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Abstract—The paper summarizes experimental efforts of the

Pushkov Institute of Terrestrial Magnetism, Ionosphere and

Radio Wave Propagation (IZMIRAN) undertaken in search

of the biggest part of Chelyabinsk meteorite in the bottom

of lake Chebarkul, South Ural, Russia, and to estimate the

ecological effects of its subsequent excavation.
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1. Introduction

The Chelyabinsk meteoroid (February 15, 2013) with an es-

timated initial mass of about 10.000 tons was probably the

biggest space object entering the Earth’s atmosphere during

the last 100 years. It released its kinetic energy, equivalent

to a 500,000 tons TNT explosion, into a bright flash at

a height of about 25 km (Fig. 1) and a large shock wave

causing broken roofs and windows in an about 50×100 km

area of Chelyabinsk region. Happily, no industrial object

was touched, and hundreds of people received minor in-

juries. Many small meteorites produced ice carrots in the

snow covering neighboring fields. The biggest part of the

meteoroid landed in the western part of Chebarkul Lake

Fig. 1. Chelyabinsk bolide. (See color pictures online at

www.nit.eu/publications/journal-jtit)

Fig. 2. Aerial photo of the meteorite ice-hole.

making an oval hole in the ice cover, up to 8 m in diam-

eter (Fig. 2). The meteorite origin of the ice-hole was not

commonly believed from the beginning, however Raman

scattering analysis of the small chips, lifted from the lake

bottom with a powerful magnet, and of micron-seized dust

around the breach confirmed their space nature [1].

First divers’ attempts to find the meteorite directly under the

breach gave no effect (Fig. 3). The lake depth is about 10 m

at the impact site, and the operations were hindered by the

presence of a thick layer of loose silt, more than two-meter

thick, according to their estimates. In order to reduce the

search area, Ground Penetrating Radar (GPR) inspection

of the lake bottom was performed from the ice surface by

means of Loza-N GPR [2], [3]. Along with the information

provided by Ural scientists and Czech colleagues [4], [5],

the results of the IZMIRAN-VNIISMI GPR and magnetic

surveys were used in preparing diving works undertaken

later by the Aleut-Special Work Service Company [6] and

resulting in the excavation of the biggest fragment of the

space guest.
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Fig. 3. First diving works from the ice cover.

2. GPR Field Works

Loza GPR was designed at Pushkov Institute of Terres-

trial Magnetism, Ionosphere and Radio Wave Propagation

(IZMIRAN) in relation with a planned space mission [7].

Afterwards its serial production has been undertaken by

Joint-Stock Company VNIISMI [8]. The main distinctive

feature of Loza GPR is energy accumulation in a sin-

gle transmitted pulse which is generated by a capacitor

rapidly discharging through a high-voltage hydrogen key. Its

duration and shape depend on the transmitter antenna pa-

rameters. It must be non-resonant in order to avoid spu-

rious “ringing” (generally, it is a resistively loaded dipole

following classical Wu-King law). Due to resistive load-

ing, Loza antenna radiation approaches an ideal one-period

electromagnetic burst. Its low Q-factor is compensated by

the high pulse energy. Serial Loza transmitters have 5 to

20 kV peak voltage, the emitted pulse duration and en-

ergy being determined by the dipole length. Widely used in

archeology and urban works “high-frequency” Loza-V sets

with 0.5 to 1.5 m antennas have pulse central frequency

in the range of 100–300 MHz and provide penetration

Fig. 4. Field operation with Loza-V GPR.

depth of the order of 5–20 m, depending on ground con-

ductivity (Fig. 4).

In order to radically increase the signal energy and pen-

etration, the pulse spectrum in the low-frequency Loza-N

sounder is shifted to the lowest part of the receiver fre-

quency band: 10–50 MHz [9]. A serial Loza-N set contains

3, 6, 10, and 15 meter-long transmitter antennas mounted

on a heavy-duty nylon band. Identical antennas are used in

the receiver unit recording signals reflected from the sub-

surface layer interfaces or localized buried objects. The

receiver works in a waiting mode, being switched on by

the first coming aerial signal. The absence of interconnect-

ing cables eliminates interference and assures high signal-

to-noise ratio. Loza central unit registers the waveform

of the subsurface return pulse by means of a parallel set

of high-rate comparators, with sampling frequency about

1 GHz. By repeating the measurement with input atten-

uation varying in a quasi-logarithmic scale, we obtain a

256-bit representation of the received signal in a 120 dB

dynamic range.

Fig. 5. Loza-N GPR survey around frozen ice-hole in lake

Chebarkul.

Along with the aforementioned basic principles, the tight

contact of the Loza-N flexible antennas with the ground

and natural wave focusing towards electrically denser sub-

surface medium increase the GPR penetration depth. Com-

pared with domestic and foreign analogs, Loza-N radar

potential is increased by four orders of magnitude, allow-

ing operation in highly conductive media, such as loam

or wet clay. The sounding depth varies from a few me-

ters to hundreds of meters, depending on the device model

and medium properties. Taking into account the environ-

ment conditions (lake depth about 10 m and 1 m thickness

of the ice/snow cover), low-frequency Loza-N model with

6-meter antennas was selected for GPR survey (Fig. 5).

It could provide a sufficient probing depth and minimize

interfering resonance effects. During three days of field

works, March 12–14, 2013, the IZMIRAN-VNIISMI group

(A. V. Popov, V. V. Kopeikin, S. V. Merkulov, V. A. Alek-
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Fig. 6. GPR survey paths and ice-hole position.

seev) recorded 36 GPR scans covering a 100 × 100 m

area around the ice-hole (taking into account the meteorite

trajectory, maximum attention was turned to the western

neighborhood of the breach) – see Fig. 6.

These data, registered from the ice cover, reveal distinct

details of the lake bottom shape indicating probable im-

pact points of big meteorite fragments. Small chips were

collected around and under the breach in order to identify

possible future findings. The results of magnetic moment

measurements of 3-millimeter sized chips [1] are consis-

tent with the reported characteristics of other fragments of

Chelyabinsk meteorite.

3. Data Analysis

In Fig. 7, an example of raw data recorded by Loza-N

GPR and represented by means of Krot-1301 software [8]

is given. The right panel displays the waveform of the radar

return signal received at a selected point of GPR survey

path (A-scan [10]).

In the left panel, the vertical cross-section (B-scan) taken

along one of the survey paths is shown. The horizontal axis

depicts the distance along the GPR path whereas the verti-

cal axis displays the return signal arrival time in nanosec-

onds (right scale) and calculated reflector depth (left scale).

Peculiar horizontal strips in the upper part of the plot cor-

respond to the direct waves traveling from the transmitter

to the receiver antenna with different velocities in the ice

layer and pure water beneath the ice cover.

Fig. 7. Example of B-scan and selected radar return pulse

(A-scan), Chebarkul lake, March 13, 2013.

The extended mono-polar pulses coming from greater

depths are due to partial reflection from the gradual tran-

sition from pure water to the silt layer. Such a behavior is

typical for the low-frequency Loza-N signals, which pre-

viously was attributed to the influence of ground conduc-

tivity. However, the numerical simulation shows that the

main role in this case plays not conductivity but rather par-

tial electromagnetic wave reflections from smooth gradients

of the dielectric permittivity arising due to gradual increase

of the solid fraction in the thick silt layer. A straightfor-

ward approach consists in numerical integration of the one-

dimensional (1D) wave equation [11]. A good qualitative

agreement with the experimental data has been obtained

for a model transition layer between pure water with rela-

tive dielectric permittivity ε0 = 81 and a solid ground with

ε1 = 10–20, see the left panel of Fig. 8. Our model also

Fig. 8. Vertical profile of dielectric permittivity and soil conduc-

tivity (left), 1D numerical simulation of GPR return pulse (top),

magnified reflected pulse (red, pointed by arrow) versus initial

pulse (bottom).
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took into account a gradual increase of the medium con-

ductivity from σ0 = 0 to σ1 = 0.001 S/m. The duration of

the model probing pulse is about 25 ns, which is close to

the physical Loza-N pulse duration.

The full waveform of the electric field registered by the sen-

sitive GPR receiver placed on the water surface is shown

in the upper panel of the figure. Along with the short ini-

tial pulse, a weak protracted signal appearing due to partial

reflections from the vertical gradients of the dielectric per-

mittivity can be noticed. In order to better visualize the

reflected signal on the strong primary pulse background,

a minor exponential amplification e
αt has been introduced.

Its waveform, shown in a magnified scale against the pri-

mary GPR pulse in the bottom panel of Fig. 8, is similar

to the observed wave forms of low-frequency GPR prob-

ing, depicted in Fig. 7 (not taking into account the direct

surface waves). In processing raw data with Krot-1301

software package, the characteristic points of the maximum

amplitude variations of the reflected signal were interpreted

as the interfaces of the non-uniform transition layer be-

tween pure water and the solid bottom ground. A qualita-

tive understanding of partial reflections from the vertical

permittivity gradients ε ′(z) gives the time-domain version

of the coupled Wentzel-Kramers-Brillouin (WKB) approx-

imation [11]:
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1
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gral (1) can be transformed to an explicit analytical expres-

sion [9]:
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where I(s) = 1

2

s
∫

0

h(ξ )dξ and zm is the depth corresponding

to the pulse roundtrip travel time s ≈ 2p(zm).

In this simplified 1D wave propagation model a number

of the physical moments have been ignored, i.e. boundary

effects at the water surface covered with a thick ice layer,

the offset between the transmitter and receiver antennas,

wave divergence and radiation pattern of the dipole antenna

placed on the interface. Having taken into account these

factors in an improved 2D propagation model we reach

a good agreement with the experimental radar scans – see

Fig. 9a-b, and make our simulation be suitable for the field

data analysis.

Fig. 9. (a) Numerical simulation using 2D coupled-WKB ap-

proximation and (b) experimental A-scan.

4. Physical Considerations

A remarkable feature of the GPR B-scan presented in Fig. 7

is a pronounced depression in the bottom curve, accompa-

nied by a local thickening and structure change of the ice

cover, in P602 cross-section at its intersection with P603

scan (Fig. 10). We put forward a guess that this anomaly

was the result of a meteorite fragment impact onto the lake

floor. This hypothesis conforms to the observational facts.

The oblique trajectory of meteorite flight with azimuth of

280–290◦ and small amount of ejected ice suggest that its

major portion might be dragged down by the meteorite west

of the hole and then float upward disturbing the structure of

the ice cover above the impact crater. On the basis of these

considerations, the GPR B-scans were analyzed in detail.

A standard frequency windowing procedure implemented

in Krot-1301 software package allows one to pick out the

characteristic points on the signal plot (e.g. maxima of the

derivative) and to bind them into a radio image of the re-

flecting boundaries. Figure 11 displays an example of such

processing distinctly revealing the lake bottom shape and

the aforementioned disturbance of the ice cover structure.

The interfaces of the transition silt layer between clear wa-
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Fig. 10. Aerial photograph of the ice-hole. Crossing of P602

and P603 GPR paths (blue – arrow “1”) shows probable meteorite

fragment position in the lake bottom; red marks (arrow “2”) – six

stakes around the breach.

Fig. 11. B-scan along P602 track. Interpretation: 1 – ice layer,

2 – pure water and silt layer, 3 – hard bottom, 4 – ice-hole position,

5 – ice anomaly, 6 – meteorite crater.

ter and solid bottom are well seen. The hole produced in

the ice cover by the meteorite impact, already frozen dur-

ing our measurements, is pointed with black markers at the

horizontal axis around the value 110 m. The pronounced

depression of the bottom curve, which was interpreted as

a result of the meteorite collision with the hard lake bed, is

observed 30 m to the west (between 70 and 90 m marks).

The local violation of the surface wave structure above the

dip can be related to the aforementioned thickening of the

ice cover due to the ice mass floated upwards from the

impact crater.

A similar anomaly is observed at the neighboring GPR

paths, resulting in a three-dimensional (3D) reconstruction

of the supposed meteorite crater (Fig. 12). The spotted pat-

tern of the reconstructed bottom shape prompts a suggestion

that the meteorite, when sinking into the lake water, could

break into pieces following a ricochet trajectory [8].

The main crater position relative to the ice-hole, being con-

sistent with the observational trajectory data, allowed us to

recommend searching for a big fragment of Chelyabinsk

meteorite in the aforementioned region of the Chebarkul

lake floor.

Fig. 12. 3D reconstruction of the hard bottom shape; dotted

cylinder – ice-hole projection, arrows – possible meteorite frag-

ments trajectories.

5. Magnetometry and Meteorite

Recovery

Basing on the expected magnetic nature of the Chebarkul

meteoroid fragment, several research groups performed

magnetometric surveys of the supposed impact site. Just

a week after the meteorite fall, February 20–21, 2013,

Ovcharenko and Shchapov (Institute of Geophysics, Ural

Branch of the Russian Academy of Sciences) performed

magnetic mapping of the ice surface around the frozen ice-

hole [4]. An overall distribution of the modulus of magnetic

induction is presented in Fig. 13.

Fig. 13. Ural researchers’ magnetic data [3].

The authors call the reader’s attention to a weak positive

horseshue-like anomaly c.a. 5-6 nT about 20 m west of

the breach, which might be caused by the main fragments
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of the hondrite body. A strong negative linear anomaly of

40–50 nT, south-east of the ice-hole, evidently has no re-

lation with the meteorite body and may have man-caused

nature.

Two weeks later, a research group from the Charles Uni-

versity, Prague, led by Kletetschka, made surface magnetic

field mapping showing a positive anomaly to the north-west

of the breach that was interpreted as a purely geological ef-

fect [5]. The subsequent underwater magnetic survey with

a submersible fluxgate magnetometer, performed in June

19–22, 2013, revealed two sharp peaks of magnetic in-

duction, south-east of the ice-hole – see Fig. 14. However,

these anomalies, centered at the 9 m depth, also might have

technogenic origin.

Fig. 14. Czech scientists’ magnetic data [5] (submersible mag-

netometer).

The second IZMIRAN mission (Gudoshnikov, Skoma-

rovskij, Buzin, Alekseev, April 2–5, 2013) performed mag-

netic survey of a rectangular portion of the ice surface

80×30 m to the west of the ice-hole. The raw data (Fig. 15)

exposed a regular increase of magnetic induction towards

the west (coast effect, analogous to Fig. 14).

Fig. 15. IZMIRAN team magnetic data.

By subtracting the westward trend we obtain a map of local

magnetic anomalies (Fig. 16) having much in common with

the pattern of GPR back reflections (cf. Fig. 12). This

similarity supports our guess at the meteorite fragments

position in the lake bottom ground.

The results of the first IZMIRAN-VNIISMI GPR and mag-

netic surveys were submitted to the Ministry of Ecology of

the Chelyabinsk Region Government having sponsored the

Fig. 16. Magnetic anomaly (coast effect removed).

Fig. 17. Floating platform for diving works.

diving works undertaken during September-October 2013

by the Aleut-Special Work Service Company [6] – Fig. 17.

The underwater works ended up in finding and digging up

a 654 kg meteorite fragment. These endeavors are vividly

depicted in the recently published book [12]. According

to the presented data, the biggest piece has been extracted

from the depth of about 18 m, some 10 meter south-west

of the breach. The main excavated meteorite fragment now

is exposed in the Chelyabinsk Lore museum – Fig. 18. Its

smaller parts, broken away during the diving works, have

Fig. 18. Chebarkul meteorite fragment in the Chelyabinsk Lore

Museum.
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been presented to different organizations that took part in

the search for the meteorite [13].

Raman scattering analysis of the fragment presented to

IZMIRAN – Fig. 19a, performed by Melnik [14], con-

firmed its mineral composition corresponding to ordinary

chondrite LL5 and spectral identity with the small meteorite

chips gathered from the ice cover and the bottom of lake

Chebarkul immediately after the meteorite fall – Fig. 19b.

Fig. 19. (a) Fragment presented to IZMIRAN, (b) Olivine man-

ifestation in Raman scattering spectra of IZMIRAN specimen

(no. 1) and of a small chip from the ice-hole (no. 2).

The second IZMIRAN-VNIISMI GPR mission (Popov,

Prokopovich, Vorovskij, Bogolyubov, December 18–20,

2013) revealed a pronounced dip in the western direction

from the ice-hole (see Fig. 20). This anomaly can be iden-

tified as a result of Aleut’s digging works. The survey

was performed with the same 6-meter long Loza-N an-

tennas from the thick ice cover. Its spatial resolution did

not allow to resolve finer subsurface features.

Taking into account the continuing interest to the

Chelyabinsk event, ecological concerns about lake Chebar-

kul condition and methodical problems of GPR measure-

ments from the water surface, four years later the third

IZMIRAN GPR mission was organized (Edemskij, Popov,

Prokopovich, Bogolyubov, June 15–22, 2017). The main

goal of the planned survey was to draw the bottom line left

after the Aleut diving works and to detect possible subsur-

face objects. In order to provide better spatial resolution we

should use shorter antennas. Basing on our previous expe-

Fig. 20. Lake ground reflectivity according to second IZMIRAN

GPR mission.

rience, we first tried a standard Loza-V GPR transmitter and

antenna set (Fig. 4) assuring 10–12 m penetration in a fresh

lake water [15]. All the equipment could be placed in a hull

of a small rowing boat allowing convenient through-water

operation along a chaotic path controlled by GPS.

Unfortunately, the tests performed in the vicinity of the

meteorite impact site (west coast of lake Chebarkul) had

shown worse penetration, making Loza-V set useless at the

depths exceeding 5 m – see Fig. 21.

Fig. 21. Lake Chebarkul bottom line, Loza-V GPR (west coast).

Fig. 22. Testing 4-m dipole antennas.

This result allows one to roughly estimate the electrical

conductivity of the lake water. The additional linear elec-

tromagnetic wave attenuation 1640
σ√
εr

dB/m amounts to

120 dB (dynamic range of Loza receiver) on a roundtrip

path of 10 meters for σ : 0.066 S/m, which is in a good

agreement with the hydrological data obtained after the

meteorite fall [16].
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Trying to overcome this limitation, we developed a home-

made antenna set of intermediate (4 m) size but heavy rain

storms did not allow us to complete the experiment.

6. Conclusion

The results of the first IZMIRAN-VNIISMI GPR sur-

vey (March 12–14, 2013) and the data of magnetic mea-

surements performed by the next IZMIRAN expedition

(April 2–5, 2013) from the ice surface revealed a pro-

nounced anomaly, west of the breach left after Chelyabinsk

meteorite fall into lake Chebarkul (February 15, 2013).

Along with other research groups’ data, they were used in

preparing diving works undertaken during September 2013

by the Aleut-Special Work Service Company and spon-

sored by the Chelyabinsk region government. These works

resulted in finding and lifting a big fragment of the me-

teorite (October 13, 2013). A part of the excavated space

body presented to IZMIRAN was put to Raman scattering

analysis at Lebedev Physical Institute (FIAN), conforming

its mineral composition corresponding to ordinary chon-

drite (LL5). GPR survey performed by the third IZMIRAN

mission (December 18–20, 2013) revealed a sharp dip in

the lake bottom, probably a result of the digging opera-

tion. An attempt of detailed GPR inspection of the lake

bottom undertaken in June 2017 did not give impressive

results because of high conductivity of the lake water and

bad weather conditions. However, among others, our GPR

data and magnetic measurements prompt that a consider-

able mass of the meteorite matter may still reside in the

lake Chebarkul bottom ground.
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