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Abstract—Recent studies highlighted deep-penetration prop-

erties of inhomogeneous waves at the interface between a loss-

less and a lossy medium. Such waves can be generated by

means of radiating structures known as Leaky-Wave Anten-

nas (LWAs). Here, a different approach is proposed based

on the use of a lossy prism capable to generate an inhomo-

geneous wave when illuminated by a homogeneous wave. The

lossy prism is conceived and designed thinking of Ground-

Penetrating Radar (GPR). The results achieved by the lossy

prism will be compared with those obtained by means of a pre-

viously designed LWA that was created with the identical ob-

jective. The approach of this paper is purely theoretical, and

it aims at providing basic ideas and preliminary results useful

for an innovative LWA design.

Keywords—deep-penetration, Ground Penetrating Radar, leaky-

wave antennas.

1. Introduction

The penetration depth is a very important parameter in

many fields of applied electromagnetism, and particularly

in Ground Penetrating Radar (GPR) applications where

highly lossy media are often encountered. A typical tech-

nique to increase penetration employed in GPR surveys is

the reduction of the operating frequency: this implies lower

resolution [1]. An alternative approach, where applicable,

requires the employment of ground-coupled antennas [2].

Those antennas increase the coupling with the soil avoid-

ing the first reflection at the interface between air and soil

and potentially reducing the speed of a survey. Ground-

coupled antennas do not resolve the issue of sub-soil lossy

materials.

In this paper we propose a particular configuration of

a structure, named lossy prism, as an alternative technique

for increasing the penetration. The lossy prism is a two-

dimensional structure with two non-parallel, planar and in-

finite interfaces proposed in [3] that allows the generation

of inhomogeneous waves. The lossy prism, designed here,

radiates an inhomogeneous wave in air to meet the deep-

penetration theory requirements. The proposed structure

is therefore a preliminary input for the development of

an air-coupled antenna, which increases the penetration

depth without the need of reducing the operating frequency.

The deep-penetration condition was first defined in [4] for

a plane wave incoming from a lossless medium and im-

pinging on a separation surface with a lossy medium. This

condition occurs when the attenuation vector of the trans-

mitted wave in the lossy medium is parallel to the sepa-

ration surface between lossless and lossy media. Manda-

tory requirements for the deep-penetration condition are:

inhomogeneous incident wave incoming from a lossless

medium, oblique incidence, and an amplitude of the in-

cident phase vector (or attenuation vector) greater than or

equal to a given minimum value.

The article is divided into three main sections. In Section 1

a literature background on the deep-penetration effect is

illustrated. Section 2 describes the lossy prism design pro-

posed here and illustrates its potential in terms of penetra-

tion increase. Finally, conclusions are given in Section 3.

2. Overview on Previous Research

Activities

2.1. Deep-penetration Condition and Large Penetration

In a lossless medium two plane-wave solutions are possible:

a conventional homogeneous wave, with a real wave vector

k, and an inhomogeneous wave, where the wave vector k is

complex and can be expressed as a superposition of two real

vectors, the phase vector β and the attenuation vector α ;

those vectors must be orthogonal to each other [5].

Let us take an inhomogeneous wave incoming from a loss-

less medium, said medium 1, and impinging on a lossy

medium said medium 2, as illustrated in Fig. 1. The wave

vector of the incident wave is k1 = β
1
− jα1 and the wave

vector of the transmitted wave is k2 = β
2
− jα2. Let us now

define with ξ1 the angle that the phase vector of the incident

wave β
1

forms with the normal to the interface between air

and lossy medium. The theory developed in [4], [6] demon-

strates that, when ξ1 is smaller than or equal to 45◦ it is
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Fig. 1. Deep-penetration problem definition: inhomogeneous

plane wave incoming from a lossless medium (medium 1) and im-

pinging on the infinite and planar separation surface with a lossy

medium (medium 2).

possible to find a critical value β1c for the amplitude of β
1

such that the angle ζ2 formed by α2 with the normal to the

separation surface is 90◦ (deep-penetration condition), this

happens for a critical incident angle ξ1 = ξ1c. For a given

β1c, the smaller the angle ξ1 < ξ1c, the worse the penetra-

tion. The deep-penetration condition can be met for smaller

angles by increasing the amplitude of β
1

(and consequently

of α1), anyway this condition can never be satisfied for

normal incidence. Even when deep-penetration condition

cannot be met, large penetration through inhomogeneous

waves is always possible, because, if a homogeneous wave

impinges on a separation surface with a lossy medium, the

attenuation vector of the transmitted wave is necessarily

orthogonal to the separation surface (ζ2 = 0). However, if

the incident wave is inhomogeneous, the attenuation vector

cannot be orthogonal because there is a tangential com-

ponent to the interface with the lossy medium that has

to be necessarily conserved (ζ2 > 0). This is due to the

well-known conservation of the tangential component of

the electromagnetic field at a planar boundary between two

media [5].

2.2. Large EM Penetration Employing Leaky-wave

Antennas

Possible physical solutions for inhomogeneous waves at

infinite planar boundaries between lossless and lossy media

are represented by lateral waves, surface waves and leaky

waves. The last ones represent the only suitable solutions

for deep penetration because they can effectively radiate in

the lossy medium [7]. Leaky waves can be artificially gen-

erated by structures called leaky-wave antennas (LWAs) [8].

The large penetration achievable employing LWAs is a sub-

ject well known in the literature. In [9], [10] researchers

designed LWA applicators, which guaranteed large pene-

tration, and in [11], a wave was generated by means of

a periodical, bi-dimensional, LWA structure operating at

microwave frequencies (X band) to prove that the existence

of an attenuation vector of the incident wave leads to large

penetration also in practical applications.

In [11], the antenna proposed in [12] was designed on CST

software to radiate at broadside, and to impinge on a lossy

medium represented by a prism having one face parallel to

the antenna aperture.

The amplitude of the electric field in the lossy medium was

then compared against the E field transmitted into the same

medium by a customary horn antenna.

The results of this preliminary investigation were interest-

ing. The antenna presented a slightly larger penetration

than the one produced by the horn antenna, but the deep-

penetration condition could not be achieved because of the

normal incidence. Moreover, even increasing the incidence

angle, the deep-penetration condition could not be met.

This is mainly due to the very low amplitude of the at-

tenuation vector for the antenna chosen [12].

An alternative antenna design was proposed in [13] to al-

low the deep-penetration condition. The designed antenna

was based on uniform and mono-dimensional LWAs, in

particular, a microstrip LWA [14] derived from the Men-

zel antenna [15] was considered and designed using the

method proposed in [16]. The antenna, originally designed

by Menzel, had its maximum beam angle at 41◦, with

β1n = β1

k0
= 1.0025 and α1n = α1

k0
= 0.0528: such a value

was considered very high, in comparison with values often

used in LWA design, by Oliner and Lee in [14], but this

value was not sufficient for deep-penetration. Therefore

in [13] the design of the antenna was optimised for deep

penetration, obtaining β1n = 1.0028 at a maximum radia-

tion angle of 45◦. This value, according to Eqs. (12)–(13)

of [4] allowed the deep-penetration condition on a medium

with conductivity σ2 = 0.05 S/m.

While we cannot exclude the possibility of realizing a con-

ventional LWA [8], [17] that may provide even higher am-

plitudes of attenuation and phase vectors, the design pro-

posed in [13] shows evident limits in the deep penetration

achievable by means of a uniform LWA. Therefore, we pro-

pose a different, innovative approach that promises better

results.

3. The Lossy Prism

Historically, to the best of our knowledge, leaky waves ar-

tificially generated were exclusively produced by means of

leaky-wave antennas, but recent papers tried to exploit the

inhomogeneous-wave generation that can be obtained by ir-

radiating a two-dimensional lossy dielectric structure with

a homogeneous wave. Such a two-dimensional structure

was first called in [3] lossy prism, and presents two non-

parallel, planar and infinite interfaces (see Fig. 2).

In [18], the prism was illuminated by a finite beam treated

in the optical approximation in order to neglect the interac-

tion with the wedge of the prism. Moreover, the impact of

the first reflection was considered, and it was pointed out

that while multiple reflections could be neglected for the

lossy nature of the prism, at least the first reflection should

be taken into account.
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In the approximation that assumes the beam width negli-

gible in comparison with the prism dimensions, which is

the situation illustrated in [18], it is possible to find geo-

metrical requirements that allow the avoidance of multiple

reflections like the ones experienced in such a paper.

Fig. 2. Lossy prism: paths followed by direct and reflected waves

when χ < 90◦ is the angle formed by the prism wedge.

In the case of normal incidence of the homogeneous wave

upon the vertical side, the transmitted wave is always nor-

mal to the separation surface [5]. With reference to Fig. 2,

where d1 is the path followed by the direct-transmitted wave

from the first to the second interface, and d2 is the path

followed by the first reflection, it comes out from simple

trigonometrical relations [18]:

d1 = h1 tan χ , (1)

d2 =
d1

cos2χ
, (2)

where h1 indicates the distance between the wedge of the

prism and the center of the incident beam.

When the amplitude of the wedge angle χ is greater than

or equal to 45◦, d2 never returns back to the illuminated

edge, but, if χ < 45◦, this happens. Therefore also a second

reflection, indicated with d3 in Fig. 2, appears. Such a wave

may reflect back to the oblique interface if the angle χ is

smaller than 30◦. The length of d3 can easily be computed

by observing the triangle formed by d2 and d3:

d3 = d2

cos χ

cos3χ
=

[h1 + d1 tan(2χ)]sin χ

cos3χ
. (3)

In Fig. 3 the normalized quantities d1

h1
, d2

h1
, and d3

h1
are plot-

ted as a function of χ for χ ∈]0.25◦[ and it is clear that

the larger the angle χ , the bigger the distance where the

reflected rays will impinge on the prism edges.

An angle χ ≥ 45◦ must be chosen in order to avoid reflec-

tions. Anyway, the larger the angle χ , the higher is d1

h1
,

therefore also the attenuation introduced on the illuminat-

ing beam increases when χ increases. The prism must be

Fig. 3. Lossy prism: normalized direct wave path ( d1

h1
), normal-

ized first-reflection path ( d2

h1
), and normalized second-reflection

path ( d3

h1
) for χ ∈ [0.25◦].

built using a low-loss medium. But, if the beam is nar-

row enough, it is possible to accept angles even smaller

than 30◦. In this case the second reflection can be ne-

glected, but the first one, which is directed toward the il-

luminator, remains critical (see Fig. 3), and to avoid it the

beam illuminating the lossy prism must impinge obliquely

on the first prism face.

The angle χ is not the only parameter that allows to con-

trol reflections. In numerical simulations reflections can be

neglected choosing suitable values for the medium charac-

teristics of the lossy prism. A similar approach was taken

in [11], [13], where unitary values for both permittivity and

permeability of the lossy medium were chosen, and the con-

ductivity σ was assumed sufficiently low (σ = 0.05 S/m).

This kind of medium adaptation is useful in numerical sim-

ulations, because it allows to isolate the transmission prob-

lem from the reflection problem, but such an approach may

result in strong restrictions on the prototyping and manu-

facturing processes of the lossy prism.

In this study, we will impinge obliquely on the lossy prism

and we will also choose a value for the χ angle that will

allow to neglect internal reflections. The amplitudes of

phase and attenuation vectors achievable employing this

structure will then be compared against the corresponding

values that can be obtained employing conventional LWAs.

We know that, to obtain deep penetration, the amplitude

of the attenuation vector needs to be greater than a mini-

mum value [4], but LWAs are usually designed to produce

efficient beams with a negligible amplitude of the attenua-

tion vector (α1 << k0 [8], [17]), this makes the design of

a deeply penetrating antenna by means of commonly used

LWAs very challenging, while the structure proposed here

shows better results.

The first consideration that needs to be exposed when com-

paring the lossy prism and the LWA is that in the former

losses are present in the material, while in the latter losses

are mainly due to radiation (LWAs do not require a lossy
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medium), and only a small quantity of energy is really dis-

sipated (usually through a matched load posed at the end

of the antenna).

In the following, we will neglect the effects of the prism

wedge, this corresponds to assume that the lossy prism is

larger than the antenna aperture. In the former assumption,

also the hypothesis of infinite length for the lossy prism

holds.

Equations (12)–(13) of [4] provide requirements in terms

of amplitude of both phase vector and incident angle of an

inhomogeneous wave incoming from a lossless medium to

guarantee deep penetration on a lossy medium with given

electromagnetic characteristics. An antenna designed for

the deep-penetration condition needs to be able to radiate

an inhomogeneous wave in a lossless medium, for instance

a vacuum (air), such that the mentioned equations are sat-

isfied. As a consequence, the structure proposed in this

paper is designed to radiate in a vacuum. The amplitude

of the phase vector generated by this structure is compared

against the one obtained in [13] (that was also designed to

radiate in a vacuum). A higher value of the phase vector,

for a given incidence angle, implies higher penetration.

In the first part of this article the evaluation of the ampli-

tude of phase and attenuation vectors shown in Fig. 4 will

be studied considering exclusively the direct wave, while

effects due to reflections will be analyzed at the end of this

paper, in particular it will be shown that, in the proposed

configuration, reflections can be neglected.

Fig. 4. Propagation in a stratified medium, in which medium 1

and medium 3 are vacuum and the inner medium (medium 2) is

a lossy medium; the two interfaces are not parallel, planar and

infinite.

The lossy prism structure work principle is the conserva-

tion of the tangential component. Let us consider a strati-

fied medium as illustrated in Fig. 4, in which medium 1 and

medium 3 are vacuum and medium 2 is a lossy region. The

permittivity and permeability of the surrounding-vacuum

region are indicated respectively with ε0 and µ0. The com-

plex permittivity of the lossy prism is indicated as:

εc2 = ε2 − jσ2/ω = ε0εr2 −
jσ2

ω
,

where σ2 is the conductivity, ω the angular frequency,

ε0 the vacuum permittivity, and εr2 the relative permit-

tivity. The permeability of medium 2 is µ2 = µ0µr2, where

µ0 is the vacuum permeability and µr2 is the relative per-

meability.

Let us take a homogeneous wave incoming from medium 1

and impinging on an infinite planar interface with

medium 2, with an incident angle ξ1. The incident wave,

characterized by a phase vector β
1

= k produces a trans-

mitted wave in the medium 2 that must have attenuation

vector α2 that forms an angle ζ ′
2 = 0 with the normal to

the separation surface, because there is no tangential com-

ponent of the incident wave that can be conserved. The

transmitted wave is also characterized by a phase vector β
2
.

The angle ξ ′
2 that this wave vector forms with the normal to

the separation surface depends on the media involved and

on ξ1 (for angles definition see Fig. 5).

Fig. 5. Propagation in a prism in which χ = 90◦: the wedge is

shown here only to give evidence of the structure, anyway it is

considered far from the source in the real scenario, BC and AB are

assumed of infinite length (or sufficiently larger than the antenna

aperture).

Let us now define with k1t the amplitude of the tangential

component to the first interface with the prism of the inci-

dent wave vector k1. We can then evaluate the amplitudes

of phase and attenuation vectors inside the prism employing

Eqs. (13) and (14) of [19], that we report here:

β2 =

√

|k1t |2 +Re(k2
2
)+ |k2

1t − k2
2
|

2
, (4)

α2 =

√

|k1t |2 −Re(k2
2
)+ |k2

1t − k2
2
|

2
. (5)

So, now there is a need to evaluate an expression of phase

and attenuation vectors for the wave transmitted in the loss-

less medium 3.

Let us imagine that the inhomogeneous wave, described by

Eqs. (4)–(5), reaches the other side of the lossy prism im-

pinging on the separation surface with medium 3, which is

assumed again a vacuum. This time, assuming that the sep-

aration interface is not parallel to the one between medium

1 and medium 2, the incident angle of β
2

must be ξ ′′
2 6= ξ ′

2

and also the incident angle of α2 needs to be ζ ′′
2 6= 0. Then

a tangential component of the attenuation vector must exist

at the interface and it needs to be conserved. As a result,

the transmitted wave in the vacuum is, this time, inho-

mogeneous, and characterized by a phase vector β
3

and

an attenuation vector α3 that form an angle θ3 = 90◦, i.e.
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called ξ3 and ζ3 the angles that phase and attenuation vec-

tors form with the normal to the separation surface, it needs

to be ξ3 ±90◦ = ζ3.

Medium 3 does not introduce any losses, therefore the max-

imum value of the attenuation vector is obtained when α2

is fully conserved. This happens when χ = 90◦.
If the two faces of the lossy prism are parallel, then the

incident wave in Medium 1 and the transmitted wave in

medium 3 are both homogeneous. Therefore the attenuation

vector α2 created by the introduction of lossy medium 2,

does not imply the existence of an attenuation vector α3 in

medium 3, and the wave produced in medium 3 is homo-

geneous. On the opposite, if the two faces form an angle

of 90◦, then α2, being normal to the first face, needs to be

parallel to the second one: therefore it is fully conserved.

This is the case in which we fully exploit the α2 vector

generated in medium 2, and therefore this is the most in-

teresting case for deep-penetration studies: the lossy prism

needs to be modeled as in Fig. 5.

In Fig. 5, the wedge is drawn for clarity, but in a possible

near-field simulation carried to verify the effect, the radiat-

ing aperture should not see the wedge, so that wedge effects

can be avoided.

Let us apply the generalized Snell law:











β1 sinξ1 = β2 sinξ ′
2

β2 sinξ ′′
2 = β3 sinξ3

α2 sinζ ′′
2 = α3 sinζ3

. (6)

From the conservation of the tangential component, and

from χ = 90◦, it follows:























ζ ′
2
= 0

ζ ′′
2 = 90◦

ξ ′′
2 = 90◦− ξ ′

2

ζ3 + ξ3 = 90◦

. (7)

Substituting the values of Eqs. (7) in Eqs. (6), we find:











β1 sinξ1 = β2 sinξ ′
2

β2 cosξ ′
2 = β3 sinξ3

α2 = α3 cosξ3

. (8)

Applying the dispersion relation to the media of interest [5]:



























β 2
1 = k2

0 = ω2ε0µ0

β 2
3 −α2

3 = ω2ε0µ0

β 2
2 −α2

2 = ω2µ2ε2

β2α2 cosξ ′
2 =

ωµσ2

2

. (9)

Now, we can put the second and the third of Eqs. (8) in the

fourth of (9), obtaining:

β3α3 sin(2ξ3) = ωµ2σ2 . (10)

The above equation allows to evaluate the amplitude of

the ξ3 angle, the expression of which was already found in

Eq. (12) of [4]. The amplitude of ξ3 is reported here for

completeness:

ξ3 =
1

2
arcsin

ωµ2σ2

α3β3

. (11)

Putting the second of Eqs. (9) in Eq. (10), instead, values

of β3 and α3 can be found as a function of ξ3 and the

conductivity of the medium 2. For β3 it is:

β3

k0

=
1√
2

√

√

√

√

1 +

√

1 +

[

2σ2

ωε0 sin(2ξ3)

]2

, (12)

having assumed µ2 = µ0 (non-magnetic medium). These

equations are the complementary of Eqs. (12)–(13) pre-

sented in [4]. In that paper the incidence from lossless to

lossy media was presented, here the opposite.

The value for
α3

k0
simply follows from the second of Eqs. (9):

α3

k0

=
1√
2

√

√

√

√

√

1 +

[

2σ2

ωε0 sin(2ξ3)

]2

−1 . (13)

The inhomogeneous wave generated in medium 3 has

larger β3 and α3 values for higher σ2 values. Therefore, in

principle, if there is enough power provided to the lossy

prism, it is sufficient to increase the σ2 value to obtain the

wished β3 amplitude.

In particular, we can compare the results obtained through

this lossy prism configuration against the antenna presented

in [13]. The minimum value of β that allows deep-penetra-

tion effect is found by imposing sin(2ξ3) = 1, i.e. ξ3 = 45◦.
In this condition, putting σ2 = 0.008 S/m at a frequency of

12 GHz we obtain β3n = β3

k0
≥ 1.00282. Larger values can

be obtained either increasing the angle ξ3 (by means of

suitably impinging with the angle ξ1), or increasing the

conductivity of the lossy prism.

The small amplitude of σ2 obtained is sufficient to guaran-

tee a larger phase vector amplitude than the one obtained

with the microstrip leaky-wave antenna optimized for deep-

penetration in [13].

Finally, the angle ξ1 can be analytically determined as

a function only of the quantities in the medium 3. Squar-

ing the first and the second of Eqs. (8) and summing them

together yields:

β 2
1 sin

2 ξ1 + β 2
3 sin

2 ξ3 = β 2
2 ,

but β 2
1 = k2

0 and β 2
2 = ω2µ2ε2 + α2

3 cos2 ξ3, so, in the case

in which medium 3 is non magnetic:

ξ1 = arcsin

√

εr2 + β 2
3n cos(2ξ3)− cos2 ξ3 . (14)

having introduced the normalized quantity β3n defined as

β3n = β3

k3
= β3

k0
.

For the illustrated scenario, where ξ3 = 45◦ is wished, it is:

ξ1 = arcsin
√

εr2 −0.5 . (15)
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The above condition is valid for every εr2 such that 0.5 ≤
εr2 ≤ 1.5. In particular, if εr2 = 1, the incident angle is

ξ1 = 45◦ as it should be expected due to the continuity of

the dielectric constant in this scenario.

In Fig. 6 it is illustrated how the radiation angle is depen-

dent on the normalized amplitude of the attenuation vector

β3n ∈ [1.1,1.8] when εr2 = 1. The curve ξ3 = ξ3 (ξ1) tends

to a constant value when β3n increases (in the case consid-

ered, for which εr2 = 1, this value corresponds to 45◦).

Fig. 6. Curves described by ξ3 when ξ1 varies from 0 to 90◦

and β3n ∈ [1.1;1.8], being εr2 = 1.

The condition 0.5 ≤ εr2 ≤ 1.5 can be satisfied properly

choosing the material. We can conclude therefore that

ξ3 = 45◦ does not represent an issue, and can always be

found. This condition represents, according to [4], the inci-

dent angle that guarantees maximum penetration in a lossy

medium, therefore we can pose a lossy medium parallel to

the separation surface between medium 2 and medium 3

and expect maximum-penetration condition, reproducing

the configuration that we proposed through the microstrip

leaky-wave antenna in [13]. This setup represents, in fact,

the easiest scenario for experimenting the deep penetration

through numerical simulations.

For some GPR applications, the condition ξ3 = 0 is re-

quired. This requirement does not allow the deep-pene-

tration condition, but, employing inhomogeneous waves,

a larger penetration is still achieved. Imposing ξ3 = 0 in

Eq. (14), the following is obtained:

ξ1 = arcsin

√

εr2 + β 2
3n −1

= arcsin

√

εr2 + α2
3n .

(16)

From Eq. (16), we can see that the ξ1 angle is real only for

materials such that −(1−α2
3n)≤ εr2 ≤ 1−α2

3n, and achiev-

able at the microwave frequencies through metamaterials

because they can expose relative permittivities either neg-

ative or smaller than 1 [20]. Note that ξ3 ≈ 0 can also be

guaranteed by εr2 = 1, if α2n is small enough.

It is worth mentioning that the former equation is valid

only as a limit, and therefore ξ3 = 0 does not strictly repre-

sent a valid solution for Eqs. (12)–(14) because such condi-

tion would come from a multiplication by zero in Eqs. (8)

and (10). ξ3 = 0 can be studied, instead, imposing α3 = α2

(for the conservation of the tangential component). From

the second of Eqs. (8), it follows ξ ′′
2

= 0, and therefore,

ξ ′
2 = 90◦, which is possible when ξ1 is the critical angle

for total reflection. Therefore such a wave does not pene-

trate the prism.

In Fig. 7, different curves are shown for εr2 ∈ [0.2, 2] and

β3n = 1.2. In particular, we can see that the smaller is εr2,

the closer ξ3 is to broadside radiation (note that ξ3 = 0 for

broadside radiation while ξ3 = 90◦ for a generated surface

wave).

Fig. 7. Curves described by ξ3 when ξ1 varies from 0 to 90◦

and εr2 ∈ [0.2, 2], being β3n = 1.2.

Let us finally study the effects of the reflections produced

at the interface between medium 2 and medium 3: the inci-

dent angle at such interface is ξ ′′
2 = 90◦−ξ ′

2; consequently,

because of Snell law, the reflected angle is equal, again,

to 90◦− ξ ′
2. It follows that the angle formed by the inci-

dent and reflected waves is θ = 180◦−2ξ ′
2. The reflected

wave hits again the interface between media 1 and 2 only

when θ +ξ ′
2 < 90◦, therefore 180◦−ξ ′

2 < 90◦, i.e. ξ ′
2 > 90◦.

Hence, it is possible to confirm that with this configuration

the reflected wave does not return back to the illuminated

interface. Moreover, in the assumption of infinite edges,

the reflected wave never hits the edge AC of Fig. 5, so the

edge AB of Fig. 5 experiences only the presence of the di-

rect wave. In normal scenarios, the edges BC and AB will

need to be chosen long enough to avoid that the reflec-

tion occurring on AC would reach the AB and BC edges,

again.

In the entire paper, we analyzed the prism from the point of

view of the generated field. We optimized the prism struc-

ture to have negligible internal reflections, and to reduce

the amplitude of multiple lobes of the radiated field. Do-

ing so, we always neglected the wave eventually reflected by
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the edge directly illuminated by the source. In applicative

scenarios this first reflection cannot be neglected because

it causes additional dispersion of power and, possibly, noise

on the receiver, if this is in the path of the reflected wave.

The noise in the receiver is avoided for ξ1 > 0 if the re-

ceiver is small enough. The operative condition εr2 < 4
3

was found, and it was also highlighted that a value of

conductivity σ2 of few mS/m is sufficient to guarantee

higher penetration than the one obtained through a con-

ventional LWA. The choice of a lossy prism medium such

that εr2 = 1, and σ2 of few thousands of S/m, can allow

to neglect the reflection from the first side of the prism in-

dependently of the size of the transmitter and the incident

angle ξ1.

4. Conclusions

An innovative approach, based on the use of a lossy prism

for increasing the penetration of electromagnetic waves

in lossy media, was presented. This approach promises

to guarantee deeper penetration than the one achievable

through conventional leaky-wave antennas. In particular,

the amplitudes of phase and attenuation vectors can be

controlled not only operating on the angle of the prism,

but also on its conductivity. This allows to obtain good

penetration conditions even for values close to the normal

incidence (note, anyway, that the attenuation vector in the

lossy medium to be penetrated will hardly be parallel to

the separation surface in this case).

In this preliminary study, a finite beam behaving as a plane

wave was assumed as excitation, while a realistic feeding

or guiding structure should be considered.

The lossy prism also produces losses, the effects of which

may conflict with the deep-penetration property of the gen-

erated wave.
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