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Abstract—When dealing with multicriteria problems, the ag-

gregation of multiple outcomes plays an essential role in find-

ing a solution, as it reflects the decision-maker’s preference

relation. The Ordered Weighted Averaging (OWA) operator

provides a flexible preference model that generalizes many ob-

jective functions. It also ensures the impartiality and allow to

obtain equitable solutions, which is vital when the criteria

represent evaluations of independent individuals. These fea-

tures make the OWA operator very useful in many fields, one

of which is location analysis. However, in general the OWA

aggregation makes the problem nonlinear and hinder its com-

putational complexity. Therefore, problems with the OWA

operator need to be devised in an efficient way. The paper

introduces new general formulations for OWA optimization

and proposes for them some simple valid inequalities to im-

prove efficiency. A hybrid structure of proposed models makes

the number of binary variables problem type dependent and

may reduce it significantly. Computational results show that

for certain problem types, some of which are very useful in

practical applications, the hybrid models perform much better

than previous general models from literature.

Keywords—location problem, mixed integer (linear) program-

ming, multiple criteria, ordered weighted averaging.

1. Introduction

In many practical problems we have to deal with multiple
conflicting criteria. Typically, there does not exist unique
optimal solution for such problems and we need to use
decision-maker’s preference to solve them. We have to be
able to compare different alternatives and decide, which one
is better from a decision-maker point of view. A common
approach is to aggregate all original criteria by some scalar-
izing function into one overall objective function. In this
solution concept an aggregation is crucial, as it provides
the preference model, and thus determines preference rela-
tion between alternatives. The so-called Ordered Weighted
Averaging (OWA) operator provides a parameterized aggre-
gation function that generalized many scalarizing functions,
including the most popular the average and the maximum
(minimum) along with many other cases. The OWA opera-
tor, introduced by Yager [1], is a special weighted average,
where weights are assigned to the ordered values of out-
comes (i.e. to the largest value, the second largest and so
on) rather than to the specific outcomes.
The OWA operator not only generalizes various objective
functions, but also ensures impartial and in some circum-

stances equitable solutions. It plays an essential role when
the distribution of outcomes is more important than val-
ues’ assignment to specific outcomes. It is the case when
we deal with outcomes that express, for example, the eval-
uation of multiple independent users or scenarios. Thus,
the OWA aggregation has been widely applied in different
domains [2]–[4]. However, when we aggregate the vari-
able criteria by the OWA operator, we get the nonlinear
problem, even if the original problem has a linear formu-
lation. Yager [5] showed that this type of nonlinearity can
be transformed into a Mixed Integer Linear Programming
(MILP) problem. Furthermore, in [6] it was proofed that
the OWA optimization with appropriate monotonic weights
can be expressed as linear programming (LP) problem of
higher dimension, allowing to improve solution techniques
for many related problems [7].
The outcomes distribution is important in location anal-
ysis when we deal with independent clients [8]. Within
this field the so-called Ordered Median (OM) function was
developed and analyzed [9], which in fact corresponds to
the OWA operator. Thus, several models and some dedi-
cated solution methods for the OWA optimization were de-
veloped within the location analysis, including branch and
bound [10] or branch and cut [11], [12] approaches. A sig-
nificant improvement in computational efficiency has been
made. However, the solution times are still not satisfac-
tory. Besides, some of these formulations take advantage
of specific assumptions such as free self-service.
In this paper a new general MILP model for the OWA
optimization is introduced, which is the extension of the
LP formulation [6] and can be applied to any non-negative
preference weights w. Some similar concept of LP formu-
lation extension has been recently applied for the weighted
OWA aggregation [13]. Due to hybrid structure with the
linear and the mixed integer linear parts, the number of bi-
nary variables in our new formulations depend on problem
type and can be substantially reduced for some of them. We
evaluate new models for the discrete location problems, but
we do not exploit any specific structure and assume only
the non-negativity of the outcomes for some results. We
also propose some simple valid inequalities to improve the
computational performance of new formulations, which we
set together with one of the most efficient general model
for OWA optimization (see comparison in [14]).
The paper is organized as follows. In Sections 2 and 3
the problem is formally defined and the hybrid models for
the OWA optimization are developed. In Section 4 the ex-
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perimental procedure is described and results are presented.
Section 5 concludes and proposes some further research
directions.

2. Problem Formulations

We consider uncapacitated discrete location problem [15],
which can also be defined as network location problem,
where facilities are allowed to be placed only on vertices
(or subset of vertices) of the underlying network. Given
a set of m clients and a set of potential facility locations,
which without loss of generality can be assumed to be
identical sets, we have to place n facilities (n ≤ m) and
assign them to clients to meet the demand. We aim at op-
timizing a given objective function, which is usually based
on abstract distances (e.g. geographic distances, service
costs, service times) between the clients and the facilities.
We assume no capacity limit of facilities, so each client is
assigned the closest facility. The model can be formally
expressed in the following form:

min (y1,y2, . . . ,ym) , (1a)

s.t. yi =
m

∑
j=1

ci jx′i j ∀i , (1b)

m

∑
j=1

x j = n , (1c)

m

∑
j=1

x′i j = 1 ∀i , (1d)

x′i j ≤ x j ∀i, j , (1e)

x j ∈ {0,1} ∀i, j , (1f)

x′i j ≥ 0 ∀i, j , (1g)

where ci j denotes the cost of satisfying the total demand
of client i from facility j. The main decisions are de-
scribed by binary variables x j ( j = 1,2, . . . ,m) equal 1 if
a facility is placed at site j and equal 0 otherwise. Ad-
ditional binary variables represent allocation decisions: x′i j
(i, j = 1,2, . . . ,m) is equal to 1 if the demand of client i is
satisfied by facility j and 0 otherwise. Due to lack of ca-
pacity restriction, each client will be assigned to the closest
facility, and therefore variables x′i j can be relaxed to contin-
uous variables. The auxiliary variable yi (1b) expresses the
cost of satisfying the demand of client i. Constraint (1c)
enforces that exactly n facilities are placed. Constraint (1d)
limits each client to be assigned only one facility and con-
straint (1e) ensures that the assignment is done to the ex-
isting facilities. Thus, constraints (1c)–(1g) define the set
of feasible solutions Q, which is mapped into the set of
attainable outcome (cost) vectors y by constraint (1b).
We want to obtain efficient solutions of problem (1) in
the sense of outcomes yi = fi(x) for i = 1,2, . . . ,m us-
ing the OWA operator. To define the OWA aggrega-
tion of a vector y = (y1,y2, . . . ,ym) more formally, let
us introduce the ordering map Θ : Rm → Rm such that
Θ(y) = (θ1(y),θ2(y), . . . ,θm(y)) satisfies θ1(y) ≥ θ2(y) ≥

. . . ≥ θm(y) and there exist a permutation τ of set I such
that θi(y) = yτ(i) for i = 1,2, . . . ,m. Then for a given pref-
erence weight vector w = (w1, . . . ,wm) with wi ≥ 0 for all i,
the OWA operator takes the form

Aw(y) =
m

∑
i=1

wiθi(y). (2)

Finally, we apply formula (2) to problem (1) and receive
the following optimization problem

min{Aw(y) : y = f(x), x ∈ Q}.

3. Optimization Models

At first we recall the LP formulation for the OWA opti-
mization [6] that can be used with appropriate monotonic
weights (non-increasing in case of minimization). Then we
extend it by mixed integer linear part, and thus making it
valid to any non-negative preference weights.

3.1. LP Model for OWA

The ordering operator Θ in the OWA aggregation is nonlin-
ear and, in general, it leads to complex optimization models.
However, in special case with non-increasing weights the
OWA aggregation is piecewise linear convex function and
can be minimized using the linear programming form [6].
This so-called deviational model exploits the linear pro-
gramming representation of the cumulated ordered out-
comes Θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y)), where

θ̄k(y) =
k

∑
i=1

θi(y) ∀k

expresses the total of the k largest outcomes. These quan-
tities can be determined as

θ̄k(y) = kθk(y)+
k−1

∑
i=1

(θi(y)−θk(y)) ∀k ,

where the k-th largest outcome θk(y) is treated as a refer-
ence value to which its deviations from greater outcomes
are added. Provided we introduce the explicit variables
dik for deviations, each θ̄k(y) for any given y ∈ Rm and
k = 1, . . . ,m can be found by solving the following LP prob-
lem:

θ̄k(y) = min
tk ,dik

(ktk +
m

∑
i=1

dik) , (3a)

s.t. dik ≥ yi − tk ∀i , (3b)

dik ≥ 0 ∀i . (3c)

Variable tk corresponds to k-th largest outcome (strictly
speaking in optimal solution θk+1(y) ≤ t∗k ≤ θk(y) for k =
1, . . . ,m− 1 and t∗m ≤ θm(y); and t∗k = θk(y) provided that
at most k−1 variables dik > 0).
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The ordered outcomes can be determined as differences
θk(y) = θ̄k(y)− θ̄k−1(y) for k = 2, . . . ,m and θ1(y) = θ̄1(y).
Hence the OWA aggregation ∑m

k=1 wkθk(y) with weights
wk can be replaced by ∑m

k=1 w′
kθ̄k(y), where w′

m = wm and
w′

k = wk −wk+1 for k = 1,2, . . . ,m−1. Therefore, as shown
in [6], in case of non-increasing and non-negative original
weights (w1 ≥ w2 ≥ . . . ≥ wm ≥ 0), the OWA optimization
problem can be formulated as follows:

min
tk ,dik,yi

m

∑
k=1

w′
k(ktk +

m

∑
i=1

dik) , (4a)

s.t. dik ≥ yi − tk ∀i,k , (4b)

dik ≥ 0 ∀i,k , (4c)

y = f(x), x ∈ Q . (4d)

3.2. Hybrid Model for OWA

In LP formulation (4) we minimize the upper bound of
function ktk + ∑m

i=1 dik for each k = 1,2, . . . ,m. We then
multiply these bounds by modified weights w′

k in the ob-
jective function (4a). If original weights wk do not satisfy
monotonicity condition (non-increasing), some weights w′

k
are negative and then the problem (4) is unbounded. To
make it valid for general case, we need to apply a lower
bound for function ktk +∑m

i=1 dik.
The cumulative sum of the k-th largest outcomes θ̄k(y) can
be determined in a similar way like in (3) by using a lower
bound of function ktk + ∑m

i=1 dik. However, it requires bi-
nary variables. For any y∈Rm and k = 1, . . . ,m the problem
is as follows:

θ̄k(y) = max
ρk,t′k ,d

′
ik,zik

ρk , (5a)

s.t. ρk ≤ kt ′k +
m

∑
i=1

d′
ik , (5b)

t ′k +d′
ik ≤ yi +M(1− zik) ∀i , (5c)

d′
ik ≤ Mzik ∀i , (5d)
m

∑
i=1

zik = k , (5e)

zik ∈ {0,1} ∀i . (5f)

For any k = 1, . . . ,m there are m binary variables zik. They
determine which constraints (5c) are relaxed by adding
large constant M and which variables d ′

ik are non-zero
according to (5d). If zik = 1, then for respective i con-
straint (5c) becomes active and d ′

ik may take positive values.
Thus, according to maximization, t ′k + d′

ik becomes equal
to yi. Solving this problem amounts to selecting k vari-
ables zik (i = 1, . . . ,m), which take value 1 in order to make
the respective sums t ′k +d′

ik as large as possible. Therefore,
in optimal solution the value 1 is taken by k variables zik
that correspond to the k largest outcomes yi. Variable t ′k is
not greater than k-th largest outcome due to k active con-
straints (5c); and k respective variables d ′

ik complete t ′k to
the k largest outcomes.

Formulation (5) can be simplified by removing the binary
component from formula (5c). The character of t ′k changes
a little bit, but the optimal value still equals the sum of
the k largest outcomes.

Proposition 1: For any given vector y ∈ Rm, the sum of
its k largest components θ̄k(y) can be found as the optimal
value of the following MILP problem:

θ̄k(y) = max
ρk,t′k ,d

′
ik,zik

ρk , (6a)

s.t. ρk ≤ kt ′k +
m

∑
i=1

d′
ik , (6b)

t ′k +d′
ik ≤ yi ∀i , (6c)

d′
ik ≤ Mzik ∀i , (6d)
m

∑
i=1

zik = k , (6e)

zik ∈ {0,1} ∀i . (6f)

Proof: In order to proof the proposition, we will
show that the optimal value of problem (6) is the same
as that of problem (5). First of all, we may notice that
problem (6) is a restriction of problem (5). Every feasible
solution of (6) is also a feasible solution of (5). Consider
any feasible solution of (5). Let I1

k = {i : zik = 1} be the
subset of i ∈ I for which zik = 1 and respectively I0

k = I \ I1
k .

For each i ∈ I1
k , constraint (5c) simplifies to (6c), and thus

any feasible solution of (5) satisfies (6c) for i ∈ I1
k . If fea-

sible solution of (5) additionally satisfies (6c) for i ∈ I0
k ,

then it is also a feasible solution of (6). Otherwise, there
is some number s of i ∈ I0

k for which t ′k +d′
ik > yi. Accord-

ing to (5d), as d′
ik ≤ 0 for i ∈ I0

k then t ′k > yi for some s
of i ∈ I0

k . However, each such solution can be replaced by
equally good or better alternative, which violates at most
s−1 constraints (6c) for i ∈ I0

k . We can determine

δ = min
i∈I0

k ,

yi<t′k

(t ′k − yi) , (7)

replace t ′k by t̆ ′k = t ′k − δ and d′
ik by d̆′

ik = d′
ik + δ for these

i’s for which d̆′
ik ≤ Mzik is satisfied. It holds at least for all

i ∈ I1
k as follows

d̆′
ik = d′

ik +δ ≤ yi − t ′k +δ by (5c) ,

≤ yi −θm(y) by (7) ,

≤ θ1(y)−θm(y) ≤ M .

So d̆′
ik ≤ Mzik is satisfied at least for i ∈ I1

k , and thus at least
r ≥ k variables d′

ik can be replaced by d̆′
ik, obtaining

kt̆ ′k +
m

∑
i=1

d̆′
ik = kt ′k +

m

∑
i=1

d′
ik +(r− k)δ ≥ kt ′k +

m

∑
i=1

d′
ik.

It means that for any feasible solution of (5), reducing the
number of violated constraints (6c) for i ∈ I0

k , we can ob-
tain not worse corresponding feasible solution of (6). In
conclusion, the optimal value of problem (6), similarly like
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the optimal value of problem (5), determines the sum of
the k largest components of any given vector y ∈ Rm.

From proposition (1), we can also conclude that for any
k = 1, . . . ,m, one of the optimal solution of problem (6) is
one with t ′∗k = θm(y) and d′∗

ik = yi −θm(y) for these i’s that
correspond to the k largest outcomes yi, and d′∗

ik = 0 for the
rest of i’s. In general, the following holds:

Lemma 2: For any given vector y∈Rm and any given value
ζ ≤ θm(y), there exists the optimal solution of problem (6)
with t ′∗k = ζ .

Proof: As stated above, problem (6) has the optimal
solution with t ′∗k = θm(y). We will show that the value of
the objective function is constant for t ′k ≤ θm(y) for any
k = 1, . . . ,m. The objective function of problem (6) can be
expressed as

g(t ′k) = kt ′k + ∑
i∈I1

k

min(yi − t ′k,M)+ ∑
i∈I0

k

min(yi − t ′k,0) , (8)

where I1
k = {i : zik = 1} with |I1

k | = k and I0
k = I \ I1

k with
|I0

k | = m− k. For any given t ′k ≤ θm(y), provided that con-
stant M is large enough, function (8) can be simplified to

g(t ′k) = kt ′k + ∑
i∈I1

k

(yi − t ′k) = ∑
i∈I1

k

yi , (9)

and thus the value of the g(t ′k) is constant in the considered
interval.
Using problem (6), we can now propose the optimization
model of OWA for any weights wk ≥ 0, which is based on
function ktk +∑m

i=1 dik.

min
ρk,tk ,dik,t′k,d

′
ik,zik,yi

m

∑
k=1

w′
kρk , (10a)

p.o. ktk +
m

∑
i=1

dik ≤ ρk ∀k , (10b)

tk +dik ≥ yi, dik ≥ 0 ∀i,k , (10c)

ρk ≤ kt ′k +
m

∑
i=1

d′
ik ∀k , (10d)

t ′k +d′
ik ≤ yi ∀i,k , (10e)

d′
ik ≤ Mzik ∀i,k , (10f)
m

∑
i=1

zik = k ∀k , (10g)

zik ∈ {0,1} ∀i,k , (10h)

y = f(x), x ∈ Q . (10i)

Formulation (10) is a valid optimization model for OWA.
However, we do not need to use both lower and upper bound
for each k = 1, . . . ,m. We need constraints (10b) and (10c)
only for k for which w′

k ≥ 0. What is more important, we
need constraints (10d)–(10h) only for k for which w′

k < 0.
It significantly reduces the number of variables too. Vari-
ables tk, dik are defined only for w′

k ≥ 0, whereas t ′k, d′
ik and

zik only for w′
k < 0. Taking advantage of above observa-

tions, the OWA optimization problem takes the following
form:

min
ρk,tk ,dik,

t′k ,d
′
ik,zik,yi

m

∑
k=1

w′
kρk , (11a)

s.t. ktk +
m

∑
i=1

dik ≤ ρk ∀k;w′
k ≥ 0 , (11b)

tk +dik ≥ yi, dik ≥ 0 ∀i,k;w′
k ≥ 0 , (11c)

ρk ≤ kt ′k +
m

∑
i=1

d′
ik ∀k;w′

k < 0 , (11d)

t ′k +d′
ik ≤ yi ∀i,k;w′

k < 0 , (11e)

d′
ik ≤ Mzik ∀i,k;w′

k < 0 , (11f)
m

∑
i=1

zik = k ∀k;w′
k < 0 , (11g)

zik ∈ {0,1} ∀i,k;w′
k < 0 , (11h)

y = f(x), x ∈ Q . (11i)

It is clear now that problem (11) has hybrid structure and
consists of linear part with constraints (11b)–(11c), and
of mixed integer linear part with constraints (11d)–(11h).
The linear part, for w′

k ≥ 0, is in fact the LP prob-
lem (4). The mixed integer linear part is much more
computationally expensive. However, it is worth to notice
that the number of binary variables is proportional to the
number of negative weights w′

k. If we define this set as
K− = {k : w′

k < 0,k = 1, . . . ,m}, the total number of binary
variables equals |K−|m. Taking into account that preference
weights wk ≥ 0 and w′

m = wm, w′
k = wk−wk+1, the cardinal-

ity of set K− may be at most m−1. Therefore, it seems that
hybrid model can be an interesting alternative for other gen-
eral MILP formulations for OWA optimization, where the
number of binary variables is of order m2 independently of
problem type (for instance, models M1 and M2, compared
in [14]). On the other hand, here we have O(m2) addi-
tional continuous variables, whereas other MILP formula-
tions usually introduce O(m) continuous variables. More-
over, the formulation has more constraints – in both cases
the number of constraints is of order m2, but in our for-
mulation the proportional factor is greater. Due to these
observations, formulation (11) seems interesting for prob-
lems with small number of negative weights w′

k. It is es-
pecially true for trimmed mean problems, where only one
weight w′

k is negative. Trimmed mean problems are used
when we want to discard some of the largest and smallest
outcomes, and are ones of the most useful among problems
with non-monotonic weights.
To improve the computational efficiency of formula-
tion (11), we consider some simple valid inequalities for
the mixed integer linear part. From now on, we also as-
sume that the outcome vector is non-negative, i.e. y ≥ 0.
This is very general assumption that holds not only in lo-
cation problems but also in many others.
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Proposition 3: There exists an optimal solution of (11) that
satisfies the following constraints:

(i) non-negativity of d′
ik

d′
ik ≥ 0 ∀i,k;w′

k < 0, (12)

(ii) non-negativity of t ′k

t ′k ≥ 0 ∀k;w′
k < 0, (13)

(iii) non-decreasing order of binary variables zik for each i

zik ≤ zik′ ∀i,k;k ∈ {K− \max{K−}};k′ = suc(k),
(14)

where suc(k) = min{k′ : k′ ∈ K−∧k′ > k} is the suc-
cessor function within set K−.

Proof: There exists an optimal solution of (11) that
satisfies constraints (12)–(13) if for any k = 1, . . . ,m for
which w′

k < 0 there exists an optimal solution of (6) that
satisfies constraints (12)–(13). We will consider a specific
optimal solution of (6) for any k = 1, . . . ,m. To show con-
straint (14) holds, we will consider relation between optimal
solutions of (6) for different k,k′ = 1, . . . ,m (k′ > k).
Due to Lemma 2 for any y ∈ Rm and any value ζ ≤ θm(y),
there exists the optimal solution of (6) with t ′∗k = ζ . Since
we have assumed y ≥ 0, our consideration can be limited
to ζ ∈ [0,θm(y)]. Lets consider the optimal solution with
t ′∗k = θm(y). It follows directly that the optimal solution
satisfies (13). Then, for any k = 1, . . . ,m

d′∗
ik =

{

min(yi −θm(y),0) = 0 for i ∈ I0
k ,

min(yi −θm(y),M) = yi −θm(y) ≥ 0 for i ∈ I1
k ,

and the optimal solution satisfies (12).

Inequality (14) is defined only if |K−| ≥ 2. Due to formula
(9) of the objective function, we know that for any k, indices
i ∈ I1

k will correspond to k largest components of outcome
vector y. So, if yi is one of the k largest outcomes, then
z∗ik = 1. If we consider formulation (6) for the same y and
any k′ > k, it follows that yi is also one of the k′ largest
outcomes, and thus z∗ik′ = 1. The reverse implication is
analogous. If yi is not one of the k′ largest outcomes, then
it is not one of the k < k′ largest outcomes, and thus when
z∗ik′ = 0, it follows that z∗ik = 0. So, for the same y and
any k,k′ = 1, . . . ,m (k′ > k), the optimal solutions of (6)
satisfies inequality z∗ik ≤ z∗ik′ for any i = 1, . . . ,m. Thus, the
optimal solution of (11) with t ′∗k = θm(y∗) satisfies (14) for
all k ∈ K−.
We can conclude that there exists the optimal solution
of (11) that satisfies constraints (i)–(iii).

Formulation (6) can be further modified by reducing the
number of variables and simplifying some constraints.

Proposition 4: For any given vector y ≥ 0, the sum of its k
largest components θ̄k(y) can be found as the optimal value
of the following MILP problem:

θ̄k(y) = max
ρk,y′ik ,zik

ρk , (15a)

s.t. ρk ≤
m

∑
i=1

y′ik, (15b)

y′ik ≤ yi ∀i, (15c)

y′ik ≤ Mzik ∀i, (15d)
m

∑
i=1

zik = k, (15e)

zik ∈ {0,1} ∀i. (15f)

Proof: We will show that the optimal value of prob-
lem (15) is the same as that of problem (6).
By Lemma 2, we know that for any value ζ ≤ θm(y) there
exists the optimal solution of problem (6) with t ′∗k = ζ .
As y ≥ 0, we may set t ′k equal to any value from interval
[0,θm(y)], and the optimal value of problem (6) still equals
the sum of the k largest components of outcome vector y.
Let t ′k = 0 in problem (6), then we get problem (15), where
variables d′

ik are replaced by y′ik. This change in notation
follows the change in variables interpretation. Variables d ′

ik
stand for deviations of k largest outcomes from reference
value. When we set the reference value to 0, these variables
represent in fact the k largest outcomes.
In conclusion, the optimal value of problem (15), similarly
like that of problem (6), is equal to the sum of the k largest
components of outcome vector y.

Analyzing problem (15), we can see now that con-
sraints (15c) and (15d) form a linearization of formula

y′ik ≤ yizik ∀i.

We can use problem (15), similarly like problem (6), to
determine the sum of the k largest components of outcome
vector y for k for which w′

k < 0. The general model for the
OWA optimization is as follows:

min
ρk,tk,dik,
y′ik,zik,yi

m

∑
k=1

w′
kρk , (16a)

p.o. ktk +
m

∑
i=1

dik ≤ ρk ∀k;w′
k ≥ 0, (16b)

tk +dik ≥ yi, dik ≥ 0 ∀i,k;w′
k ≥ 0, (16c)

ρk ≤
m

∑
i=1

y′ik ∀k;w′
k < 0, (16d)

y′ik ≤ yi ∀i,k;w′
k < 0, (16e)

y′ik ≤ Mzik ∀i,k;w′
k < 0, (16f)

m

∑
i=1

zik = k ∀k;w′
k < 0, (16g)

zik ∈ {0,1} ∀i,k;w′
k < 0, (16h)

y = f(x), x ∈ Q. (16i)

Problem (16) is another version of hybrid model and in
comparison to (11) has slightly fewer continuous variables
(by the number of negative weights w′

k). The structure of
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Table 1
Problem types defined by the vector of preference weights w with respect to the number of clients m and the number

of facilities n (dae, bac denote the ceil and floor of a, respectively)

Type Name/description Weighting vector w

T1 k1 + k2-trimmed mean

(0, . . . ,0
︸ ︷︷ ︸

k1

,1, . . . ,1,0, . . . ,0
︸ ︷︷ ︸

k2

) k1 =
⌈ m

10

⌉
,

k2 =
⌈
n+ m

10

⌉

T2 Alternating 0’s and 1’s, beginning with 1 (1,0,1,0,1,0, . . .)

T3 Alternating 0’s and 1’s, beginning with 0 (0,1,0,1,0,1, . . .)

T4 Repeating the sequence (1,1,0) (1,1,0,1,1,0, . . .)

T5 Repeating the sequence (1,0,0) (1,0,0,1,0,0, . . .)

T6 From 1 increasing by 1 (1,2, . . . ,m−1,m)

T7
Ending with 3m and decreasing towards beginning
in a piecewise linear manner, k weights by 3, next k
weights by 2 and rest by 1

(. . . ,3m−5k−2,3m−5k−1, k =
⌊m

3

⌋

3(m− k)−2k, . . . ,3(m− k)−2
︸ ︷︷ ︸

k

,

3(m− k), . . . ,3(m−1)
︸ ︷︷ ︸

k

,3m)

constraints (16d) and (16e) is simpler than that of (11d)
and (11e), respectively.
For problem (16), we also consider an impact of valid in-
equality (14). The proof that it is a valid inequality for (16)
is analogous to that in Proposition 3.

4. Computational Tests

To investigate the computational performance of the pro-
posed formulations, we have applied them to various loca-
tion problems and compared their results. We have used
CPLEX solver to solve problems. The experimental scheme
has been analogous to that presented in [16]. We have
considered some parameters of location problems and have
defined the set of their possible values. Then we have
generated various testing instances as the combinations of
parameters’ values. We have taken into account the follow-
ing parameters: the number of sites (clients), the number
of facilities to be placed, and the type of problem defined
by the vector of preference weights.
The number of sites (clients) m determines the size of
the problem. Six different values are considered m ∈
{8,10,12,15,20,25}. The second parameter, the number
of facilities n, is defined as proportional to the problem
size, and the following cases are examined:

⌈m
4

⌉
,

⌈m
3

⌉
,

⌈m
2

⌉
and

⌈m
2 +1

⌉
, where dae is the smallest integer value

not smaller than a. The last parameter is the vector of
preference weights w, which defines the problem type (the
objective function) and determines the structure, and thus
the complexity of the problem. We consider seven prob-
lem types with non-monotonic or increasing weights, which
are defined in Table 1. In case of non-increasing weights,
our hybrid models simplify to LP formulation (4), which
performs much better than MILP models and was studied

for location problems in [14]. The trimmed mean problem
(T1) discard some of the largest and smallest outcomes and
is considered as a robust objective. Problem types T2–T5
are artificial and are mainly used to check the computa-
tional efficiency for very irregular preference weights. The
last two problem types, T6 and T7, represent increasing
weights and can be treated as extended version of difficult
min-min problems.
We have generated 15 cost matrices, for each size case,
with zero on the main diagonal (Free Self-Service, FSS)
and remaining entries randomly generated from a discrete
uniform distribution on the interval [1,100]. These matrices
have been combined with each combination of parameters
with the corresponding problem size. Thus, we have re-
ceived 15 problem instances differing in cost matrices for
each combination of the number of sites, the number of
facilities and the problem type. To solve them, we have
applied the CPLEX 12.4 from IBM ILOG CPLEX Opti-
mization Studio [17]. Computation have been carried out
on a machine with the Intel Core2 Duo 2.53 GHz (mobile)
and 4 GB of RAM. A time limit of 600 s has been imposed
on maximum solution time for a single problem instance.
We have investigated the following formulations:

• MH11 – basic problem (11),

• MH12 – problem (11) with inequality (12),

• MH13 – problem (11) with inequality (13),

• MH14 – problem (11) with inequality (14),

• MH15 – problem (11) with inequalities (13), (14),

• MH21 – basic problem (16),

• MH22 – problem (16) with inequality (14).
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Table 2
Average solution times of hybrid models and one of the most efficient general previous MILP model M1

(upper index depicts the number of instances out of 15 that reached the limit of 600 s;
“–” means that all 15 instances reached the time limit)

Problem CPU[s]
Type m n M1 MH11 MH12 MH13 MH14 MH15 MH21 MH22

T1

8

2 0.35 0.05 0.05 0.06 0.05 0.06 0.08 0.08
3 0.29 0.05 0.05 0.07 0.05 0.07 0.07 0.06
4 0.15 0.05 0.05 0.06 0.05 0.06 0.06 0.06
5 0.06 0.05 0.04 0.05 0.05 0.05 0.05 0.05

10

3 1.85 0.08 0.09 0.15 0.09 0.15 0.15 0.15
4 1.33 0.09 0.09 0.14 0.09 0.14 0.13 0.13
5 0.67 0.11 0.11 0.11 0.11 0.12 0.11 0.11
6 0.28 0.10 0.10 0.10 0.10 0.10 0.09 0.10

T2

8

2 0.09 52.48 51.39 10.22 3.97 2.69 10.98 2.62
3 0.07 53.16 54.28 7.02 3.63 2.39 7.58 2.10
4 0.04 50.14 53.76 5.06 3.61 1.48 5.74 1.38
5 0.04 52.74 52.91 4.68 4.26 1.23 4.91 1.20

10

3 0.32 – – – 167.56 103.15 – 108.89
4 0.15 – – – 160.29 83.34 – 96.73
5 0.12 – – – 157.81 72.70 – 82.83
6 0.06 – – – 152.06 56.88 – 58.92

T3

8

2 0.28 148.20 151.27 18.73 6.36 2.53 19.88 2.73
3 0.20 177.86 189.57 14.01 6.42 2.02 14.05 1.88
4 0.14 170.15 199.93 11.29 6.65 2.25 11.41 2.17
5 0.06 163.80 159.00 8.66 6.44 1.32 7.13 1.30

10
3 0.94 – – – 294.08 91.91 – 96.32
4 0.84 – – – 321.08 84.96 – 90.87
5 0.51 – – – 313.26 72.61 – 74.96
6 0.39 – – – 297.26 68.36 – 70.64

T4

8
2 0.10 1.41 1.72 0.21 0.68 0.19 0.19 0.18
3 0.09 2.06 2.29 0.19 0.63 0.19 0.17 0.17
4 0.05 1.71 1.81 0.13 0.53 0.13 0.13 0.12
5 0.03 1.50 1.49 0.11 0.53 0.11 0.11 0.11

10

3 0.24 1346.19 2393.42 12.78 22.12 6.25 10.21 6.11
4 0.18 1327.38 1364.44 6.66 20.24 4.35 6.34 4.61
5 0.13 310.17 260.00 5.54 23.00 3.08 4.32 3.49
6 0.07 207.92 226.05 2.03 19.51 1.53 1.93 1.63

T5

8

2 0.10 2.57 2.85 0.83 0.80 0.65 0.76 0.62
3 0.08 2.33 2.30 0.93 0.69 0.58 0.89 0.59
4 0.06 2.17 2.40 0.64 0.63 0.49 0.62 0.45
5 0.03 1.90 1.99 0.33 0.54 0.33 0.38 0.32

10

3 0.28 3416.97 2416.28 45.31 25.34 11.81 43.93 12.12
4 0.15 1287.87 311.06 36.27 24.31 9.77 31.67 9.37
5 0.12 291.73 289.73 34.71 25.30 9.44 30.62 9.10
6 0.09 293.54 310.41 26.53 24.76 8.06 27.82 7.68

T6

8

2 0.30 – – 0.28 8.88 0.22 0.26 0.21
3 0.22 – – 0.18 14.44 0.15 0.16 0.14
4 0.11 – – 0.11 19.69 0.09 0.09 0.09
5 0.04 – – 0.06 24.00 0.05 0.05 0.04

10

3 1.81 – – 2.68 4490.57 0.68 3.36 0.66
4 0.79 – – 0.65 14593.68 0.40 0.54 0.35
5 0.46 – – 0.30 – 0.21 0.26 0.19
6 0.16 – – 0.15 – 0.13 0.13 0.11

T7

8

2 0.12 12536.72 11528.55 0.13 3.47 0.11 0.12 0.10
3 0.08 – – 0.09 7.50 0.07 0.06 0.08
4 0.04 – – 0.05 11.19 0.05 0.05 0.05
5 0.03 – – 0.03 15.50 0.03 0.03 0.03

10

3 0.42 – – 0.38 195.78 0.32 0.52 0.27
4 0.19 – – 0.18 1361.19 0.17 0.16 0.14
5 0.10 – – 0.09 7518.86 0.09 0.09 0.09
6 0.05 – – 0.07 14589.66 0.06 0.06 0.06
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Table 3
Average solution times of the most efficient hybrid

and previous MILP models for selected problem types
(upper index depicts the number of instances

out of 15 that reached the limit of 600 s;
“–” when all 15 instances reached the time limit)

Problem CPU[s]

Type m n M1 MH22

T1

12

3 11.80 0.64
4 7.86 0.39
6 2.11 0.37
7 1.33 0.33

15

4 162.75 0.90
5 94.90 0.81
8 11.70 0.77
9 5.56 0.73

20

5 – 2.47
7 – 2.31
10 12551.73 3.03
11 4305.99 2.93

25

7 – 24.37
9 – 32.14
13 – 43.77
14 – 44.54

T6

12

3 11.79 3.64
4 10.95 1.61
6 1.77 0.46
7 0.54 0.20

15

4 156.83 37.00
5 101.02 7.54
8 11.19 0.91
9 3.05 0.54

20

5 – 13574.93
7 – 5297.77
10 – 10.45
11 7476.59 5.67

25

7 – 14595.39
9 – 12532.15
13 – 64.75
14 – 37.10

T7

12

3 1.47 1.29
4 0.71 0.46
6 0.20 0.16
7 0.10 0.12

15

4 5.59 6.18
5 2.61 1.85
8 0.27 0.53
9 0.15 0.35

20

5 100.52 8356.07
7 29.00 173.42
10 4.97 4.08
11 1.71 3.12

25

7 8480.75 11480.85
9 3252.69 4277.26
13 24.44 14.56
14 12.89 8.78

4.1. Results

Table 2 presents solution times for instances with 8 and
10 locations. Solution times for model MH1 vary widely
between different types of problem and inclusion of some
valid inequalities. In general, valid inequalities allow to
improve the performance and reduce the solution time. An
exception is inequality (12), which hardly influence the
computational performance. Inequalities (13) and (14) in
most cases shorten the solution time of one or two orders of
magnitude. The best results are obtained for trimmed mean
problems (T1), and it is consistent with our expectation. In
this case, valid inequalities do not influence the solution
time significantly. In fact, inequality (14) is not defined for
T1 problems as there is only one negative weight w′

k. The
valid inequalities significantly improve results for problems
T2–T5. However, the solution times for these problems are
much longer than for other types. Interesting situation is for
problems T6 and T7, which in theory are the most difficult
as there are the maximum number of negative weights w′

k.
Basic model MH11, indeed, performs very poorly. How-
ever, formulations with valid inequality (14) and especially
with (13) achieve much shorter solution times, even of three
orders of magnitude.
Analyzing model MH2, we see that its basic formulation
MH21 performs much better than basic formulation MH11
of model MH1. In fact, basic formulation MH21 per-
forms similar to formulation MH13, and formulation MH22
achieves similar solution times to formulation MH15. Gen-
erally, formulations MH15 and MH22 seem to be the best
ones from examined hybrid models.
We have also compared the hybrid models with one of the
most efficient MILP model for the OWA optimization from
literature (see model M13 from [14]). Table 2 shows clearly
that the hybrid models perform much worse for problem
types T2–T5. On the other hand, for problem types T6
and T7 they obtain similar or shorter solution times. For
trimmed mean problem (T1) the results show the advan-
tage of hybrid models even more (formulation MH22). To
investigate it a little more, Table 3 presents the results for
problems T1, T6 and T7 with 12–25 locations. It reveals
that hybrid model has much better performance for trimmed
mean problems, presents the substantial advantage for T6
problems and has similar efficiency for T7 problems. So
the hybrid models are specially useful for trimmed mean
problems, which seems to be one of the most important
for practical application from all non-monotonic problem
types, to which linear model can not be applied.

5. Conclusions

The paper analyzes the OWA optimization models for
discrete location problems. The OWA operator provides
a parametrized preference model that generalizes many ob-
jective functions and allows to obtain impartial solution,
what is important when we consider independent clients.
Unfortunately, the ordering operator hinders the problem
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increasing its computational complexity. Therefore, the ef-
ficient formulations for OWA optimization are sought. We
introduce general MILP models that can be applied for any
non-negative preference weights. It extends the LP for-
mulation, adding the mixed integer part. We also propose
some simple valid inequalities to improve the computational
performance. The results show the advantage of proposed
new hybrid formulations over other general MILP models
from literature for some specific problem types. The great-
est improvement is obtained for trimmed mean problems.
This is particularly important as trimmed mean problems
seems to be one of the most useful in practical applications
from all other problem types with non-monotonic prefer-
ence weights, which can not be solved by LP model. On the
other hand, hybrid models perform very poorly for prob-
lem types T2–T5. However, these types represent rather
artificial objective functions (preferences) with little practi-
cal value. The proposed models perform surprisingly well
for problems with increasing weights, which require the
largest number of binary variables. For example, consid-
ering problems T6, the hybrid models obtain much shorter
solution times than previous general formulations.
The presented new models shorten solution times for some
specific problems, but there is still room for improvement.
As mentioned before, presented formulations are general
and can be applied to various multicriteria problems (for
MH2 and inequality (13) we only require the non-negativity
of the outcomes). Some modifications and valid inequal-
ities that exploit specific problem structure (such as free
self-service assumption) may increase the computational
efficiency.
As the location problem with OWA objective is an NP-hard
problem, heuristic methods seems a reasonable approach.
Despite this fact, the literature on approximation algorithms
for these problems is rather limited. Thus, it is also the area
where we are currently carrying out some research.
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