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Abstract—The paper is devoted to the analytic analysis of re-

sequencing issue, which is common in packet networks, using

queueing-theoretic approach. The authors propose the math-

ematical model, which describes the simplest setting of packet

resequencing, but which allows one to make the first step in the

in-depth-analysis of the queues dynamics in the resequencing

buffer. Specifically consideration is given to NNN-server queue-

ing system (N > 3N > 3N > 3) with single infinite capacity buffer and re-

sequencing, which may serve as a model of packet reordering

in packet networks. Customers arrive at the system according

to Poisson flow, occupy one place in the buffer and receive ser-

vice from one of the servers, which is exponentially distributed

with the same parameter. The order of customers upon ar-

rival has to be preserved upon departure. Customers, which

violated the order are kept in resequencing buffer which also

has infinite capacity. It is shown that the resequencing buffer

can be considered as consisting of nnn, 1 ≤ n ≤ N−11 ≤ n ≤ N −11 ≤ n ≤ N −1, intercon-

nected queues, depending on the number of busy servers, with

iii-th queue containing customers, which have to wait for iii ser-

vice completions before they can leave the system. Recursive

algorithm for computation of the joint stationary distribution

of the number of customers in the buffer and servers, and each

queue in resequencing buffer are being obtained. Numerical

examples, which show the dynamics of the characteristics of

the queues in resequencing buffer are given.

Keywords—infinite capacity, joint distribution, queueing system,

resequencing.

1. Introduction

It is well-known that performance of multi-node simulta-

neous processing systems can suffer from the resequencing

issue, i.e. when the order of arriving customers (packets,

jobs, items, etc.) is violated due to disordering, which may

be introduced by service process or other external/inter-

nal factors. As a consequence of disordering, some cus-

tomers have to wait for other customers before they are

allowed to leave the system. So far various analytical meth-

ods and models have been proposed to study the impacts

of resequencing. Survey on the resequencing problem that

covers the early period up to 1997 and review of queue-

ing theoretic methods and early models for the modeling

and analysis of parallel and distributed systems, including

network systems, with resequencing can be found in [1]

and [2]. Queueing-theoretic approach to the resequencing

problem implies that the system under consideration is

represented as interconnected queueing systems/networks,

where the disordering of customers takes place. The sys-

tem is followed with resequencing buffer, where the order

of customers is recovered. When the system under con-

sideration is the packet network, then the disordering may

take place in the core network and the resequencing buffer

is, for example, the de-jitter buffer in the end node. In [3]

there was proposed to group existing papers on resequenc-

ing into two categories: papers that characterize the disor-

dering process using single queueing system with several

servers sharing a single queue (see e.g. [4]) and papers

where disordering is modeled by a queueing system with

several parallel servers and queues, and each server has its

own dedicated queue (see e.g. [5]). Paper [3] contains the

survey of papers belonging to these two categories.

In this paper, authors consider the system belonging to the

first one. Up to now various problems setting have been

considered and solved including calculation of the distri-

bution of number of packets in resequencing buffer and

in system under different assumptions about arrival and

service process, calculation of the distribution of the rese-

quencing delay, and optimal allocation of customers (see

e.g. [1], [2], [5]–[15]). The resequencing effects can be

estimated by calculation one or several parameters of the

resequencing buffer (say, mean buffer size). Clearly the less

mean buffer size is observed, the less packet resequencing

is required in the system.

Here authors propose to dig deeper in the resequencing

issue by giving a more thorough analysis of the resequenc-

ing buffer. It is probably the simplest problem setting but

it gives a general view of the approach and method of the

analysis. It is important to notice that the proposed method

heavily relies on the fact that the servers are homogeneous

and its extension to the heterogeneous case is a question of

further research.

Specifically the network is modeled, where disordering

takes place, as a M|M|N|∞ queue (N > 3). Here each server

may represent the link (or group of links) in the network.

Transmission times (service times) are exponentially dis-

tributed with the same parameter. The elimination of the
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disordering effect (i.e. recovery of the packets’ sequence)

takes place in the resequencing buffer. The sketch of the

system can be seen in Fig. 1. Packets arrive according to

Poisson flow and are stored in the infinite capacity buffer

before entering the network, where from they are chosen for

transmission according to First Come First Served (FCFS)

or Last Come First Served (LCFS) or Random discipline.

Customers, which violated the arrival order are kept in the

resequencing buffer (RB) of infinite capacity before each

of them can leave the system. As it was noticed in [16],

in such M|M|N|∞ resequencing queue with N > 2 servers,

the resequencing buffer can be thought of either as a sin-

gle queue, where all customers which violated arrival order

reside together (Fig. 1a) or as a collection of several sep-

arate interconnected queues (Fig. 1b). In the latter case

i-th queue contains those customers, which have to wait

for i service completions before they can leave the system.

Notice that the number of service completions needed by

a customer in the RB to leave the system cannot be greater

than N −1.

Buffer

(b) Resequencing buffer

Resequencing buffer

...

...

...

Buffer

IP/MPLS
network

Disordering
network

De-jitter

(a)

Fig. 1. (a) example of the resequencing issue in the VoIP sce-

nario, (b) sketch of the multiserver resequencing queue with sep-

arate interconnected queues in the resequencing buffer.

The proposed point of view of the in-depth-dynamics of the

RB can be probably best described by an example. Con-

sider the network modeled by M|M|4|∞ queueing system

(where disordering takes place) and a resequencing queue

at the exit from the network (see Fig. 1a). Without loss of

generality authors suppose that packets (customers) upon

entering the network (system) obtain a sequential number.

The sequence starts from 1 and coincides with the row of

natural numbers. Let us assume that at some time instant

network occupancy is as depicted in Fig. 2a. Each square

represents one packet and number in the square is its se-

quential number.
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Fig. 2. Example of how resequencing system’s content may

evolve in one step.

After each service completion let one label customers in

servers according to the order in which they occupied

servers. Let us refer to the customer, which was the last to

enter server as the 1st level customer. Customer which en-

tered server just before the 1st level customer is referred to

as the 2nd level level customer. The 3rd level customer is

the one which entered server just before the 2nd level cus-

tomer. Finally the 4th level customer was the first (among
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other three in service) to enter server. In Fig. 2a one can

see the corresponding labeling.

Assume the next service to happen is the completion of

service of the 3rd level customer. It will not leave the

system but occupy one place in the resequencing buffer,

and customer from the buffer with the sequential number 6

will occupy free server (Fig. 2b). At this time instant au-

thors have to re-label customers in servers because the or-

der in which they occupied servers had changed. Now

customer with the sequential number 6 becomes the 1st

level customer. New labeling can be seen in Fig. 2b. If

the next service completion is the service completion of

the 1st level customer, then it joins the resequencing buffer

and customer from the buffer with sequential number 7 oc-

cupies free server. From Fig. 2c it can be seen, that though

two customers reside together in the resequencing buffer

and can constitute a single queue, time until each of them

leaves the system is different. Indeed customer with the se-

quential number 3 has to wait only for one customer (one

service completion) before it can leave the system and cus-

tomer with the sequential number 6 has to wait for three

customers before it may depart from the system. By this

attribute – number of service completions, which customer

residing in resequencing buffer has to wait for before it

can leave the system – by which the single queue in re-

sequencing buffer can be partitioned into several separate

interconnected queues (see Fig. 1b).

One may continue the example further and arrive, for ex-

ample, to the network occupancy as depicted in Fig. 3.

In figure one can see how packets in RB are distributed

among different queues. Partitioning of the RB into sev-

eral queues gives a more detailed view of its dynamics and

leads to number of interesting questions:

• what is the joint stationary distribution of all queues

in the system?

• are there any dependencies between queues’ sizes?

• what happens with queues in the RB if N grows with-

out bound?

• what influence does service rate (distribution) has on

queues’ sizes in the RB, etc?

In this paper the authors focus on the first two questions.

In system with N ≥ 2 servers, if all of them are busy, then

resequencing buffer can be partitioned into N−1 queues

(see Fig. 3 as example for N = 4). If the number of busy

servers is less than N, then the number of queues in the

resequencing buffer is equal to the number of busy servers.

The analysis of the joint stationary distribution of number

of customers even in simple cases with Poisson flow and ho-

mogeneous exponential servers turns out to be a challenging

task. In [16] for M/M/3/∞ queue followed with infinite

resequencing buffer one obtains expressions for joint sta-

tionary distribution of number of customers in buffer and

servers, and number of customers in each of two queues

in resequencing buffer both in explicit form and in terms
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Fig. 3. Examples of resequencing system’s contents at two dif-

ferent time instants.

of generating functions. In [17] for M/M/N/∞ queue fol-

lowed with infinite resequencing buffer there was obtained

algorithm for recursive computation joint stationary distri-

bution of number of customers in buffer and servers, and

sum of number of customers in two, three, . . . , and N−1
queues in resequencing buffer.

In this paper by modeling the disordering of packets by

M/M/N/∞ queue followed with the RB of infinite capac-

ity we propose the methodology for computation of joint

stationary distribution of number of customers in buffer and

servers, and number of customers in each queue in the RB.

Here it is shown that in the general case N > 3 the joint

stationary distribution can be computed recursively. The

special case of this methodology has already been used

in [16]. The authors note that the joint distribution for the

general case can be also obtained algorithmically in terms

of the generating functions (as it is shown in [18]), but that

results are, as usual, hardly applicable for the computation

of the joint distribution itself.

The next Section 2 is devoted to the description of the sys-

tem and the necessary notation. In Section 3 it is shown

how one can obtain the system of equilibrium equations

for joint stationary distribution of number of customers in

buffer and servers, and number of customers in each queue

in resequencing buffer. The description of the solution al-

gorithm comes after. Several numerical examples are given

in Section 4. In the conclusion, one provides a short dis-

cussion of obtained results and outlines possible directions

of further research.
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2. System Description and Notation

Consider a queueing system with 3 < N < ∞ servers, in-

finite capacity buffer, incoming Poisson flow of customers

of intensity λ , exponential service time distribution in each

server with parameter µ and RB of infinite capacity. Cus-

tomer upon entering the system obtains a sequential number

and joins the buffer. Without the loss of generality authors

suppose that the sequence starts from 1 and coincides with

the row of natural numbers, i.e. customer upon entering the

empty system receives number 1, the next one – number 2

and so on and so forth. Customers leave the system strictly

in the order of their arrival. Thus, after customer’s arrival

it enters server (if there are any idle) or remains in the

buffer for some time and then receives service from one

of the servers. If at the moment of its service completion

there are no customers in the system or all other customers

present at that moment in the buffer and in all other servers

have greater sequential numbers it leaves the system. Oth-

erwise, it occupies a place in the RB. Each customer from

the RB leaves it if and only if its sequential number is less

than sequential numbers of all other customers present in

the system. It may be noticed that the customers may leave

the RB in groups. For example, in Fig. 3a if customer

with sequential number 2 is the next to finish service

then it leaves the system at one together with customer

number 3 and 4.

In order to correctly define the partitioning of the RB into

several queues the following approach is used. Assume

there are n, n = 1,N, busy servers in the system. Each time

any server becomes free or busy the customers in servers

are labeled according to the order in which they occupied

servers. Let us refer to the customer which was the last to

enter server as the 1st level customer. Customer, which en-

tered server right before the 1st level customer, is referred

to as the 2nd level level customer. The 3rd level customer

is the one which entered server before the 2nd level cus-

tomer. Proceeding in similar manner customer, which was

the first (among n) to enter server, is referred to as the nth

level the customer. Customers which reside in the RB form

(n− 1) separate queues in the following way. Customers

which entered the RB between the 1st level and the 2nd

level customer form queue #1. Customers which entered

the RB between the 2nd level and the 3rd level customer

form queue #2 and so on. Customers which entered the

RB between the (n− 1) level and the nth level customer

form queue #(n−1). Example of such partitioning of the

RB into separate queues in case when N = 4 is given in

Fig. 3.

Let us denote by ξ (t) – the number of customers in buffer

and servers at instant t, and by ηi(t) — the number of

customers in i-th queue in resequencing buffer at instant t.
Then the Markov process ζ (t), describing the stochastic

behavior of the system, is

ζ (t) = {(ξ (t),η1(t),η2(t), . . . ,ηN−1(t)) , t ≥ 0}.

In case ξ (t) = 0, all components of the process ζ (t) except

for the first one are omitted; in case ξ (t) = n, n = 1,N −2,

last N −1−n components are omitted. The state space of

the process ζ (t) has the form

X = {0}∪{(1, i1) , i1 ≥ 0}∪{(2, i1, i2) , i1, i2 ≥ 0}∪ . . .

∪{(n, i1, i2, . . . , iN−1) , n ≥ N −1, i1, i2, . . . , iN−1 ≥ 0} .

Let us denote by pn, n ≥ 0, the stationary probabilities of

the fact, that there are n customer in buffer and servers

(customers in the RB are not taken into account), i.e.

pn = lim
t→∞

P{ξ (t) = n}.

One can notice that pn, n ≥ 0, are determined by the same

equations as in the simple M/M/N/∞ queue (see e.g. [19]):

p0 =

(N−1

∑
i=0

ρ i

i!
+

ρN

(N −1)!(N −ρ)

)−1

, ρ = λ/µ , (1)

pi =
ρ i

i!
p0, i = 1,N , (2)

pi =
ρ i

N!N i−N p0 = ρ̃ i−N pN , ρ̃ = ρ/N, i ≥ N +1 . (3)

It can be observed that for the stationary probabilities of the

considered system with resequencing to exist it is necessary

and sufficient that the condition (necessary and sufficient)

for the existence of probabilities pn is fulfilled, i.e. ρ/N < 1
must hold.

Let us denote by pn;i1,...,im , m = 1,N −1, i1, . . . , im ≥ 0, the

stationary probability of the fact that there are n ≥ N cus-

tomers in buffer and servers, and in the RB there are i1
customers in queue #1, i2 customers in queue #2, . . . , im
customers in queue #m, that is

pn;i1,...,im = lim
t→∞

P{ξ (t) = n,η1(t) = i1, . . . ,ηm(t) = im},

m = 1,N −1, n ≥ N, i1, . . . , im ≥ 0.

If the number of busy servers is n < N, then we denote by

pn;i1,...,im , m = 1,n, i1, . . . , im ≥ 0, the stationary probability

of same fact, that is

pn;i1,...,im = lim
t→∞

P{ξ (t) = n,η1(t) = i1, . . . ,ηm(t) = im} ,

n = 1,N −1, m = 1,n, i1, . . . , im ≥ 0 .

The only difference between cases n ≥ N and n < N is that

in the former case number of queues in RB may vary from 1

to N−1 and in the latter case it may vary only from 1 to n.

From the definition of the joint probabilities it follows that

the stationary distribution pn, n ≥ 1, can be calculated from

pn;i1,...,im by summation

pn = P
{

ζ (t) ∈
∞
⋃

i1,...,in≥0
(n, i1, i2, . . . , in)

}

=
∞

∑
i1,...,in=0

pn;i1,...,in , n = 1,N −2 ,

pn = P
{

ζ (t) ∈
∞
⋃

i1,...,iN−1≥0
(n, i1, i2, . . . , iN−1)

}

=
∞

∑
i1,...,iN−1=0

pn;i1,...,iN−1 , n ≥ N −1 .
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3. System of Equilibrium Equations

In order to obtain the balance equations let us consider

step-by-step different partitions of the state space and use

rate-in-rate-out principle (local balance). Notice that if one

sums up, say the probability pN;i1,...,iN−1 , over all possible

values of i2, . . . , iN−1, then one obtains probability of the

state set
∞
⋃

i2,...,iN−1≥0

(N, i1, i2, . . . , iN−1) ,

i.e. probability of the fact that there are N customers in

buffer and servers, and queue #1 contains i1 customers (ir-

respectively of the number of customer in the queues #2,

#3 . . . #(N − 1) in the RB). For the probabilities of such

state sets it is possible to analyse one-step transitions and

write out the balance equations, that eventually lead to the

determination of the whole joint distribution.

Denote by pn;i1,...,im , n ≥ 2, m = 1, min(n−1, N −2),
i1, . . . , im ≥ 0, the probability of the fact that there are n
customers in the queue and servers, and in the RB there are

i1 customers in queue #1, i2 customers in queue #2, . . . , im
customers in queue #m, that is

pn;i1,...,im =
∞

∑
im+1,...,in=0

pn;i1,...,im,im+1,...,in , (4)

n = 2,N −2, m = 1,n−1, i1, . . . , im ≥ 0,

pn;i1,...,im =
∞

∑
im+1,...,iN−1=0

pn;i1,...,im,im+1,...,iN−1 , (5)

n ≥ N −1, m = 1,N −2, i1, . . . , im ≥ 0 .

Notice that Eqs. (4) and (5) define the probabilities not of

a single state of the system but of the set of states. For

example, probability pN−2;i1 defined by (4) is the prob-

ability of the fact that there are N − 2 busy servers, the

buffer is empty, and there are i1 ≥ 0 customers in queue #1

in RB.

Balance equations for pn;i1,...,im will be written out in the

following way. Firstly, one establishes equations for pn;i1 ,

n ≥ N, i1 ≥ 0 and then for pn;i1 , n = N −1,1, i1 ≥ 0.

Secondly, one finds equations for pn;i1,i2 , n ≥ N, i1, i2 ≥ 0
and then for pn;i1,i2 , n = N −1,2, i1, i2 ≥ 0. After that

one proceeds to pn;i1,i2,i3 , n ≥ N, i1, i2, i3 ≥ 0 and pn;i1,i2,i3 ,

n = N −1,3, i1, i2, i3 ≥ 0. This procedure continues un-

til one arrives to pn;i1,...,im , n ≥ N, i1, . . . , im ≥ 0 and

pN−1;i1,...,im , i1, . . . , im ≥ 0.

For probabilities pn;i1 , n ≥ N, i1 ≥ 0, the following equa-

tions hold

pn;0(λ +Nµ) = pn−1;0λ +pn+1(N−1)µ , n ≥ N, (6)

pn;i1(λ+Nµ) = pn−1;i1λ+pn+1;i1−1µ , n≥N, i1 ≥ 1 . (7)

Equation (6) is derived as follows. Assume that the system

is in one of the states when there are n≥N customers in the

buffer and servers and queue #1 in the RB is empty. The

considered state set is
∞
⋃

i2,...,iN−1≥0
(n,0, i2, . . . , iN−1) and the

probability of this state set is pn;0 according to Eq. (5). The

system can leave this state set if the service completion or

arrival occurs, i.e. the rate-out flow is pn;i1(λ +Nµ). The

system can enter this state set if:

• there were n+1 customers in the buffer and servers

(which happens with probability pn) and service

completion of any of the N customers except for the

1st level customer occurred, which happens with rate

(Nµ) (N−1)
N = (N −1)µ ;

• there were n−1 customers in the buffer and servers

and queue #1 in the RB was empty, which happens

with the probability pn+1;0 according to Eq. (5), and

an arrival occurred.

Thus the rate-in flow is pn−1;0 λ + pn+1(N−1)µ . By equat-

ing rate-out and rate-in flows one obtains Eq. (6).

In order to explain Eq. (7) assume that the system is in one

of the states when there are n ≥ N customers in the buffer

and servers and there are i1 ≥ 1 customers in queue #1 in the

RB. The considered state set is
∞
⋃

i2,...,iN−1≥0
(n, i1, i2, . . . , iN−1)

and the probability of this state set is pn;i1 according

to Eq. (5). The rate-out flow from this state set equals

pn;i1(λ + Nµ). The system can enter this state set with

an arrival if there were n− 1 customers in the buffer and

servers and i1 customers in queue #1 in the RB, which hap-

pens with the probability pn−1;i1 according to Eq. (5). The

system can also enter this state set with a service comple-

tion from state set when there were n+1 customers in the

queue and servers, and queue #1 in the RB contained i1−1
customers, which happens with the probability pn+1;i1−1 ac-

cording to Eq. (5) and service completion of the 1st level

customer occurred (which happens with rate (Nµ) 1
N = µ).

By equating rate-out and rate-in flows one obtains Eq. (7).

Probabilities pN−1;i1 , i1 ≥ 0, are governed by the following

equations

pN−1;0
[

λ +(N −1)µ
]

= pN−2λ + pN(N −1)µ , (8)

pN−1;i1
[

λ +(N −1)µ
]

= pN;i1−1µ , i1 ≥ 1 . (9)

Probabilities pn;i1 , n = 1,N −2, i1 ≥ 0, are given by

pn;0(λ +nµ) = pn−1λ + pn+1;0nµ , n = 1,N −2 , (10)

pn;i1(λ +nµ) = pn+1;i1nµ +
i1−1

∑
j=0

pn+1;i1− j−1, jµ ,

n = 1,N −2, i1 ≥ 1 . (11)

For probabilities pn;i1,...,im , m = 2, N −1, n ≥ m,

i1, . . . , iN−1 ≥ 0, one can write out the system of balance

equations in the general form. It holds

pn;0,i2,...,im(λ +Nµ) = pn−1;0,i2,...,imλ +

+pn+1;i2,...,im(N −m)µ +
i2−1

∑
j=0

pn+1; j,i2− j−1,i3,...,im µ + . . .

+
im−1

∑
j=0

pn+1;i2,...,im−1, j,im− j−1µ , n ≥ N, i2, . . . , im ≥ 0 , (12)
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pn;i1,...,im(λ +Nµ) = pn−1;i1,...,im λ + pn+1;i1−1,i2,...,im µ ,

n ≥ N, i1 ≥ 1, i2, . . . , im ≥ 0 , (13)

pN−1;0,i2,...,im
[

λ +(N −1)µ
]

= pN−2;i2,...,im λ +

+pN;i2,...,im(N −m)µ +
i2−1

∑
j=0

pN; j,i2− j−1,i3,...,im µ + . . .

+
im−1

∑
j=0

pN;i2,...,im−1, j,im− j−1µ , i2, . . . , im ≥ 0 , (14)

pN−1;i1,...,im
[

λ +(N −1)µ
]

= pN;i1−1,i2,...,im µ ,

i1 ≥ 1, i2, . . . , im ≥ 0 , (15)

pn;0,i2,...,im(λ +nµ) = pn+1;0,i2,...,im(n−m+1)µ +

+pn−1;i2,...,imλ +
i2−1

∑
j=0

pn+1;0, j,i2− j−1,i3,...,im µ + . . .+

+
im−1

∑
j=0

pn+1;0,i2,...,im−1, j,im− j−1µ ,

m 6= N −1, n = m,N −2, i2, . . . , im ≥ 0 , (16)

pn;i1,...,im(λ +nµ) = pn+1;i1,...,im(n−m+1)µ +

+
i1−1

∑
j=0

pn+1; j,i1− j−1,i2,...,im µ + . . .

+
im−1

∑
j=0

pn+1;i1,...,im−1, j,im− j−1,µ ,

m 6= N −1,n = m,N −2, i1 ≥ 1, i2, . . . , im ≥ 0 . (17)

In Eqs. (12)–(17) for the sake of brevity agreement is

used that ∑−1
i=0 ai = 0. The system of Eqs. (12)–(17) is de-

rived using the same argumentation, which is used above

for Eqs. (6)–(7).

For the fixed value of N system, Eqs. (6)–(17) can be

solved recursively. Computation of pn;i1,...,im consists of

N−1 steps. The first step consists of the following se-

quential computations. Firstly one computes probabilities

pn, n ≥ 0 using Eqs. (1)–(3). Then one finds probabil-

ity pN−1;0 from Eq. (8), probabilities pn;0, n = N−2,1,

from Eq. (10) and then probabilities pn;0, n ≥ N, from

Eq. (6). Secondly one computes probability pN−1;0,0 from

Eq. (14), probabilities pn;0,0, n ≥ N, from Eq. (12), and

probabilities pn;0,0, n = N−2,2 from Eq. (16). Thirdly for

each i ≥ 1 using Eqs. (9) and (7) one finds probabilities

pn;i, n ≥ N −1.

The second step starts with computation of probability

pN−2−k;1−k, k = 0,min(0,N−1) from Eq. (11). Then start-

ing from i1 = 0 one computes probabilities pN−1;i1,i2 ,

i1 + i2 = 1, from Eqs. (14) and (15). Finally, starting from

i1 = 1, one finds probabilities pn;i1,i2 , n ≥ N, i1 + i2 = 1,

from Eq. (13).

The third step starts with computation of probabilities

pN−2−k;2−k, k = 0,min(1,N−2), from Eq. (11). Then start-

ing from i1 = 0, using Eqs. (14) and (15) one finds prob-

abilities pN−1;i1,i2 , i1 + i2 = 2. After that starting from

i1 = 2, one computes probabilities pn;i1,i2 , n≥N, i1 + i2 = 2,

from Eq. (13). Finally using Eqs. (16) and (17) one obtains

probabilities pN−2;i1,i2 , i1 + i2 = 1, starting from i1 = 0 and

then from Eqs. (12) and (13), firstly, one computes proba-

bilities pN−1;i1,i2,i3 , n ≥N−1, i1 + i2 + i3 = 1, starting from

i3 = 1 and, secondly, one computes probabilities pn;i1,i2,i3 ,

n ≥ N, i1 + i2 + i3 = 1, starting from i3 = 1.

The fourth step starts with computation of probabilities

pN−2−k;3−k, k = 0, min(2, N−3), from Eq. (11), which

is followed by computation of probabilities pN−1;i1,i2 , i1 +
i2 = 3, starting from i1 = 0, etc.

The algorithm for the computation of the whole joint sta-

tionary distribution, wherefrom the general pattern can be

seen, is given below in pseudo code.

Algorithm 1: Computation of the joint stationary

distribution

for c ≥ 0 do

Compute pN−2−k;c+1−k, k = 0,min(c,N − c−1)
using Eq. (11).

Compute pN−1;i1,i2 , i1 + i2 = c+1, starting from

i2 = c+1 using Eqs. (14) and (15).

Compute pn;i1,i2 , n≥N, i1 + i2 = c+1, from Eq. (13).

if c = 1 then

Compute pN−2;i1,i2 , i1 + i2 = c, starting from

i2 = c using Eqs. (16) and (17).

Compute pN−1;i1,i2,i3 , i1 + i2 + i3 = c, starting

from i3 = c using Eqs. (12) and (13).

Compute pn;i1,i2,i3 , n≥N, i1 + i2 + i3 = c, starting

from i3 = c using Eqs. (12) and (13).

end if

if c = 2 then

Compute pN−3;i1,i2 , i1 + i2 = c−1, using Eq. (16)

and (17).

Compute pN−2;i1,i2,i3 , i1 + i2 + i3 = c−1, starting

from i3 = c−1 using Eq. (16) and (17).

Compute pN−1;i1,i2,i3,i4 , i1 + i2 + i3 + i4 = c−1,

starting from i4 = c−1 using Eq. (12) and (13).

Compute pn;i1,i2,i3,i4 , n ≥ N, i1 + i2 + i3 + i4 =
c−1, starting from i4 = c−1 using Eqs. (12)

and 13).

end if

if c = 3 then
. . .

end if
. . .

end for

4. Numerical Examples

Extensive numerical experiments were carried out with re-

cursive algorithm described in the previous section, which

involved computation of the joint stationary distribution of

number of customers in buffer and servers, and number
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of customers in queues in the RB, as well as several im-

portant performance characteristics. The complexity of the

algorithm grows very fast as number of servers increases

the computation of the whole joint stationary distribution

becomes very slow.

Below several numerical results are given, which show dif-

ferent aspects of the in-depth-behavior of the queues in

the RB.

It is assumed that number of servers is N = 4 and the ser-

vice rate is µ = 1. The mean and variance of the number

of customers in the RB and correlation coefficient of the

number of customers in the buffer and each queue in the

RB, as functions of the system’s load ρ/N, are depicted in

Figs. 4 and 5.
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Fig. 4. Dependency of: (a) mean number of customers in each

queue in the RB, (b) variance of the number of customers in each

queue in the RB, on the system’s load ρ/N.

From Fig. 5 it follows that number of customers in queues

are weakly correlated and become uncorrelated as the value

of load approaches critical value of 1. Conducted experi-

ments show that the same result holds when one considers

more general model with MAP arrivals and PH service

times (for N = 2). From Fig. 4 it can be also observed

that the mean lengths of queues in the RB are finite which

follows from Little’s law. In fact all the moments of the

lengths of the queues in the RB are finite. The mean queue

Corr(buffer, queue#1)

Corr(buffer, queue#1,
queue#2)

Corr(buffer, queue#2)

Corr(buffer, queue#2,
queue#3)
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Fig. 5. Dependency of correlation coefficient: (a) number of cus-

tomers in queues in the RB (pairwise), (b) number of customers

in the queue and each queue in the RB (pairwise), on the system’s

load ρ/N.

sizes in the RB are related to each other by inequalities

E(queue #3) > E(queue #2) > E(queue #1). The same

holds for the variances and, in general, for any N ≥ 3 such

inequalities hold. Intuitively this can be explained by the

fact that queue #1 exists in the RB only when the number

of busy servers is at least N − 1, whereas queue #(N − 1)
already appears when two servers become busy. The mean

queue size in the RB if one sees it as a single queue is

the sum of mean queue sizes of queue #1, queue #2, . . .
and queue #(N − 1). This suggests that the moments of

queue #(N −1) size, say mean, may serve as another per-

formance characteristic of the system with resequencing be-

cause eventually its dynamics shows how much disordering

is incurred by the network.

5. Conclusion

In this paper the authors have considered probably the

simplest model for the resequencing issue using queueing-

theoretic approach, which allowed one to look “deeper” into

the dynamics of the RB. It turns out that the joint stationary

distribution of all queues can be computed recursively and,
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as expected, queues in the RB are not equivalent, although

surprisingly weakly correlated. The mechanism accord-

ing to which the queues in the RB are built allows one to

use such characteristic as queue-size moments of the queue

#(N−1) in the RB as another performance indicator of the

whole system with resequencing. There are many possible

ramifications of the system, which may make it more suit-

able for practical needs. Probably the Poisson arrival (and

exponential service) assumption should not be the first ones

to be relaxed, because, for example, in MAP|PH|2|∞ queue

followed with resequencing buffer joint stationary distribu-

tion can be also found in recursive way and the weak cor-

relation of queue-sizes is preserved. The introduction of

heterogeneity and rule for choosing idle servers (say, i-th
server with probability pi, or i-th server with probability

pi, j if j servers are busy) is the more promising direction

of research.
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