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Abstract—The design and optimization process of modern

telecommunications networks is supported by a range of ap-

propriate analytical models. A number of these models are

based on the Erlang’s Ideal Grading (EIG) model, which is

a particular case of non-full-availability groups. A possibili-

ty of the application of the EIG model results from the fact

that telecommunications systems show properties and features

distinctive to non-full-availability systems. No detailed studies

that would decisively help determine appropriate conditions

for the application of the EIG model for modeling of other

non-full-availability groups, that would be models correspond-

ing to real telecommunications systems, have been performed.

Therefore, this article attempts to find an answer to the fol-

lowing question: what are the prerequisite conditions for the

application of the EIG model and when the model can be

reliably used?

Keywords—Erlang’s Ideal Grading, multiservice systems, traffic

engineering.

1. Introduction

For the past number of years, we have been witnessing an

exponential growth in the development of wired and wire-

less telecommunications networks [1], [2]. The constantly

decreasing access services prices have made the number

of network users (devices that make use of data transmis-

sion) growing rapidly. This, in turn, have effected in the in-

crease in the amount of data sent over networks, particularly

in wireless networks. Transmitting such a data poses an

enormous challenge to telecommunications and computer

networks and telcos. In order to use network resources in

the best possible way operators are forced to implement

advanced traffic management mechanisms, such as reser-

vation [3]–[5], compression [6]–[12], priorities [13]–[15]

or traffic overflow [16]–[19]. Those mechanisms influence

advantageously the parameters of sent data streams and,

in this way, make all resources of a network available in

optimal way. The resource optimization process and net-

work design are supported by and benefited from analytical

modeling that allows characteristics of telecommunications

systems to be determined on the basis of appropriate math-

ematical dependencies. The bulk of the models of telecom-

munications systems addressed in the literature of the sub-

ject uses either multiservice models of the full-availability

group [20], [21] or limited-availability group [22]. An al-

ternative solution for these groups of models, however, are

models that make use of non-full-availability group mod-

els, i.e. Erlang’s Ideal Grading (EIG). EIG is a particular

(ideal) case of a non-full-availability group, since in this

group a uniform load of group resources is assumed (which

results from an appropriate number of load groups), despite

the fact that individual traffic sources have no access to all

resources of the group, but only to a part of it. The adoption

of such assumption has made it possible to develop a sim-

ple analytical model of this group [23]. A. K. Erlang, who

developed the structure of the EIG group and its analytical

model for single-service traffic, noticed that this particular

model could also be applied to approximate other non-full-

availability systems (those with non-uniform loads). It is

worthwhile to add that the EIG group model has been suc-

cessfully used for modeling single-service switching net-

works [24], [25]. Regrettably, the developments in tech-

nology and the subsequent appearance of multiservice sys-

tems caused the EIG model to be abandoned and left out

in the early 1980s, since a multiservice model of EIG was

nonexistent at the time. This unfavorable situation for the

non-full-availability group was changed, however, when the

model presented in [26], and derivations thereof, were pro-

posed for multiservice traffic with differentiated availabili-

ties, including non-integer availabilities [5], [27].

Present-day telecommunications systems can be viewed as

non-full-availability systems. This assumption is confirmed

by models of systems that use the EIG group model de-

scribed in [18], [28], [29]. However, no available publi-

cations provide key information that would, in an unam-

biguous way, determine the range of versatile application

possibilities for EIG in modeling other non-full-availability

systems. The present article is an attempt to provide an

answer to these questions.

The remaining part of the article has been structured

as follows. Section 2 presents the issues related to non-

full-availability systems and an analytical model of the

EIG group. Exemplary results are provided in Section 3,

whereas Section 4 sums up the article.

2. Non-full-availability Systems

Non-full-availability systems are characterized by the fact

that individual traffic sources do not have access to all

resources of the system (expressed in BBU1), but only

to a part of them. A good example of these systems are

1The BBU is defined as the greatest common divisor of equivalent band-

widths of all call streams offered to the system [30].
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switching networks in which, due to the connecting paths

set up in a given state of the network, a connecting path

between a given input and output is not possible [24], [26].

Another example of modern telecommunications systems

that can be treated as non-full-availability systems is the

radio interface in a 3G mobile network. In this particu-

lar case, this non-full-availability stems from limitations in

available resources of the interface imposed by noise and

signal characteristics, e.g. interference from neighboring

cells [31]. Yet another examples are the traffic overflow

system in which non-full-availability results from limited

access to resources to which connections are transferred

(overflow) [29] and the VoD system [28].

In traffic engineering non-full-availability systems are mod-

eled by non-full-availability groups. Each group of this

type is described by three parameters: capacity V , avail-

ability d and the number of load groups g. Availability

d defines the amount of resources of the group to which

a traffic source has access. Traffic sources that have ac-

cess to the same BBUs in the system create the so-called

load group (component group). Conventionally, non-full-

availability groups are divided into: graded and uniform

(homogenous) groups [32]. In graded groups, with an in-

crease in the number of BBUs, the number of load groups

that have access to this BBU increases (or remains un-

changed). In uniform groups, each BBU is always avail-

able to the same number of load groups. Figure 1 shows

both examples. A particular case of uniform groups is

the Erlang’s Ideal Grading – ideally symmetrical non-full-

availability groups. The latter group assumes all resources

of the group to be uniformly loaded, while the number of

g g

d d
(a) (b)

Fig. 1. Non-full-availability group for V = 7 BBUs, g = 4 and

d = 3 BBUs: (a) graded group, (b) uniform group.
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Fig. 2. Erlang’s Ideal Grading with single-service traffic for V = 3
BBUs, g = 3 and d = 2 BBUs: (a) offered traffic distribution,

(b) idea of availability.

load groups is equal to the number of possible choices d
of resources, from among V :

g =

(

V
d

)

. (1)

In Fig. 2a the example of EIG with single service traffic

is presented. The capacity (V ) of this grading is equal to

3 BBUs. The availability is equal to 2 BBUs. Figure 2b

presents the idea of availability.

2.1. Model of Erlang’s Ideal Grading with Various

Availabilities

Let us consider Erlang’s Ideal Grading [33] with various

availabilities that is offered m independent Poisson call

streams with the intensities λ1, ...,λi, ...,λm. The service

time of calls of particular classes has an exponential dis-

tribution with the parameters µ1, ...,µi, ...,µm . Therefore,

traffic offered Ai by individual call streams can be deter-

mined on the basis following formula:

Ai =
λi

µi
. (2)

The calls offered to grading are characterized by differ-

ent values of demanded BBUs to set up a connection

t1, ..., ti, ..., tm and different availability d1, ...,di, ...,dm. This

means that each class of calls is related to a different num-

ber of load groups:

gi =

(

V
di

)

. (3)

1

1

12

2

23

3

34

4

4

t
2

= 3

t
1

= 1

t
1

= 1

t
1

= 1

t
1

= 1

t
3

= 2

A
2
/1

A
1
/4

A
1
/4

A
1
/4

A
1
/4

A
3
/6

d
2

= 4 d
3

= 2

d
1

= 3

d
1

= 3

d
1

= 3

d
1

= 3

Fig. 3. Erlang’s Ideal Grading: V = 4, m = 3, t1=1, d1 = 3,

g1 = 4, t2=3, d2 = 4, g2 = 1, t3=2, d3 = 2, g3 = 6.

Figure 3 presents an example of such grading. This EIG is

composed of 4 BBUs (V = 4). The grading services m = 3
class of calls: t1 = 1, d1 = 3, t2 = 3, d2 = 4, t3 = 2, d3 = 2.

The number of load groups for particular class of call is

equal: g1 = 4, g2 = 1, g3 = 6.

38



Properties of the Multiservice Erlang’s Ideal Gradings

According to the model [27], [33], the occupancy distribu-

tion P(n) is expressed by the formula:

nP(n) =
m

∑
i=1

Aiti
[

1−σi(n− ti)
]

P(n− ti) , (4)

where Ai is traffic offered to the group by a call of class i –

Eq. (2) – and σi(n) is the conditional probability of tran-

sition for a traffic stream of class i in occupancy state n in

the group

σi(n) =

1−
k

∑
d−ti+1

(

di

x

)(

V −di

n− x

)

(

V
n

) , (5)

where:

• k = n− ti, if (di − ti +1) ≤ (n− ti) < di,

• k = di, if (n− ti) ≥ di.

It should be stressed that the conditional probability of tran-

sition (σi(n)) is combinatorial function of availability and

it is independent of offered traffic.

The blocking probability for calls of class i can be deter-

mined on the basis of the following formula:

Ei =
V

∑
n=di−ti+1

[

1−σi(n)
]

P(n) . (6)

2.2. Non-integer Availability

Presented model in Subsection 2.1 enables authors to de-

termine the values of blocking probabilities in EIG only for

integer values of availability parameter. In [27] the model

for non-integer value of this parameter was proposed. Ac-

cording to this model the blocking probability is calculated

as follows.

Let us assume that for class i the availability parameter

takes on non-integer values. This class of calls is replaced

by two fictitious classes with integer values of availabil-

ity (di1,di2) and offered traffic (Ai1,Ai2). Values of these

parameters are defined in the following way:

di1 = bdic , (7)

di2 = ddie . (8)

The traffic offered by the new fictitious call classes is re-

spectively equal to:

Ai1 = Ai[1− (di−di1)] = Ai(di2 −di), (9)

Ai2 = Ai(di −di1), (10)

where the difference di −di1 determines the fractional part

of the parameter di. Such a definition of the parameters

Ai1, Ai2, di1, di2 means that the values of the fictitious

traffic Ai2 is directly proportional to the fractional part of

the availability parameter, i.e. to ∆i = di − di1, while the

value of the fictitious traffic Ai1 is directly proportional to

the complement ∆i , i.e. to the value 1−∆i = 1−(di−di1) =
di2 −di [27].

After replacing class with two fictitious classes: i1, and i2,

with assigned values of availability and traffic intensity, it

is possible to determine, on the basis of Eqs. (4)–(6), the

blocking probabilities of all classes of calls, including the

blocking probability of new classes of calls. The blocking

probability of calls of class i for non-integer availability di
can be determined in the following way:

Ei =
Ai1Ei1 +Ai2Ei2

Ai
. (11)

In the case of a higher number of classes with non-integer

availabilities, each class of calls is replaced by two fictitious

classes with the parameters determined by Eqs. (7)–(10).

The maximum number of fictitious classes is equal to 2m.

3. The Results

In order to properly define the scope of the applicability of

the EIG model for modeling of non-full-availability groups

with a different number of load groups and different load

in a single BBU as well as imprecisely estimated availabili-

ty values, appropriate simulation experiments were carried

out. For this purpose, a dedicated simulator was devised

and successfully implemented. The simulator makes it

possible to perform simulations for EIG groups, non-full-

availability groups as well as other telecommunications sys-

tems. The simulator was implemented in the C++ language

according to the event scheduling method [34].

The input data for the simulator were the parameters that

described the system, i.e. its structure, capacity and the pa-

rameters that describe the call stream offered to the system

(the number of classes m, demands of individual classes

ti and availability di). Additionally, it is also possible to

determine the parameters of the simulation experiment it-

self, such as the total number of simulation series and the

length of a single simulation series (expressed in the num-

ber of defined events). Results obtained in this way make

a determination of 95% confidence intervals possible.

3.1. Erlang’s Ideal Grading vs. Full Availability Group

A full-availability group with multiservice traffic is the most

frequently used model of telecommunications systems. The

occupancy distribution in this group can be determined

on the basis of the recurrent dependence known as the

Kaufman-Roberts [20], [21] formula:

nP(n) =
m

∑
i=1

AitiP(n− ti) . (12)

It should be noticed that this group is in fact a particular

case of the EIG group, the fact that seems to be notori-

ously overlooked by researchers studying telecommunica-

tions traffic engineering. Observe that in the case where

39



Sławomir Hanczewski and Damian Kmiecik

availability of all classes’ is equal to the capacity of a con-

sidered system, i.e. di = V , (1 ≤ i ≤ m), Equation (4) will

be simplified to Eq. (12) (parameter σi(n) = 1). The mul-

tiservice EIG model, because of its general nature, is thus

even a more universal and versatile tool supporting any

analysis of modern telecommunication systems.

3.2. The Influence of the Evaluation on the Results

In order to use the EIG model to model present-day

telecommunications systems it is necessary to determine

availability values for all serviced traffic classes. Avail-

ability parameters are generally defined by the structure of

a modeled system and offered traffic. In most cases, this

availability can be determined on the basis of a relatively

simple mathematical dependence [22], [35], [29], because

the accuracy of obtained results directly derives from and

depends on the precision of the evaluation of the value of

individual availability parameters. To illustrate this prob-

lem, an experiment for an EIG group with the capacity of

30 BBUs servicing m = 3 classes of calls that demanded re-

spectively t1 = 1, t1 = 3, t3 = 5 BBUs was carried out. The

assumption was that the accurate availability values for the

system were equal to: d1 = 10, d2 = 15, d3 = 20 BBUs.
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Fig. 4. Blocking probability as a function of relative error of

availability.
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Fig. 5. Relative error of blocking probability as a function of

relative error of availability.

Figure 4 shows the blocking probability as a function of

relative error of availability. If the availability parameter is

underestimated (the determined values are lower than the

precise values), the blocking probability is higher than in

the reference EIG group. If, on the other hand, the values

of availability parameters are overestimated, the values of

probability are lower than in the reference EIG group (the

relationship is least evident in the class demanding the low-

est number of BBUs to be served). This occurs regardless

of the offered traffic value. In turn, Fig. 5 shows the rela-

tive error determined on the basis of the EIG model with

the assumption that the availabilities of all classes were

not accurately estimated. The identical nature of underes-

timation was adopted for all classes. In the second case

(Figs. 6 and 7) presented here, erroneous estimation of the
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Fig. 6. Blocking probability as a function of relative error of

availability.
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Fig. 7. Relative error of blocking probability as a function of

relative error of availability.

value of the availability parameter was to be found for only

one class (class 2). As it is easy to observe, an erroneous

estimation of availability parameters has a detrimental and

negative influence on the correctness of results to be ob-

tained. The results of blocking probability are better when

the values of availability parameters are overestimated. For

the group under investigation, acceptable results are ob-

tained when it does not exceed about 20%. Presented re-
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sult were calculated for offered traffic by one BBU equal

to 0.8 Erl and offered traffic by all serviced classes is in

relation A1t1 : A2t2 : A3t3 = 1 : 1 : 1.

3.3. Other No-full-availability Groups

When considering real systems as non-full-availability sys-

tems, the fact that the number of load groups in such a sys-

tem is lower than the number of groups in the EIG group

should be taken into consideration. The next step then

is to examine what influence the structure of the approxi-

mated system has upon the accuracy of obtained results.

Figures 8–11 show the results for a non-full-availability
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Fig. 8. Blocking probability as a function of number of load

groups.
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Fig. 9. Relative error of blocking probability as a function of

number of load groups.

group with the capacity V = 20 BBUs that services two

classes of calls demanding t1 = 1 and t2 = 3 BBUs, re-

spectively. The availability is equal to d1 = 10 BBUs

and d2 = 15 BBUs. The assumption is that presented real

system has a structure of a homogenous group (Fig. 1a).

The adoption of this assumption introduces the possibil-

ity that, despite a decreasing number of load groups, the

load in each BBU is uniform. Hence, even when this de-

crease in the number of load groups is significantly high

(in the considered case, acceptable results are still obtained
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Fig. 10. Blocking probability as a function of relative error of

availability.
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Fig. 11. Relative error of blocking probability as a function of

relative error of availability.

with the number of groups lower by even 40%), Figs. 8

and 9, the load in individual groups remains equal. A dif-

ferent situation, however, is to be observed with the case of

a system that has a structure of a grading group (Fig. 1b).

In this case, even a 30% change in the number of load

groups results in a significant impact on the obtained re-

sults (Figs. 10 and 11). This phenomenon results from the

occurrence of the uneven load of BBU in a group.

4. Summary

This article presents the results of an investigation into

a broad range of potential applications of the EIG group

model for modeling of telecommunications systems. Even

though only a small excerpt of the case study is presented

here, the results are robust enough to make a conclusion

that the EIG group and its model are indeed ideal tools for

modeling telecommunications systems, provided a proper

evaluation (with a certain degree of accuracy) of the value

of availability parameters can be executed. It has to be

stressed that the number of load groups in a system has

a lower influence on obtained results than an error in the

estimation of availability parameters. As yet the authors
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have managed to find simple dependencies between the

structure of a real system and the availability that char-

acterizes particular classes of calls in the system. The only

exception is the system with reservation. For this partic-

ular case, however, an algorithm has been developed that

makes a precise evaluation of values of these parameters

possible [27].
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