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Abstract— The main problem of batch back propagation

(BBP) algorithm is slow training and there are several pa-

rameters need to be adjusted manually, such as learning rate.

In addition, the BBP algorithm suffers from saturation train-

ing. The objective of this study is to improve the speed up

training of the BBP algorithm and to remove the saturation

training. The training rate is the most significant parameter

for increasing the efficiency of the BBP. In this study, a new dy-

namic training rate is created to speed the training of the BBP

algorithm. The dynamic batch back propagation (DBBPLR)

algorithm is presented, which trains with adynamic training

rate. This technique was implemented with a sigmoid func-

tion. Several data sets were used as benchmarks for testing

the effects of the created dynamic training rate that we cre-

ated. All the experiments were performed on Matlab. From

the experimental results, the DBBPLR algorithm provides su-

perior performance in terms of training, faster training with

higher accuracy compared to the BBP algorithm and existing

works.

Keywords— artificial neural network (ANN), batch back prop-

agation algorithm, dynamic training rate, speed up training,

accuracy training.

1. Introduction

The batch back propagation (BBP) algorithm is commonly

used in many applications, including robotics and automa-

tion. It has been used successfully in neural network train-

ing with a multilayer feed-forward network [1], [2]. The

BP algorithm led to a tremendous breakthrough in the ap-

plication of multilayer perceptions [3]. This method has

been applied successfully in applications in many areas,

and has an efficient training algorithm for the multilayer

perception [4], [5]. Gradient descent is commonly used to

adjust the weight through a change the error training, but

it is not guaranteed to find the global minimum error, be-

cause the training is slow and converges easily to a local

minimum [6]–[8].

The main problem of the BP algorithm is slow training; it

requires a long learning time to obtain a result and there

are several parameters that need to be adjusted manually,

with highest saturation training [9], [10].

Current research on solving the slow training of the back-

propagation algorithm is focused on the adaptation of pa-

rameters like the training rate that controls the weight ad-

justment along the descent direction [11]. We have im-

proved the speed of the back propagation algorithm through

adapting the training rate [12]. A new algorithm uses the

square error function with a penalty for escaping from lo-

cal minima. The weight is updated beside the penalty and

the relationship between the training rate and penalty. The

training rate is a fixed learning rate at 0.013 and the penalty

parameter is set as 0.001. The results are compared with

(standard back propagation) SBP.

The remaining portion of this paper is organized as fol-

lows. In Section 2 related work is presented. Section 3

presents proposed methods, while Section 4 shows experi-

mental results. Section 5 covers discussion to validate the

performance of the improved algorithm. Finally, Section 6

contains the conclusions.

2. Related Works

Abbas in [13] proposed a novel back propagation algorithm

of ANN NBPNN that has a self-adaptive training rate. The

experimental results show that NBPNN gave a more accu-

rate result than the BP algorithm. In [14] a specific penalty

to obtain the proportion of the norm of the weight or to

prove the boundedness of the weights in the network train-

ing process is presented. The learning rate is set by an equa-

tion to be a small constant or an adaptive series. The initial

weight is chosen in the range [−0.5,0.5]; and the training

rate is fixed to be a small constant: 0.05 or an adaptive

series. The penalty factor is set as 0.001. The results show

better convergence compared to existing work.

Authors in [15] improved the batch BPAP algorithm

through their proposed dynamic training rate with a penalty.

The structure of the algorithm is 2:2:1, using the sigmoid

as the activation function. The weight was updated in

the batch BPAP algorithm with bounded during training.

From the experimental result, BPAP reaches a global min-

imum after the 1000th iteration. [16] provides the dynamic

BP algorithm for training with a boundary. In this case,
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the weight is updated under the effect of this boundary.

The sigmoid function is used as the activation function.

The boundary helps the BP algorithm for control of the

weight update.

3. The Proposed Method

The data set is very important for verification to improve

the BBP algorithm. In this study, all data are taken from

UCI Machine Learning Repository [17].

3.1. Neural Network Model

The proposed ANN model is a three-layer neutral network

that has an input layer, hidden layer and output layer.

The input layer is considered to be {X1,X2, . . . ,Xi}, which

represents the nodes. The nodes depend on the data types

or attributes. The hidden layer is made of two layers

of four nodes. The output layer is made of one layer

with one neuron. Three biases, two of them, which is

denoted by u0j, v0k and w0r. Finally, the sigmoid function

is employed as an activation function, which is linear for

the output layer [18]. The neural network can be defined

as I, T, W, A, where I denotes the set of input nodes

and T denotes the topology of NN, which covers the

number of hidden layers and the number of neurons. The

set of weights by the activation function is as follows:

Lh – first hidden layer for neuron h, h = 1, . . . , q,

LLk – second hidden layer for neuron j, j =
1, . . . , p,

Yr – output layer for neuron r,
uih – the weight between neuron I in the put year

and neuron h in the hidden layer,

u0h – the weight of the bias for neuron j,
vhj – the weight between neuron h from hid-

den layer z and neuron j from the hidden

layer LL,

v0j – the weight of the bias for neuron j,
wjr – the weight between neuron k from the hid-

den layer LL and neuron r from the output

layer L,

w0r – the weight of the bias for neuron r from the

output layer,

∆w – the difference between the current and new

value in the next iteration,

γ – the manual of training rate,

γdmic – the dynamic training rate,

|e| – an absolute value of the error training,

BBP – batch back propagation algorithm,

DBBPLR – dynamic batch back propagation algorithm

with dynamic training rate.

3.2. Dynamic Training Rate

One way to escape the local minimum and save training

time in the BBP algorithm is by using a large value of γ

in the first training. On the contrary, a small value of γ
leads to slow training, but a smaller value of γ leads to the

BBP algorithm having a slow convergence [19], [20]. Even

a large γ is unlikely for training the BBP algorithm. The

weight update between neuron k from the output layer and

neuron j from the hidden layer is as follows:

∆wjk(t +1) = wjk(t)− γ
∂E

∂Wjk(t)
, (1)

where ∆wjk(t) is a weight change, the weight is updated for

each epoch from Eq. 1, and slow training or fast training

depends on a parameter that affects the updating of the

weight. To enhance the BBP algorithm, which is given by

the Eq. 1, to avoid the local minima and to avoid saturation

training, we created the dynamic training rate:

γdmic = sec(Yr)+(1+ k)|e| , (2)

where k is an average of the activation function, in this

study is a sigmoid function.

The main idea is to keep the value of dynamic training rate

positive for every epoch, to avoid the vibration of the value

of training error e. We substitute γdmic from Eq. 2 into

Eq. 1 to obtain:

∆wjk(t +1) = wjk(t)−
[

sec(Yr)+(1+ k)|e|
] ∂E

∂Wjk(t)
. (3)

The weight update is automatic for every layer under the

effect of the dynamic training rate γdmic.

3.3. DBBPLR Algorithm

There are three stages of training BBP algorithm: forward

phase, backward phase and feedback phase. In the feed-

forward phase, each input unit xi receives an input signal xi
and broadcasts this signal to the next layer until the output

layer of the system. The backward pass phase is starting

when the output of the last hidden layer reaches to end step

then the start. The goal of the BBP algorithm is to get

the minimum error training between the desired output and

actual data, the all steps recorded as follows:

er =
n

∑
r=1

(tr −Yr) . (4)

The local gradient for the output derivative of the activation

function of Y is:

er = er f ′(Y−inr) f ′(Y−inr) = Y−inr(1−Y−inr) . (5)

The weight correction term, used to update wjr later is:

∆wjr = −
[

sec(Yr)+(1+ k)|e|
]

δrYYj . (6)

The bias correction term, used to update w0r later is:

∆w0r = −
[

sec(Yr)+(1+ k)|e|
]

δr , (7)
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sending δr to the hidden units (YYj, j = 1, . . . , p) in the

layer above we obtain:

δ−inj =
m

∑
r=1

δrwjr . (8)

The local gradient for the hidden layer (YYj):

δj = δ−inj f ′ (YY−inj) . (9)

the weight correction term, used to update vhj is:

∆vhj = −
[

sec(Yr)+(1+ k)|e|
]

δjYh . (10)

The bias collection term to update v0j later:

∆v0j = −
[

sec(Yr)+(1+ k)|e|
]

δj , (11)

by sending δj to the hidden unit (Lh, h = 1, . . . , a) in the

layer above we obtain:

δ−inh =
b

∑
j=1

δjvhl . (12)

The local gradient of the hidden layer Lh:

δh = δ−inh f ′(L−inh), f ′(L−inh) = L−inh (1−L−inh) . (13)

The weight correction:

∆uih = −
[

sec(Yr)+(1+ k)|e|
]

δhxi , (14)

and collate the bias weight corrective term used to up-

date u0h:

∆u0h = −
[

sec(Yr)+(1+ k)|e|
]

δh . (15)

In feedback phase all the layers are adjusted simultaneously.

The weight update is as follows: For each output layer

j = 0,1,2, . . . , p, r = 1, . . . , m:

wjr(t +1) = wjr(t)+
[

sec(Yr)+(1+ k)|e|
]

δrLLj . (16)

For bias:

w0r(t +1) = wjr(t)+
[

sec(Yr)+(1+ k)|e|
]

δr . (17)

For each hidden layer LLj , h = 0, . . . , q, j = 1, . . . , p:

vhj(t +1) = vhj(t)+
[

sec(Yr)+(1+ k)|e|
]

δjYh . (18)

For bias:

v0j(t +1) = v0j(t)+
[

sec(Yr)+(1+ k)|e|
]

δj . (19)

For each hidden layer Lh, i = 0, . . . , n, h = 1, . . . , q:

uih(t +1) = uih(t)+
[

sec(Yr)+(1+ k)|e|
]

δhxi . (20)

For the biases:

uih(t +1) = uih(t)+
[

sec(Yr)+(1+ k)|e|
]

δh . (21)

3.4. Implementation DBBPLR Algorithm

The BBP algorithm was implemented with a fixed value of

the training rate from 0 to 1, and DBBPLR trained with the

dynamic function of the training rate. There are no theo-

ries to determine the value of the limited error or condition.

Anyway, the range of the limited error affects the training

time [21]. In [22] the stop training is set by l to 10−5. The

convergence rate is very slow. It takes 500,000 epochs.

In [23] the limited error by less than 3 ·10−4. The conver-

gence rate was very slow. It took 10,000 epochs.

0 : Read the initial weights.

1 : Read the number of neurons in the hidden layer.

2 : Read the pattern XOR 2 bit, obtain the target and

limit the error E to 10−6.

3 : Read the dynamic rate.

4 : While MSE > limited error, repeat steps 4–15.

5 : For each training pair, repeat steps 5–15.

6 : Calculate the error training using Eq. 4.

7 : Compute the error signal δk at neuron k from Eq. 5.

8 : Calculate the weight correction for each ∆wjr and

bias ∆w0r using Eq. 6 and 7.

9 : Send δk to LLj and calculate the error signal δ−inj and

the local gradient of the error signal δj using Eq. 8

and 9.

10 : Calculate the weight correction for each ∆vhj and the

bias ∆v0j using Eq. 10 and 11.

11 : Send δj to Lh and calculate the error signal δ−inh and

the local gradient of the error signal δh, using Eq. 12

and 13.

12 : For layer Lh calculate the weight correction for

each ∆uih and bias ∆u0h using Eq. 14 and 15.

13 : Update weight for each layer:

• output layer Yr using Eq. 16 and 17,

• hidden layer LLj using Eq. 18 and 19,

• hidden layer Lh using Eq. 20 and 21.

14 : Calculate the error training, time training and accu-

racy training.

15 : Test the conditional.

4. The Results

The accuracy training is measured by the following [25]:

Accuracy =
1− absolut(Ti−Oi)

UP−LW
·100 [%] ,

where UP and LW are the upper bound and lower bound of

activation function. Because the sigmoid function is used,

the UP = 1 and LW = 0.
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4.1. DBBPLR Algorithm Using XOR Problem

We run 10 experiments with DBBPLR algorithm given in

Eq. 2 in Matlab 2012a. The experimental results are shown

in Table 1.

Table 1

Average the performance of DBBPLR algorithm

with XOR

Experiments Time [s] Epoch
Accuracy

of training

Average 8.119 4426 0.9847

St. dev. 0.6614 0 1.112 ·10−16

As shown in Table 1 the back propagation algorithm en-

hances the performance of the training, and also reduces the

training time. The average time of training is t = 8.119 s

with the average epoch is 4426. The dynamic training rate

has highest effects for increasing the accuracy of the train-

ing, whereas the average of accuracy training is 0.9807, it

is close to 1. The training is shown in Fig. 1.

Fig. 1. Training curve for the DBBPLR algorithm.

The weight does not change before 1500 epochs, meaning

that the DBBPLR algorithm is saturated, after which the

training curve converges quickly to obtain the minimum

error.

4.2. BBP Algorithm Using XOR

The simulation result of the BBP algorithm, given in Eq. 1

with trial or manual values for each training rate is tabulated

in Table 2. The best performance of the BBP algorithm is

achieved at γ = 0.5 when the training time is 35.7590 s.

The worst performance of the BBP algorithm is achieved

at γ = 0.034.

Meanwhile for Fig. 2 one can see that the BBP algo-

rithm has the highest saturation training because the weight

training slightly changes until 6,000 epoch and then starts

to change.

Table 2

Average the performance of BBP algorithm with XOR

γ Time [s] Epoch

0.1 193.7690 86954

0.2 215.4940 43310

0.3 103.1070 28988

0.4 91.4450 21894

0.5 35.7590 17665

0.6 57.7380 14858

0.07 330.2740 124845

0.08 311.1590 109017

0.09 212.3080 96745

0.034 646.9530 260273

Average 219.8006 80455

St. dev. 171.4614783 71506.58607

Fig. 2. Training curve of the BBP algorithm.

4.3. DBBPLR Algorithm with Balance Training Set

The balance data set is one of the best-known databases in

pattern recognition. The data set has 625 patterns, which

are used for training, and 375 patterns used for testing. Ten

experiments were performed. The experimental results are

given in Table 3.

The average training time is 11.284 s with 144 epochs.

The average of the training accuracy is 0.999, it is close to

one. This high accuracy indicates that the dynamic training

rate helps the BBP algorithm to remove saturation training,

to obtain faster training and to reach the global minimum

training of the balance training set.
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Table 3

The training performance of DBBPLR algorithm

with balance

Experiments Time [s] Epoch
Accuracy

of training

Average 11.284 144 0.999

St. dev. 0.925871 0 0

The DBBPLR algorithm has a flat spot until 600 epochs.

After 600 epochs, the training curve convergence reduces

the error training quickly. This observation means that the

formulae created help the DBBPLR algorithm to reach the

global minimum after 50 epochs.

Fig. 3. Training curve of DBBPLR algorithm with the balance

testing set.

4.4. Average the Performance of BBP Algorithm with

Balance Training

The performance was tested using 375 patterns as a form

of training. The experiments result is given in Table 4.

The average training time is in the interval 30.9480 ≤ t ≤
431.8660 s, with 30.9480 s as the minimum training time

and 431.8660 s as the maximum training time. The best

performance of the BBP algorithm is achieved at γ = 0.08,

whereas the average training time is 30.9480 s. The worst

performance of the BBP algorithm is achieved at γ = 0.01.

The BBP algorithm suffers the highest saturation when γ
is 0.01.

4.5. DBBPLR Algorithm With Balance Testing Set

Table 5 shows results of testing the DBBPRL algorithm

using the balance data testing set. The dynamic approach

for training rate reduces the time required for training and

Table 4

Average the performance of BBP algorithm with XOR

γ Time [s] Epoch

0.01 431.8660 1907

0.02 105.5980 964

0.33 68.8110 655

0.045 55.5870 453

0.05 44.2000 414

0.068 43.7580 324

0.07 45.6230 317

0.08 30.9480 288

0.09 34.2550 258

Average 95.627 620

St. dev. 120.767 501.87

enhances the convergence of the time training. The average

training time is 13.879 s at an average epoch of 273.

Table 5

Average the performance of DBBPLR algorithm

with balance data testing set

Experiments Time [s] Epoch
Accuracy

of training

Average 13.879 273 0.9963

St. dev. 0.570648 0 0

The training curve at approximately 10–50 epochs is

a straight line with a flat spot, which means that the weight

does not change for each epoch. In addition, the curve train-

ing begins to fall quickly.

Fig. 4. Curve training of DBBPLR algorithm with the balance

training set.

86



Dynamically-adaptive Weight in Batch Back Propagation Algorithm via Dynamic Training Rate for Speedup and Accuracy Training

4.6. BBP Algorithm with Balance Testing Set

The BBP algorithm was tested using 250 patterns. The re-

sults are given in Table 6.

Table 6

The performance of training of BBP algorithm

with balance testing set

γ Time [s] Epoch

0.1 448.9520 4084

0.2 213.3720 2080

0.3 181.1260 1418

0.4 68.5580 1091

0.5 54.6830 896

0.6 45.2700 768

0.7 40.7950 676

0.8 38.8610 609

0.9 71.4690 556

1 61.7610 514

Average 122.4847 1269

St. dev. 123.1680033 1043.628459

The best performance of the BBP algorithm was at γ = 0.8,

where the BBP algorithm gives fast training at the same

point. The range of the average training time is 38.8610 ≤
t ≤ 448.9520 s. 38.8610 is a minimum training time;

448.9520 is the maximum.

4.7. DBBPLR Algorithm with Iris Training Set

The DBBPRL algorithm, given in Eq. 2, was run 10 times

in Matlab 2012a. The experimental results are given in

Table 7.

Table 7

Average the performance of DBBPLR algorithm

with iris training set

Experiments Time [s] Epoch
Accuracy

of Training

Average 1.637 121 0.99442

St. dev. 0.832629 60.93242 0.0004069

The average training time is 1.637 ≈ 2 s, with 121 epochs.

The average of the accuracy training is 0.99455 the value of

accuracy is close to 1. This high accuracy indicates that the

dynamic training rate helps the back-propagation algorithm

to remove saturation training, to obtain faster training and

to reach the global minimum training. The standard devi-

ation for time training is high value.

4.8. BBP Algorithm with Iris Training Set

The algorithm was tested with trial or manual values for

each training rate. The results are shown in Table 8. The

best performance of the BP algorithm is achieved at γ = 0.5
where the training time is 25.1360 s. The worst performance

is achieved at γ = 0.08 when the training time is 191.7140 s.

Table 8

The performance of training of BBP algorithm

with iris training set

γ Time [s] Epoch

0.1 74.2100 1458

0.2 25.1360 527

0.03 46.5020 1086

0.4 37.0980 861

0.06 75.9100 1890

0.7 29.0920 708

0.07 82.1590 2057

0.08 191.7140 4826

0.09 66.0930 1680

0.034 134.4380 3398

Average 71.43136364 1849

St. dev. 49.2239 1267.7981

4.9. DBBPLR Algorithm with Iris Testing Set

The performance of a proposed dynamic algorithm was

tested using balance data from the iris data set. The data

set has 150 patterns. 90 patterns were used for training and

60 patterns for testing. The structure of the algorithm con-

sidered is 4:2:1. The results are shown in Table 9.

Table 9

Average the performance of DBBPLR algorithm

with iris testing set

Experiments Time [s] Epoch Accuracy

Average 1.894 226 0.993

St. dev. 0.973410 98.77049154 0.002761159

The average training time is 1.894 s with average 226

epochs. The average of accuracy is 0.993. It indicates

that the dynamic training rate helps the BBP algorithm

to remove saturation training, to obtain faster training

and to reach the global minimum training of the balance

training set.

4.10. BBP Algorithm with Iris Testing Set

The performance was tested with 60 patterns (Table 10,

next page). The best performance of the BBP algorithm is
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achieved at γ = 0.1 whereas the training time is 21.2480 s.

The worst performance of the BBP algorithm is achieved

at γ = 0.5 when the training time is 108.355 s.

Table 10

The performance of training of BBP algorithm

with iris testing set

γ Time [s] Epoch

0.1 21.2480 674

0.2 96.8510 3068

0.03 51.7230 1534

0.04 85.2280 1487

0.5 108.355 2069

0.06 59.7260 1826

0.07 39.7960 1157

0.08 61.0250 1776

0.09 77.9630 2217

0.034 48.6180 1499

Average 65.0533 1731

St. dev. 25.5128 612.2052

5. Discussion on Performance

of the DBBPLR Algorithm

To verify or to validate the efficiency of the proposed al-

gorithm, the performance of the improved DBBPLR algo-

rithm was compared to the BBP algorithm based on certain

criteria such as MSE, average time of training, and the num-

ber of epochs. The performance of the dynamic algorithm

has been compared to the BBP algorithm in [26], [27]. The

speed up training is calculated using the formula [28]–[30]:

Speedup =
Execution time of BBP

Execution time of DBBPLR
.

The number of an epoch is considered as a criterion used

to compare the performance of the training. The compar-

ison between the DBBPLR algorithm and BBP algorithm

is presented in Table 11.

The dynamic algorithm provides superior performance over

the BBP algorithm for all data sets. The range of the

training time of the DBBPLR algorithm is 1.63686 ≤ t ≤
13.8791 s. This is a narrow interval, meaning that the

DBBPLR algorithm reaches the global minimum in a short

time and with few epochs. The range of training times of

the BBP algorithm is 65.0533 ≤ t ≤ 122.4847 s. This is

a wide interval, meaning that the BBP algorithm has a long

training time and a high level of training saturation. The

DBBPLR algorithm is ≈ 44 times faster than the BBP al-

gorithm at its maximum, and also the DBBPLR algorithm

is ≈ 8 times faster than the BBP algorithm at its minimum.

Table 11

Speed up the DBBPLR algorithm

versus BBP with various data set

Data
DBBPLR BBP

set

Average

time [s]

Average

epoch

Average

time [s]

Average

epoch

Speed

up

rate

XOR 8.119 4426 219.801 80455 27.074

Balance
11.284 144 95.627 620 8.474

training

Balance
13.879 273 122.485 1269 8.825

testing

Iris
1.637 121 71.431 1849 43.639

training

Iris
1.894 226 65.053 1731 34.351

testing

6. Conclusions

The DBBPLR algorithm gives superior training than BBP

algorithm for all data set, whereas, the DBBPLR is 44 times

faster than the BBP algorithm as maximum, and also the

DBBPLR algorithm is 8 times faster than BBP algorithm.

The dynamic training rate affected the weight for each hid-

den layer and output layer and eliminated the saturation

training in the BBP algorithm. The dynamic DBBPLR al-

gorithm provides superior performance of training, with

higher accuracy compared to the BBP algorithm.
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