrix equation:

JW = M , (18)

where J = F + IN, M = G + H, being IN the identity ma-

trix of rank N, W and H the [N × S] matrices whose s-th

columns are, respectively, ws and hs. The solution to (18)

is

W = J†M , (19)

where J† is the pseudo-inverse matrix of J (which coincides

with the inverse matrix J−1 if J is non-singular [28]). Once

we have the vectors ws, with the definition (9) of W we

can calculate the functions ys(ϕ) =
N

∑
n=1

wnsFn(ϕ), hence the

projection ŵ = (y1(ϕ), . . . ,yS(ϕ),w1, . . . ,wS) = TW [ĥ].

3.3. The Projector TZTZTZ

Now, in order to implement the projector TZ , we have to

minimize the quantity ρZ(z1, . . . ,zS) = ρ(ẑ, ĥ) or, equiva-

lently, ρ(ẑ,TW [ĥ]) = ρ(ẑ,ŵ0), where ŵ0 = TW [ĥ]. By defi-

nition (10) of Z, after some manipulations we have:

ρ2
Z(ẑ,ŵ0) =

S

∑
s=1

(zs −w0s)
HJ(zs −w0s) , (20)

where w0s is the s-th excitation vector of ŵ0. Note that,

by (17),
w0s = J†ms , (21)

Since F and IN are Hermitian, also J = F+IN is Hermitian

and hence all eigenvalues of J are real and J is unitarily

diagonalizable [28]. Therefore J = UHΛU, where Λ is the

diagonal matrix of the eigenvalues of J, the columns of

UH are the corresponding eigenvectors, and UH is unitary.

Replacing J with UHΛU yields:

ρ2
Z(ẑ,ŵ0) =

S

∑
s=1

(zs −w0s)
HUHΛU(zs−w0s) , (22)

which can be written as:

ρ2(ẑ,ŵ0) =
S

∑
s=1

(vs−v0s)
H(vs−v0s) =

S

∑
s=1

‖vs−v0s‖
2
E , (23)
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where we set

vs = Λ
1
2 Uzs and v0s = Λ

1
2 Uw0s . (24)

So, projecting ĥ onto Z reduces to minimize the quan-

tity (23) subject to the constraint (3). Now, constraint (3)

can be formulated due the matrix equations

Ezs = EU−1Λ− 1
2 vs = Svs = 0 , (25)

where E denotes the 3M×N matrix defined as follows:

E =





Ex

Ey

Ez



 , (26)

with Ex,Ey,Ez being the three M ×N matrices whose en-

tries are Exmn = Exn(rm), Eymn = Eyn(rm), Ezmn = Ezn(rm),
respectively, with Eξn

(rm) denoting the ξ−component (ξ =
x,y,z) of the electric field produced at the point rm by the

array with excitation vector en. The matrix S = EU−1Λ− 1
2

has 3M rows and N columns, thus Eq. (25), expressing the

near-field constraints, has a solution if M <
N
3

. The vectors

vs minimizing (23) and satisfying (25) are:

vs = (IN −S†S)v0s . (27)

Therefore, recalling Eq. (24) yields:

zs = Pw0s , s = 1, . . . ,S , (28)

where P = U−1Λ− 1
2 (IN − S†S)Λ

1
2 U and w0s is given

by Eq. (21), which solves Eq. (17). With the vectors zs

and the definition (10) of Z, we can calculate the func-

tions F(zs,ϕ) =
N

∑
n=1

znsFn(ϕ), hence the projection ẑ =

(F(z1,ϕ), . . . ,F(zS,ϕ),z1, . . . ,zS) = TZ[ĥ].

4. Numerical Example

We considered the array shown in Fig. 1, consisting of

N = 429 elementary vertical dipoles with length l = λ
50

.

Fig. 1. Array geometry and near-field region for the proposed

example. The null points lie on the top and bottom faces of the

cube.

The elements are equally spaced on 11 circular rings (as it

is described in Table 1), with each ring having the center

at the origin of the Cartesian system O(x,y,z) and lying on

the xy-plane. In the near-field region, on the planes z =±λ ,

two meshes were defined, consisting of 25 equally spaced

points (see Fig. 1), with −10.5λ ≤ x,y ≤−8.5λ , resulting

in M = 50 points rm with a minimum distance between

adjacent points of λ
2
. Note also that M = 50 < 143 = N

3
.

The array was required to synthesize by phase-only control

the S = 4 patterns of Fig. 2.

Table 1

Array geometry details: normalized radius
Ri

λ
and number of elements Ni of each ring

i
Ri

λ Ni i
Ri

λ Ni i
Ri

λ Ni

1 0.35 4 5 2.55 32 9 4.77 60

2 0.88 11 6 3.11 39 10 5.33 67

3 1.44 18 7 3.66 46 11 5.8 74

4 1.99 25 8 4.22 53

First, the synthesis was performed without imposing the

near-field nulls, that is, in the absence of condition (3).

This was realized by replacing the projector TZ in Eq. (11)

with TW . In the following it will be referred to as the “re-

duced” problem. Then constraint (3) was taken into account

and the “complete” problem was solved.

Both the reduced and the complete problem gave very

good results in a satisfactory computer time. In fact, the

former required only 1.78 s (corresponding to 104 iter-

ations) and the latter required 30.19 s (1761 iterations).

As it was expected, constraint (2) was satisfied exactly.

Condition (1) was very well approximated. In fact, the

synthesized patterns exceeded the mask limits at most of

0.18 dB (reduced problem) and 0.03 dB (complete prob-

lem), and in particular, the maximum side lobe levels in

the worst case were –34.82 dB (reduced problem) and

–34.97 dB (complete problem). Figure 2 shows the ra-

diation patterns obtained solving the complete problem.

Figure 3 shows a contour plot of the near-field amplitude

in both the reduced and the complete problem. Con-

straint (3) was approximated quite satisfactorily, as the

maximum near-field amplitude on the constraint points in

the complete problem exhibited a 50.03 dB reduction with

respect to that of the reduced problem. Finally, the field

amplitudes were evaluated on a mesh of λ
8

spaced points

in the cube of Fig. 1 for both the reduced and the com-

Table 2

Near-field amplitude comparison

Reduction of the maximum amplitude 48.25 dB

Reduction of the mean amplitude 43.06 dB

Maximum reduction 58.62 dB

Minimum reduction 15.86 dB

Mean reduction 39.42 dB
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Fig. 2. The assigned masks and the synthesized patterns for the complete problem: (a) a pencil beam, (b) a flat top beam), (c) a cosecant,

(d) a squared cosecant.

Fig. 3. Contour plot of the near-field amplitude (in dB) on a portion of the xy-plane, obtained in the reduced (a) and com-

plete (b) problem.

plete problem. The results are summarized in Table 2 and

show that imposing near-field nulls on a number of suit-

ably located points allows to obtain a very strong reduc-

tion of the electric field amplitude in the whole region of

interest.

5. Conclusions

The algorithm presented in this paper allows us to synthe-

size reconfigurable antenna arrays with phase-only control,

simultaneously reducing the near-field amplitude in a region

close to the antenna. The near-field reduction is obtained

by imposing that the field vanishes at a prescribed number

of suitably located points. In such a way, strong reduc-

tions can be obtained without increasing the dimensions

of the problem and so keeping low the required compu-

tational time. This represents one of the main advantages

of the presented algorithm with respect to those presented

in [20], [21], which allow to control the near-field reduc-

tion, but with a higher computational time.
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