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THE PATTERN OF TWOS

by

Richard C. Heyser

One of the best ways to hide something is to place it on display
everywhere. That, in effect, is why the subject matter we are about
to discuss has only recently come to our attention. It was all around
us and thus remained hidden.

I am often asked the '"meaning'' of phase, as if phase were a disembodied
property of nature. Phase is not a disembodied property, k but is a shared
partner in a certain type of description. It is one of two parts. Almost
eve rir audio and acoustic measurement has two distinguishable parts,

We give these two parts special names, depending on how they show up, such
as resistance and reactance, inphase and quadrature, real and imaginary,
or amplitude and phase. This bipartition is not an accident, but expresses
a fundamental relationship. Understanding this relationship can lead us
to a better understanding of the meaning of our measurements. That is
why it is worth while thinking about such things, even if it seems to verge
on philosophy.
PATTERNS
If we stand back and take an overview of the mathematical descriptions

of those parts of nature dealing with something that happens we will begin
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to notice the emergence of certain patterns. First, we are struck with

the number of symbolic analogies which exist between this thing and

that thing if we replace this parameter with that parameter. The "wave"

equation is an example of this. I place quotes around the word wave
because the concept of wave itself is an analogous form whose name
appears in many diverse disciplines.

Certainly there are detail distinctions, such as one set of equations
may be derived from what is called a scalar potential and the other may
be derived from a vector potential. But the pattern is there - even to the
pattern of a deriving potential. These are not metaphysical things, but
are obvious once we begin to look.  Buta thing can be obvious only if
we take notice of its existence.

A second thing we will notice is patterns of relationships which we
call symmetries. Both the analogy and symmetry subjects are far too
important and lengthy to discuss at this time. ButlI can recommend an
excellent little book on the subject of symmetry, written by Hermann Weyl
(1), for those who wish to pursue the subject further,

A third thing we can notice is what I call the pattern of twos. It
overwhelms us in audio. If we measure the electrical impedance of a
network or loudspeaker we have two parts, a resistance part and a reactance
part. Not one, not three, but two. If we measure the free field
frequency response of a loudspeaker the sound pressure has two parts, an
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amplitude part and a phase part. Again, not one, not three, ‘-but two.
Even those measurements which seem to have only one part, such as
instantaneous voltage as a function of time, are the real part of a two-part
entity which Dennis Gabor introduced into communication theory and which
we call the analytic signal.

Some length of time ago, in my own audio research, I became quite
intrigued with this pattern of twos and set out to find why it existed. I
felt that it was something which I ought to understand even though I could
find no reference to it in the technical literature. What I found, and
published ( 2 ), is the subject matter of this little discussion.

Only after my formal schooling was over did I realize that the neat
three-step derivations found in textbooks are the reault of a lengthy -

polishing and refinement process which begins after the original discovery.

In the process of coming up with a simple formula which students can
memorize and use to pass exams, the real meat of the matter - the thought
process which led to this formula - is discarded. It is my opinion that this
is one reason why some people, who ought to know better, will blindly

use an equation well past its limit of applicability and get wrong answers,
So what I am about to present is not just the neat result, which can be
banged out in a few simple steps, but also the thought process which

led to this result,



i o e conliigin s

ENERGY ]

Suppose we want to describe something. Where do we start?
Your opinion may differ from mine, but I prefer to start by establishing
a frame of reference in which the description may be formed. I wish to
distinguish the concept of coordinate system from that of frame of reference.
We first have frame of reference, then we can try to establish ordination
within that frame of reference. It may not be possible to establish a
coordinate system, but let us ignore that situation for the purpose of
this particular discussion.

If there is some coordinate system, even if we do not know the specific
details of that coordinate system, then what is the most general thing we
can state about descriptions which we may be able to form? That is a
puzzlement, but if we are going to describe anything related to the rt;al
world (whatever that is), then there is one obvious statement we can
make: the total energy of whatever we are describing is finite. It may
be very large, but it is finite.

There is really not much else we can state as a general fact without
bringing the specifics oﬁ the coordinate system into play. We cannot, for
example, say that the description has a guaranteed dimensionality, or that
it is measured in such-and-such units. We know that we can change a

description from one system to another and modify dimensionality and units

of measure. But it seems that we are not able to change the total energy
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of something simply by looking at it in terms of a different coordinate

system. We can change the way energy is partitioned, and that is the

true significance of a coordinate system, but we cannot change its total
a mount.

The way in which energy is expressed in a coordinate system is called
energy density. Energy density will be defined for the purpos e of this
diécus sion as the way in which energy is distributed among the coordinates
of a frame of reference. When we add up all the energy density over the
whole system of coordinates, we have the total energy.

In cogitating this matter it seemed that if there was going to be some
special relationship in nature which gives rise to this pattern of twos it
might be associated with the partitioning of energy density. This did not
seem too far fetched, because in the study of mechanics the energy of a
system is considered to be composed of two terms: a potential energy and
a kinetic energy. This seemed to be more than a casual clue, so I
‘began searching for a general method of describing energy density in terms
of a potential energy and a kinetic energy term.

PYTHAGORAS

Most of us are familiar with the Theorem of Pythagoras, which equates

the square of the hypotenuse of a right triangle to the sum of the squares of

the other two sides. In contemporary mathematical jargon the Pythagorean

o B



Theorem is a relationship found ip spaces of finite square measure. This
means that if we add up the square of the length of functional values for
all of the possible coordinates, the sum will be finite. That sounds
temptingly like the relationship we know to be true for total energy density.
And we can bring it into the form we want if we can somehow make total
energy density proportional to the sum of the square of two physical
parameters which are expressed in the system of coordinates. If there
are two, and only two, such parameters, and if they always add up to give
total energy, then we can possibly equate the squares of these parameters
to potential and kinetic components of total energy.

We know that the sum of eneligy density over all coordinates will be
equal to the total energy. Let the letter E stand for energy and s stand
for whatever state variables, or coordinates, we choose for our description.

Add up all E as a function of s and get the total E which is finite, the math

symbolism for which is,

fE(s) ds = E < o°
]
In order to generate a function of finite square measure we only need

to find that function which, when squared, is the energy density, or,

So this little bit of toedancing produces a function which is of finite

= E(s)

square measure. The math name for this is that the function of of class

LZ. This is not abstract foolishness, because we now have cast our
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problem into a form in which there has been a great deal of math experience
in the past half century.
The next step in this mental process is to find some pattern of twos
in L2 spaces. I found it in a book which, regrettably, now receives little
attention ( 3). Theorem 95, on page 128 of E.C. Titchmarsh's book on
the Fourier Integral gives us the relationship. It was not derived for
energy, but it is exactly what we need if we redefine our terms a bit.
Suppose I define the complex vector,
VE(s) = f(s) + i g(s)
where i is the operator signifying that the terms on the right are at zight
angles to each other, thus forming a right triangle relationship, and where
the square root identifies that thing which when squared equals the energy
density. I will leave off the plus and minus sign in front of the square root.
Titchmarsh proved that if \|[E(s) is of Class L2 (that is, you square
it, add it all appropriately, and get a finite number), then not only are

f and g of class Lz, but under quite reasonable constraints they are

Hilbert transforms of each other.

Now let us take the last step. If the relationship is that of a right
triangle, then by the Theorem of Pythagoras,
Bes) = (@] [ate)]
And from Titchmarsh, Theorem 91, when we add everything up the total

energy is made up of one half part due to f and one half part due to g.



of textbooks for many years, but we never heard the cry. Now, starting
from the basis that an identifiable scalar quantity, total energy, should be
finite, this derivation showed that there should be two terms and that each
term will be half of the whole. The association of these terms with our
classic concepts of potential and kinetic energy not only makes sense in
terms of any particular observation, but brings a universal relationship
to bear on all such observations. So I call these two parts by the names:
potential energy density and kinetic energy density.

What this boils down to can be stated thus: if we have a coordinate
system, then the way in which the total energy is partitioned in terms of
our system of coordinates is such that there are always two coordinate-
dependent parts. These parts represent the partitioning into potential
energy density and kinetic energy density. If the total energy is finite, then

these two parts are never independent , but are such that they are respective

squares of two terms which are Hilbert transforms of each other. The
shape of one of these uniquely determines the shape of the other. This
relationship was derived without regard for the specific coordinate
system we may use and hence the partitioning is true for any valid frame

of reference and for any dimensionality of representation.



PROPER MODELS

Before using this energy theorem in audio, there are several matters
which need to be tidied up. One of these is that we must have finite
total energy before the relationship is true. That does not seem to be an
unreasonable assumption, but we must be very careful when using some of
the signal concepts which we have been accustomed to for many years, since
many of these are not of finite energy. The sine wave, for example. It
is a great math model, easy to write and easier to manipulate. It just
does not happen to be of finite energy in the L% sense. But we cavalierly
apply it in our math because, for the duration of any measurement, it can
be approximated arbitrarily closely by waveforms which we can generate
in the lab. In order to use the math properly we must include terms,
which lop off the beginning and end of the non-realizeable sine wave and
convert it into something that looks like the oufput: of our audio generator
from the time we close the switch until the time we turn the generator
off. Common sense intrudes on the mathematically profane. ‘ These
things we do so casually sometimes keep mathematicians busy for years,
as in the case of Heaviside's operator notation and Dirac's pathological
delta.

The point is that we use certain idealized models for physical
observations, and these models serve us very well so long as we confine

our observations to reasonable periods of time or conditions of measurement.
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But these models may not 'repres ent realizeable conditions when we allow
certain parameters, such as frequency, to go to zero or infinity. So we
must add conditions which lop off the offending regions and bring the
model closer to reality., This will be particularly true when we consider
the relationship between resistance and reactance.
OTHER FOR MS

Another matter to be considered is that of the other forms which the
energy relationships may take. There will always be two parts. But
there are a number of forms we can choose. The fundamental form will
be that of the so-called real and imaginary description,

C= A+ iB

This is the form which we conventionally use to describe impedance and
admittance (for acoustic, mechanical, and electrical systems), and the
analytic signal (for optics, mechanical, and electrical systems, particle
velocity, sound pressure, and current). When in this form we know from
what we have just derived that the two parts will be uniquely related to
each other, at least within a constant term which does not have coordinate
dependence.

It is possible to recombine the A and B to produce another two part form
in which there is a magnitude part and angle part. The magnitude part is the
positive square root of the sums of the squares of A and B and the rat:}o of

B to/é is the tangent of the angle. Because we have mixed up B and C, it

does not necessarily follow that there is any unique magnitude and angle
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relationship as there is for A and B. :

For convenience, there is a third way of expressing the two part energy

relationship - a way which is familiar to those of us in audio technology.
This form is a variation of the magnitude and angle representation in which
exponential properties are used. The two parts thus produced are called
the amplitude part and the phase part. The reasons for using the names
amplitude and phase derive from the first use of this form and not,
regrettably, from any thoughtful consideration of the more general properties
which we now use. The exponential base which is commonly used is @ ,
giving us the magnitude, ¢ , and phase, <P , notation as follows,
¢ eb( +/‘§9: e"‘ e/.y

You will chserve that I am deliberately not using coordinate dependence
(such as amplitude and phase as a function of frequency) because we ;re
now dealing in a general sense with relationships which transcend any
particular set of coordinates.

The base € is a natural one to use for our intuitive concept of angle
because when @ goes through 27C radians it comes back on itself.
Unfortunately, our industry used the other half of this form, the amplitude
part, long before it worried about angles, and developed a whole technology

geared to the use of the base 10 and expressed amplitude in decibels. I

will bow to convention and use decibels for ©f , instead of the more

o

proper neper.
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GLOBAL PERSPECTIVES

On a more thoughtful level, suppose we take a global perspective of
what this energy theorem shows us. It seems to provideba rationale for
the pattern of twos which we often encounter in our observations of natural
processes. It implies that it is we, ourselves, who supply this pattern
through our establishment of a coordinate system and systemmatic observations
made within the framework of that coordinate system. There will be two
parts to our observation because any exchange relationship involving
energy density will include two things: density distribution with respect to
the configuration of the coordinate system we chose, and densi.ty distribution
changes in the neighborhood of each part of our coordinate system caused
by the overall distribution of energy density, which indicates equilibrating
flows of energy within our system. .

There is another global consideration which falls out of this analysis.
A transform is a recipe for converting one form of description into another
form of description. It is the conversion between two different ways of
describing the same thing. Often a transform is used to take a description
from one type of coordinate and convert it to a description in another type
of coordinate. But the Hilbert transform is a bit different in that it takes
a description and puts it back into the same coordinate system. This is

done by gathering up what happens everywhere, with the major contribution

due to the gradient of what is happening at each point, and decreasing weight
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given to what the gradienf is away from that point, then folding the whole

mess back into a value for each coordinate location. This means that the

B

thing I called potential energy density is an alternate description of the

thing I called kinetic energy density. Interms of the names I have given

these parameters: kinetic ene rgy density is the way tendencies for dynamic
changes are expressed in a potential energy density frame of reference.
A complete description of a process will use both terms,

As an example of what this means, suppose we want to specify, as
completely as possible, the description of a signal coming out of a power
amplifier and developed across a load. We can establish a coordinate
system which we call time and set up apparatus to measure the voltage
drop across that load as a function of time. Suppose this apparatus is
an oscilloscope. We will observe the wiggles on the oscilloscope screen
and say that this is a time representation of the signal.

We are watching something related to potential energy density; voltage
squared is proportional to the work which can be done, or is being done, at
that place in our coordinate system (at that moment in time). There will
be moments when the voltage is zero, as observed in this potential energy
density frame of reference. Does this mean that the total energy density
corresponding to these moments is zero? Not necessarily, it only means
that the potential energy density, as expressed in this particular coordinate

system, is zero at these places. It may happen that the total energy dezisity
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is not zero, in which case all of the energy density at those moments is
carried in the kinetic energy density term. The computation of this kinetic
energy density is accomplished by taking the Hilbert transform of the
voltage signal.

The pendulum can serve as a mechanical analogy of this situation.
Potential energy density is related to the angle of the pendulum relative
to local vertical, while kinetic energy density is related to its angular speed.
If we observe the pendulum in a coordinate system involving angular position
as a function of time, much as we observe amplifier voltage as a function
of time, then therekwill be many moments when the pendulum bob in in its
lowest potential energy position. If the bob is moving, the energy density
at these moments will all be contained in the kinetic form, while the
potential form is null. If the bob is not moving, then both potential and
kinetic terms are at their minimum value, and that minimum value is zero,

But if we are looking at the pendulum in terms of angular position
as a function of time, how can we establish Whéther the pendulum is moving
at any moment? Easy, we find out what the position is for moments in
time before and after the moment of our concern., And that is exactly what
the Hilbert transform is doing for us. Except that the Hilbert transform
solves the problem by knowing the answer. It does this by virtue of the
fact that the Hilbert transform is a global-to-local map. It looks at
everything that has happened in the past, is happening now, and that will

happen in the future and folds that global view of energy density back into a
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number that tells us what the kinetic energy density component must be at
that particular moment of concern in our observation in order to account
for the whole energy pie. As I said, kinetic energy is pofential energy, it
is just that in order to know how much of the energy pie er are looking at
when we measure the potential energy density, we need to tak¢ everything
into account.

So if we want to have a more complete d}gscription of our amplifier
voltage as a function of time, we must consider both the waveform we see
on the scope plus a quadrature (right angle) term which is its Hilbert transform.
This is called the analytic signal and has the property that its magnitude is
the true envelope of the waveform we observe and its phase shows the
exchange rate in the partitioning of energy density.

KNOWING THE FUTURE

But wait a minute, If the Hilbert transform extends forward as well as
back, does this mean that we must know the future in order to specify the
present?

That one will keep you awake nights if you are the kind who worries about
details. See what happens when we begin to look at the reasoning behind
our equations?

It is all too easy to write out an equation and assert that it is a thing
called the analytic signal. Then I could have come in with my three step
derivation that identifies the square of the terms of the analytic signal with

total energy density and its partitioning into potential and kinetic energy
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density and laid it on you as though it is the equation which nature must solve.
And, sure enough, if you plug numbers into the equation you will get

answers which agree with observations of natural processes. But if that is
all I did I would have performed a disservice, because it would be no better
than another wobbly crutch for us to lean on, and possibly break when we

- need it the most. We have quite enough wobbly crutches in audio without
creating another. So what I am striving to do in this little discussion is to
get us to think about the basis for the equations which we use in audio.

What is happening is this: if we take into account all the agents of
energetic stimulation of an audio system, and all the obs erved reactions of
that system to this stimulation, then there are patterns of behavior in those
reactions. It is we who, through our choice of frame of reference, establish
the type of pattern that will be observed in that reference system. If we

‘consider the entire range of that frame of reference, one distinct pattern

that emerges is a pattern of twos for those dependent parameters which

provide a description of the distribution of energy density in that frame of
reference. Dynamism - things that change, alter, move - is the manifestation
of energy. There will be a particular shape-relationship between the two

parts of our observation if we limit our consideration to three conditions:

total energy is finite, things are linear, and we use the . whole frame of reference.
It is this latter condition - we use the whole frame of reference - that gets

us out of the bind of believing that our equations predict t he future. They
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do not predict anything; the.fy depend upon using the whole time axis, or
frequency axis, or whatever coordinate we set up. If we apply the Hilbert
transform relationship as a model to what has already happened, then we
will get results which make sense. But as I pointed out in an earlier
discussion the coordinate we call time and signify with the symbol t is a
mathematical abstraction and is not the time of our ongobing experience.

In order that there be no misunderstanding, let me point out that we
are considering energy density, which is the way ene rggtic relationships are
expressed in terms of a system of coordinates. Wnergy which is not uniquely
expressible in a system of coordinates is not covered under this energy
theorem. If we impress an electrical signal across a resistor the resistor
heats up. Energy is passing from an elect rical form into a thermal form.
If the electrical signal was derived from a simple resonance circuit which
had no external source of electrical energy, then the ext raction of energy
into heat will cause the available total energy of the resonance circuit, as
expressed in the system of electrical coordinates of that resonance circuit,
to drop at a uniform rate, and this is exactly what the Hilbert transform energy
density relationship will show.
ENTER THE FOURIER TRANSFORM

Not surprisingly, there is a conceptual tie between the Hil!;'nert transform
and our old friend the Fourier transform. If you remember from our earlier
discussion on this matter, the Fourier transform is that map, Or recipe,

which allows us to convert a description from one frame of reference to

1l
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another in such a way as to keep the same dimensionality and coordinate
orientation, but invert the units of measurement. It is that global-to-local
map which takes each place of one frame of reference and associates it with

a unique distribution we call a wave over the whole of a special alternative

frame of reference. And, if you remember our discussion, we considered
failure to recognize this, in conjunction the property of the Fourier transform
to preserve dimensionality and orientation of alternative coordinates such that
we can think our description is in one alternative when it is in the other, to

be the root cause for the confusion which often arises when a description

can take on the aspects of either a wave or a position depending on how we

set up our descriptive terminology, but never precisely both a wave and

a position in the same description.

If the real and imaginary parts of a description are related by H;Ibert
transform, then the value of the alternative Fourier transfor med description
will be zero for negative values of the coordinates of that Fourier description.
Since time is the alternative to frequency, and negative values of time should

have no signal components if that signal arises from a causal process (output

after an input, not before; clocks run forward), then the frequency response

corresponding to that signal must have real and imaginary parts which are

Hilbert transforms of each other.
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The shoe can be put én”the other foot. If we define the time signal as
a complex quantity, with real and imaginary parts related by Hilbert transform,
then the frequency representation will only have positive frequency components.
Historically, negative frequency components have bothered many persons.A
Gabor reached into quantum mechanics when he introduced the analytic
signal into communication theory ( 5) because he was bothered by the fact
that the average spectral frequency of a sine wave was zero, being composed
of a positive frequency component and a negative frequency component.
When the time dependence is represented by the analytic signal, the negative
frequency component disappears and the average frequency now corresponds
to the signal's anglila.r frequency, which made things much more sensible.
And in quantum mechanics itself, the negative frequency components of a
wave representation caused problems in attempting to understand the'—
significance of negative energy (energy is Planck's constant times the
frequency). The great physicist Dirac met the matter head on when
developing the relativistic theory of the electron and accepted such solutions
as representing positrons, which were subsequently verified. So if any of us
in audio become a bit perplexed at times about the meaning of negative
frequency in our equations, we are not alone, the problem has been thrashed
out many times before. Just remember, nature knows what it is doing. It

is we who t rip ourselves up in establishing simple math models and then

haggling about the interpretation of selected parts of our own equations.
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The vanishing of negative time components demands that the real and
imaginary parts of the frequency response of any causal network be related
by Hilbert transform. That is how it is conventionally approached in textbooks.
on network theory. When we consider the energy relationship presented in
this discussion we can restate the same thing in a different way: namely, the
requirement that descriptions of energy density be partitioned into two
components which are related by Hilbert transformation demands that the
Fourier transformed alternative have no negative spectrum values. Same
thing, but now a bit more powerful because we do not have to assume that
time cannot run backward; it is forced on us by the energy condition. Also,
not being limited to any specific coordinate system, this keeps us on track
for other ways of describing things involving energy.

THUS FAR, NO FARTHER

The importance of the Hilbert transform in audio is due to the fact that
it is not limited to any particular set of coordinates and that it expresses an
essential economy of form where energy distributions are concerned. It
is a "thus far, no farther' signpost for energy density concentrations. Any
attempt to concentrate the '""work producing'' part of a signal to its smallest
spread in terms of any particular coordinate system can proceed only to the
place where the relationship between the two appropriate parts is expressed
by the Hilbert transform. We have seen that for any finite energy system the

relationship between potential and kinetic parts is always at this most
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economic status. If we rejuggle our two parts to represent amplitude and
phase of the total energy density, then the amplitude can be spread out

in a less than optimum fashion with respect to the exchange relationship
between the potential and kinetic components (phase), and thus the amplitude
and phase need not be related by Hilbert transform. However, if we
""scrunch' up the total energy density distribution, without changing the
phase, there will eventually be a minimum concentration we can achieve
for that partitioning, and then these two parts will be related by Hilbert
transform. That is a general rule, and in audio we most often see it in the
measurement of the frequency response, where such a condition is
referred to as minimum phase.

Minimum phase, when used as a descriptor for the frequency response,
refers to the condition where the net phase offset is the smallest poss.‘ible
for any network with that particular gain characteristic. Because the
associated time response of a minimum phase network will also have the

minimum spread for those signals which are sent through it, this class of

network has also been given the name minimum delay by Robinson (6).

Minimum phase, in a frequency response measurement, means that the
signal energy has the greatest concentration that is possible for the
associated phase. This means that the equivalent time response of such a
system has the least amount of time smear consistent with that frequency

distribution of power spectral density. Thus far, no farther; if we want
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a freque;lcy response flat \:vithing’éuch and so, fri)m this to that 'freque’r;c':y
cutoff, then the least amount of time smear will occur for such a response
only when the phase response corresponds to the minimum phase condition
for that amplitude. That is the physical meaning of minimum phase and
is best understood, in my opinion, from considering the energ); ""pattern of twos'',
ENERGY-TIME

Mini mum phaseness, of course, is a general property and not lirﬁited to
frequency response. When the time response of a system has minimum
phase characteristics, the amplitude and phase of the analytic signal are
related by Hilbert transform. This signifies that the distribution of time
dependent total energy density has its greatest concentration consistent
with the ongoing exchange rate between kinetic and potential components.
The equivalent frequency spectml distribution will have the least amount
of bandspread that is possible for any signal which has that time dependent
total available snergy density.

That is a minimization problem in modulation theory which can also be
'employed with some profit in the analytis of audio signals. In fact we use

it for ou’r loudspeaker measurements. The measurement I call the energy-

time response is a direct plot of the logarithmic amplitude of the analytic

signal response for an applied signal having a precisely controlled rectangular
bandwidth from dc to 20 kHz. The amount of time smear is thus directly

displayed and it is easy to spot what portion of the time smear is due to
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acoustic reflections, what portion is due to poorly damped resonance
situations, etc. Fyom the considerations presented in this discussion it is
clear why this measurement is referred to as an energy measurement.

The other part of the two-part energy measurement is the phase of the
analytic signal as a function of time. This is a'measure of the exchange
rate of energy density partitioning and can be used to infer the region of the
equivalent frequency re sponse where the energy of each delayed response
aberration may be found. We do not plot this phase response in the
loudspeaker reviews simply because it is a technically complicated display
which requires some experience for interpretation.

Beside representing a long-winded explanation for the math basis behind
the lozldspeaker energy-time measurement, the energy theorem turns out to
be very helpful in the general analysis of audio systems. In future discussions
I in.tenjd to show examples of this.

THE IMPORTANCE OF PATTERN

There is obviously a tie between economy of energy form, as expressed
in terms of frequency, and economy of energy form as expressed in terms of
time. This is easy to understand because !"timeness' and "frequencyness'!
bear a special form relationship to each other with regard to dimensionality,
orientation, and units of expression. But when we convert a description
upward in dimensionality it is no longer obvious what patterns of economy
we can expect the energy to take within the coordinates of these higher-

. # i e . . . .
dimenséional alternatives. There 'are, as Horatio was cautioned, things
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undreamed of when we expand our mental horizons to consider those
higher-dimensional spaces which might serve as models for certain
subjective perceptual processes.
Until very recently, we who perform objective tests on audio systems
have played an overly simplified game. Mostly because we did not
realize there was anything else, we set up tests and observations in either
of two very highly specialized lower-dimensional coordinate systems: time
and frequency. it did not bother most of us that the math we used to model
audio processes in those specialized frames of reference was linear
mathematics. We‘went ahead and applied this specialized math to everything,
including situations involving distortion. Our narrow technological view
has l';éen, in the main, concentrated on specialized parameters, such as
volts, or amps, or sound pressure, or mechanical force. These, after
all, are the things important to a particular piece of audio equipment, such
as a phono cartridge or amplifier. These are the local details of audio
reproduction. But in a global sense I believe we may have missed the forest
for the trees. The inexcusable use of linear math for nonlinear analysis
aside (we will discuss that later), it is apparent, once we begin to look, that
certain common patterns tend to eme rge in our technical observations no
matter whether those observations are of mechanical things or electrical things.
If the observations of som ething expressed in volts as a function of time

has a characteristic form startlingly similar to observations of another
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thing expressed as mechahical force as a function of displacement, and if
these patterns seem to emerge whenever we are dealing with natural
processes, then perhaps, just perhaps, any other observation of natural
processes, such as the perception of sound, may also contain patterns.

And quite possibly, rather than getting hung up with the value of a particular
parameter at a particular coordinate location, such as the spectral value

of voltage at a certain frequency, we might look beyond such things to the
relationships among parameters which could indicate a pattern of behavior.
Look not at the trees but at the forest.

I do not mean to imply that the type of pattern that may exist in a
higher-dimensional alternative will be like that which we can recognize in
the lower-dimensional representations now used in objective analysis. But
I do suggest that the search for patterns, and the physical reason why such
patterns should exist, is a direction we might take in trying to understand
the relationship between subjective perception and our observations of the
ingredients which go to make up that perception. Pattern, after all, is
quite important to music, language, and aesthetics. Why should it not
be just as important in the processes leading toward those perceptions?

What I have attempted to do in this brief discussion is present one such
pattern which I have been lucky enough to identify, along with my own
thought processes that led me to this particular energy relationship. My

intent in doing this is not to lay some esoteric math on you, but to
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stimulate thought about the physical basis of observation and perception.
The perception of sound is not a spectator sport. We are all participants.,
Those who measure cannot separate themselves from those who listen.

We need to think about all aspects of this business of audio (and everything
which goes to make up our perceptions of audio - which is everything).

This particular discussion on pattern does not end at this point; it has

just barely begun.
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