
www.ijseat.com Page 25

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 6, Issue 1 ISSN 2321-6905
JANUARY-2018

High Utility Item Sets Mining for Transactional Databases
G Kurubindu1, P Lalitha kumari2

#1. M.Tech (CSE) in Department of Computer Science Engineering,
#2. Assosc.Prof, Department of Computer Science and Engineering, Sri Sivani College Of Engineering,

Chilakapalem, Srikakulam, A.P, India.

Abstract:

Mainstream issue in data mining, which is called
"high-utility itemset mining" or all the more for the
most part utility mining. High Utility Itemsets which
are itemsets having an utility gathering a client
determined least utility edge value i.e min_util. The
principle target of utility mining is to discover thing
sets with highest utilities, by thinking about benefit,
amount, cost or some other client inclinations.
Research has been done in region of mining HUI's.
Different procedures have been connected. The
fundamental issue with setting edge value which is
for the most part client particular, is it should be
proper. In Order to set most fitting or right Threshold
value for mining HUI's,user needs to do trial and
mistake which thus is tedious and repetitive process,
in light of the fact that if min_util is set too low,
framework will bring about getting substantial data of
HUI, which thus makes framework incapable with
the end goal of HUI. In the event that we set min_util
too high, this will bring about getting little sum or no
HUI's. Consequently setting least edge value is
troublesome. The proposed framework is following
Top-k framework for mining top-k HUI's, which is
utilizing two algorithms TKU (mining top-k utility
itemsets) and TKO (mining top-k in one
phase),without setting min_util edge.

Keywords: Frequent Itemset Mining, High Utility
Itemset, Closed High Utility Itemsets, Top-k Mining,
and Transaction Utility.

I. Introduction

Data mining is the productive disclosure of important
and distinctive data from a substantial accumulation
of data.. There are different subdivisions for it.
Frequent itemset mining (FIM) find just regular
things. In any case, benefit of the things are not
considered. This is on the grounds that buy amount
not considered, all things saw as having same
significance and furthermore find frequent designs

that are not fascinating. A thing can be available or
missing in an exchange. The generally utilized
algorithms are Apriori, Eclat , LCM, Pre Post, FIN
and FPGrowth algorithm. Frequent itemset mining
(FIM) doesn't fulfill the prerequisite of the client and
dealer. Certain affiliation rules are related with this
mining. For instance the individuals who purchase
bread and spread are probably going to purchase
drain as well. In FIM computational cost is low
however miss more vital examples to clients. High
utility mining is an expansion to the issue of
continuous example mining. High utility mining
implies distinguishing itemsets having high benefits
when they are sold together. Here the utility of an
itemset is estimated regarding weight, benefit, cost,
amount or other data relying upon the client
inclination. The benefit produced and exchange tally
is considered. An exchange database implies a
database with a rundown of exchanges like butter,
bread, milk and so forth. In High Utility Itemset
(HUI) mining the itemsets that produce a benefit
higher than least limit is called as high utility
itemsets. So there will be an exchange database and a
unit benefit table for each of the things in the
exchange database. The hui mining is intriguing a
result of two primary reasons. One is that find
itemsets that create a high benefit in client exchanges
than those that are purchased often. Additionally no
Apriori property or against monotone property in hui
mining. The counter monotone property is that if an
itemset is rare then all its superset likewise rare and
can be pruned. To beat this the idea of exchange
weighted utilization (twu) presented. Since there is
no hostile to monotone property wasteful as far as
time and memory necessity or even come up short on
memory? Distinctive algorithms for hui mining are
UP-Growth,UpGrowth+,IHUP,IIDS,d2HUP,HUI-
Miner and so forth. The algorithms for hui mining
can be two or one stages. Hui mining takes additional
time and space for execution. So fused an idea called
shut hui mining. An itemset is said to be shut if there

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235197036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.ijseat.com Page 26

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 6, Issue 1 ISSN 2321-6905
JANUARY-2018

exists no other itemset with the end goal that the first
is the subset of other and furthermore there help tally
ought not be equivalent. The different algorithms
utilized are CHUI-Miner, CLSMiner[15] and so
forth. Setting the edge is a dull activity in hui mining.
On the off chance that the limit picked isn't an
appropriate value there is a shot of missing a few
things or itemsets.Top-k high utility itemset mining
beats this trouble. In top-k hui mining, k is the
coveted number of HUIs to be mined. So just less
values must be put away sparing time and memory.
There are different algorithms for top-k mining like
TKU,TKO and so on. A couple of top k frequent
design algorithms are BTK(TB-tree)[13], TFP
[14](Top-k Frequent Pattern) and so on. In top-k no
need of setting the limit, rather it is at first set to zero
and raise consequently. Utilizing top-k we can
without much of a stretch locate the top k sets of
items that contribute the highest benefits to the
organization. The top k can be connected to CHUD
algorithm after stage I to diminish the quantity of
hopefuls put away with the goal that putting away
just top k values from the IT-tree.IT-tree is utilized as
a part of CHUD algorithm. Here the k is the base
utility edge determined by us. Just top k values are
put away in light of the base utility limit.

II. Related work

As of late, high utility itemset mining has gotten
bunches of consideration and numerous effective
algorithms have been proposed. Some earlier
methods presented for mining High Utility Itemsets
are quickly recorded. Philippe Fournier-Viger,
Cheng-Wei Wu, Souleymane Zida, Vincent S.Tseng
[3] proposed an algorithm named FHM which
diminishes the quantity of join tasks by presenting a
novel structure named EUCS(Estimated Utility
Cooccurrence Structure). However FHM underpins
just static databases and the time has come
devouring. Vincent S. Tseng, Bai-En Shie, Cheng-
Wei Wu, and Philip S. Yu, proposed a productive
algorithm for mining high utility itemsets from value-
based databases. In this work, two algorithms, in
particular utility example development (UP-Growth)
and UP-Growth+, is proposed for mining high utility
itemsets with an arrangement of successful systems
for pruning hopeful itemsets. The data of high utility
itemsets is kept up in a tree-based data structure
named utility example tree (UP-Tree) to such an
extent that competitor itemsets can be produced
proficiently with just two outputs of database. Since

this framework requires different stages to examine
the database it is highly perplexing. Sen Su, Shengzhi
Xu, Xiang Cheng, Zhengyi Li, and Fangchun Yang
proposed a private FP-development algorithm, which
is alluded to as PFP-development. The PFP-
development algorithm comprises of a pre-handling
stage and a mining stage. In the pre-preparing stage,
to enhance the utility and protection exchange off, a
novel savvy part strategy is proposed to change the
database. For a given database, the pre-handling stage
should be performed just once. In the mining stage, to
counterbalance the data misfortune caused by
exchange part, we devise a run-time estimation
technique to evaluate the genuine help of itemsets in
the first database. The constraint is that if itemsets of
a similar length are produced at the same time, the
quantity of FP-trees put away in memory will
develop at an exponential rate. The primary normal
for one-stage algorithms is that they find high utility
itemsets utilizing just a single stage and create no
competitors. Junqiang Liu, Ke Wang, Benjamin C.M.
Fung proposed an algorithm, d2 HUP, in particular
Direct Discovery of High Utility Patterns, for mining
high utility itemsets in one stage without competitor
age. It is a reconciliation of the profundity first
pursuit of the turn around set specification tree, the
pruning methods that radically lessens the quantity of
examples to be identified, and a novel data structure
that empowers productive calculation of utilities and
upper limits. HUI-Miner considers a database of
vertical configuration and changes it into utility-
records. The utility-list structure utilized as a part of
HUI-Miner permits specifically figuring the utility of
created itemsets in fundamental memory without
examining the first database. In spite of the fact that
the above investigations may perform well in a few
applications, they are not created for top-k high
utility itemset mining regardless they experience the
ill effects of the unobtrusive issue of setting suitable
limits.

III. Methodology

About CHUD and IT-tree

It consists of two phases. Phase I - potential closed
high utility itemsets found(PCHUI).PCHUIs are
defined as a set of itemsets having estimated utility
no less than absolute minimum utility. Phase II-By
scanning the database once, CHUIs are identified
from the set of PCHUIs found in Phase I and their
utility unit array are computed. Utility unit array for
lossless representation. CHUD [Closed+ High Utility

www.ijseat.com Page 27

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 6, Issue 1 ISSN 2321-6905
JANUARY-2018

Itemset Discovery] is an augmentation of Eclat[6]
and DCI-Closed[7] calculation. It considers vertical
database and mines CHUIs in a profundity first way.
An itemset is closed+ high utility itemset(CHUI) in
the event that it is a shut high utility itemset and that
itemset ought to be incorporated into utility unit
cluster.

IT-Tree[9] implies Itemset-Tidset match tree. It is for
discovering CHUIs.Each hub has an itemset, Tid, two
requested arrangements of things named
PREVIOUS-SET and POST-SET.Figure1
demonstrates an IT-tree for the exchange database
appeared in Table2. Additionally here every hub is
appended with an expected utility esteem. In any
case, it isn't appeared in the figure1,but clarified in
past segments. An information structure called
exchange utility table (TU-table) is embraced for
putting away the exchange utilities of exchanges. It is
a couple with Tid and the second esteem is the
exchange utility. So if Tid given, we can productively
recover the TU esteem [8].The working of IT-tree
like Eclat (Equivalence Class Transformation)
calculation. Given an itemset X ,t(X) is the
arrangement of all tids that contains X .From the
above value-based database; Example:-
(ABE)=12.Difference amongst Eclat and Apriori is
that how they crosses prefix tree and how they decide
the help of an itemset. Apriori is crossed in
expansiveness first request and bolster computed by
checking the entire database. Éclat is profundity first
requesting and the help of another itemset by figuring
the crossing point between tidsets.Given a tidset Y
,i(Y) is the arrangement of every single regular thing
to all the tids in Y.

Figure 1: A case IT-tree

Conclusion of an itemset X [c(X)] is the littlest shut
set that contains X[20,21].To discover the conclusion
of an itemset X:-

1) Compute the picture of X in the exchange space to
get t(X).

2) Next guide t(X) to its picture in the itemset space
utilizing the mapping to get i(t(X)). At that point that
subsequent itemset must be shut. That is, c(X) = I ᵒ
t(X) = i(t(X)).

From Table2,c(ABE) = i(t(ABE)) = i(12) = ABE. In
this manner ABE shut. At that point think about AE;
c(AE) = i(t(AE)) =i(12).As as of now observed i(12)
can be A, B, AB, AE, ABE. So it isn't shut. The help
of an itemset X is equivalent to help of
closure[1,2].In an IT-tree system, for a given hub or
prefix class, one can perform crossing points of the
tidsets of all sets of components in a class, and check
if least help is met; bolster tallying is concurrent with
age. Each subsequent continuous itemset is a class
unto itself, with its own particular components, that
will be recursively extended. In other words, for a
given class of itemsets with prefix P, [P] = {l1, l2, • ,
ln}, one can play out the crossing point of t(Pli) with
all t(Plj) with j > I, to get another class of continuous
extensions,{ [Pli] = {lj | j > I and σ(Pli * lj) ≥ least
support}. Additionally subsumption checking
performed. Give Xi and Xj a chance to be two
itemsets,then Xi subsumes another itemset Xj,if and
just if Xj subset of Xi and bolster count(Xi) = bolster
count(Xj).The requirement for subsumption checking
is that in the wake of including a shut set when we
investigate consequent branches, we may produce
another set, which can't be expanded further and the
new set is the subset or equivalent to the previous and
their help tallies are equivalent. For this situation the
new set is non-shut set subsumed by the previous and
it ought not be added to shut set. For instance From
Table2,{F} is subsumed by {ABF} in light of the fact
that {F} ⊂ {ABF} and SC({F}) = SC({ABF}). A
thing is a promising thing if exchange weighted
usage of the thing is more noteworthy than or
equivalent to supreme least utility. Otherwise,it is an
unpromising item[1].

Utility unit exhibit is to make the portrayal
lossless.Each shut HUI is clarified with an
uncommon structure called utility unit cluster to such
an extent that the subsequent itemset is known as a
closed+ high utility itemset[1,4]. The possibility of
utility unit cluster makes the set of CHUIs lossless

www.ijseat.com Page 28

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 6, Issue 1 ISSN 2321-6905
JANUARY-2018

because HUIs and their utilities can be derived from
this set without accessing the original database. Let
X=[v1,v2,……..vk] and contains k utility values. The
ith utility value vi in v(X) is denoted as v(X,ai). The
utility value of X can be expressed as u(X) =sum of
all(X, ai).From Table2, the first utility value in
V{ABF} is V{ABF,A}=absolute utility(A,T3) +
absolute utility(A,T5) = 2. V{ABF,B}=absolute
utility(B,T3) + absolute utility(B,T5) = 2.
V{ABF,F}=absolute utility(F,T3) + absolute utility
(F,T5) =15.Therefore the utility unit array of {ABF}
is V{ABF}=[2,2,15].

During the first phase subsume check. Compute
closure of itemsets. Then exploration of the IT-tree is
done.

ALGORITHM Subsume Check

Input: Node X, Prev-set(X).

Output:- True: If X is non-closed and subsumed by
other itemsets.

False: If X is not subsumed by other itemsets.

Step1: For each item i an element of PREV-SET(X)
do Step2: If g(X) Subset or equal to g(a) then true
else false.

ALGORITHM Closure-itemsets

Input: The node of X;N(X),POST-SET(X).
Output: The closure of X;Xc.

Step1: Initialize Xc=X.

Step2: For each item i Ɛ POST-SET(X) do

Step3: If g(X) subset or equal to g(i) then

Step4: POST-SET(X) = POST-SETX/{i}.

Step5: Xc= Xc U {a}.

Step6: Finally Xc is returned.

ALGORITHM: Top-k CHUD(TCHUD)

Input: The transactional database, Minimum utility
value. Output: The complete set of CHUIs.

Step1: Scan the database to convert into vertical
database. Step2: After scan promising items are
collected into an ordered list, in the increasing order
of support. Unpromising Step8: Absolute utility(Y) ≥
Absolute minimum utility do step

9 to 13.

Step9:Again Y an element of HCk-1 and Support(X) >

Support(Y) then

Step10: Support(Y) =Support(X).

Step11:Otherwise,if Y not an element of HCk-1,then

Step12: HCk-1= HCk-1 U Y.

Step13: Support(Y) =Support(X).

IV. Proposed System

In the proposed system Top-K High Utility Itemsets
is mined by using a novel algorithm named TKO in
one phase. In TKO min util is not set. Instead a
border minimum utility threshold is used. TKO can
raise the min_util threshold as quickly as possible,
and further reduce as much as possible the number of
candidates and intermediate low utility itemsets
produced in the mining process. A new framework
for top-k high utility itemset mining, where k is the
desired number of HUIs. TKO (mining Top-K utility
itemsets in One phase) are proposed for mining the
complete set of top-k HUIs in databases without any
need to specify the min_util threshold. the TKO
algorithm uses a list-based structure named utility-list
to store the utility information of itemsets in the
database.

TKO uses vertical data representation techniques to
discover top-k HUIs in only one phase. It utilizes the
search procedure of HUI-Miner and its utility-list
structure. When an itemset is generated by TKO, its
utility is calculated by its utility-list without scanning
the original database. We first describe a basic
version of TKO named TKO Base and then the
advanced version, which includes several strategies
to increase its efficiency. Many different types of
data structure and algorithm have been proposed to
extract frequent pattern from a large given database.
CR algorithm is one of the fastest frequent pattern
mining algorithm, which can efficiently represent
whole data structure over single scan of the database.
We have proposed an efficient tree based structure
CR Tree in terms of execution time and memory
usage. Corelation Tree or CR Tree algorithms. Even
a huge database can be processed by CR Tree if out-
of-date transactions are removed concurrently. CR
Tree is better than FP tree.

www.ijseat.com Page 29

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 6, Issue 1 ISSN 2321-6905
JANUARY-2018

Figure 2. proposed Architecture diagram

FHM (Fast High utility Mining)

Our proposition depends on the perception that
despite the fact that HUI-Miner plays out a solitary
stage and in this manner don't create competitors
according to the meaning of the two-stage show,
HUI-Miner investigates the inquiry space of itemsets
by producing itemsets and an expensive join activity
must be performed to assess the utility of each
itemset. To decrease the quantity of joins that are
performed, we propose a novel pruning system
named EUCP (Estimated Utility Cooccurrence
Pruning) that can prune itemsets without performing
joins. This procedure is anything but difficult to
execute and exceptionally powerful. We name the
proposed calculation joining this technique FHM
(Fast High-utility Miner). We look at the execution of
FHM and HUI-Miner on four genuine datasets.
Results demonstrate that FHM performs up to 95 %
less join tasks than HUI-Miner and is up to six times
speedier than HUI-Miner.

The FHM computation

In this segment, we display our proposition, the FHM
calculation. The principle methodology (Algorithm
1) takes as information an exchange database with
utility esteems and the minutil edge. The calculation
first outputs the database to compute the TWU of
every thing. At that point, the calculation recognizes
the set I* of all things having a TWU no not exactly
minutil (different things are disregarded since they
can't be a piece of a high-utility itemsets by Property

3). The TWU estimations of things are then used to
set up an aggregate request ¬ on things, which is the
request of climbing TWU esteems (as proposed in
[7]). A moment database check is then performed.
Amid this database filter, things in exchanges are
reordered by the aggregate request ¬, the utility-
rundown of every thing I ? I * is assembled and our
novel structure named EUCS (Estimated Utility Co-
Occurrence Structure) is manufactured. This last
structure is characterized as an arrangement of triples
of the frame (a, b, c) ? I * × I * × R. A triple (a,b,c)
shows that TWU({a, b}) = c. The EUCS can be
actualized as a triangular lattice or as a hashmap of
hashmaps where just tuples of the frame (a, b, c) with
the end goal that c 6= 0 are kept. In our usage, we
have utilized this last portrayal to be more memory
proficient in light of the fact that we have watched
that couple of things co-happens with different
things. Building the EUCS (Estimated Utility Co-
Occurrence Structure) is quick (it is performed with a
solitary database examine) and involves a little
measure of memory, limited by |I * | × |I* |, in spite
of the fact that practically speaking the size is
considerably littler on the grounds that a set number
of sets of things co-happens in exchanges (cf.
segment 5). After the development of the EUCS, the
profundity first pursuit investigation of itemsets
begins by calling the recursive methodology Search
with the purge itemset Ø, the arrangement of single
things I * , minutil and the EUCS structure.Algorithm
Steps

Algorithm 1: The FHM algorithm

Input : D: a transaction database, minutil: a user-
specified threshold

Output: the set of high-utility itemsets

Step:1 Scan D to calculate the TWU of single
items;

Step:2 I * ? each item i such that TWU(i) < minutil;

Step:3 Let be the total order of TWU ascending
values on I * ;

Step:4 Scan D to built the utility-list of each item i ?
* and build the EUCS structure;

Step:5 Search (Ø, I * , minutil, EUCS);

GRAPHS ANALYSIS

www.ijseat.com Page 30

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 6, Issue 1 ISSN 2321-6905
JANUARY-2018

Comparison between level and number of candidate
On the x axis we have taken level number and on y
axis numbers of candidates are displayed.

Figure 3 Comparison on the basis of level and
number of candidate

V. Conclusion

In this paper, we have considered the issue of top k
high utility itemsets mining, where k is the coveted
number of high utility itemsets to be mined. Two
productive calculations TKU (mining Top-K Utility
itemsets) and TKO (mining Top-K utility itemsets in
One stage) are proposed for mining such itemsets
without setting least utility edges. TKU is the initial
two-stage calculation for mining top-k high utility
itemsets, which consolidates five procedures PE, NU,
MD, MC and SE to successfully raise the fringe least
utility limits and further prune the pursuit space.
Then again, TKO is the first stage calculation created
for top-k HUI mining, which coordinates the novel
methodologies RUC, RUZ and EPB to enormously
enhance its execution. Observational assessments on
various kinds of genuine and manufactured datasets
demonstrate that the proposed calculations have great
adaptability on vast datasets and the execution of the
proposed calculations is near the ideal instance of the
condition of-theart two-stage and one-stage utility
mining calculations.

Despite the fact that we have proposed another
system for top-k HUI mining, it has not yet been
fused with other utility mining undertakings to find
diverse sorts of top k high utility examples, for
example, top-k high utility scenes, top-k shut high
utility itemsets, top-k high utility web get to

examples and top k versatile high utility successive
examples. These leave wide spaces for investigation
as future work.

References

[1] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” in Proc. Int. Conf. Very
Large Data Bases, 1994, pp. 487–499.

[2] C. Ahmed, S. Tanbeer, B. Jeong, and Y. Lee,
“Efficient tree structures for high-utility pattern
mining in incremental databases,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 12, pp. 1708–1721,
Dec. 2009.

[3] K. Chuang, J. Huang, and M. Chen, “Mining top-
k frequent patterns in the presence of the memory
constraint,” VLDB J., vol. 17, pp. 1321–1344, 2008.

[4] R. Chan, Q. Yang, and Y. Shen, “Mining high-
utility itemsets,” in Proc. IEEE Int. Conf. Data
Mining, 2003, pp. 19–26.

[5] P. Fournier-Viger and V. S. Tseng, “Mining top-k
sequential rules,” in Proc. Int. Conf. Adv. Data
Mining Appl., 2011, pp. 180–194.

[6] P. Fournier-Viger, C.Wu, and V. S. Tseng,
“Mining top-k association rules,” in Proc. Int. Conf.
Can. Conf. Adv. Artif. Intell., 2012, pp. 61–73.

[7] P. Fournier-Viger, C. Wu, and V. S. Tseng,
“Novel concise representations of high utility
itemsets using generator patterns,” in Proc. Int. Conf.
Adv. Data Mining Appl. Lecture Notes Comput. Sci.,
2014, vol. 8933, pp. 30–43.

[8] J. Han, J. Pei, and Y. Yin, “Mining frequent
patterns without candidate generation,” in Proc.
ACM SIGMOD Int. Conf. Manag. Data, 2000, pp. 1–
12.

[9] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, “Mining
top-k frequent closed patterns without minimum
support,” in Proc. IEEE Int. Conf. Data Mining,
2002, pp. 211–218.

[10] S. Krishnamoorthy, “Pruning strategies for
mining high utility itemsets,” Expert Syst. Appl., vol.
42, no. 5, pp. 2371–2381, 2015.

www.ijseat.com Page 31

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 6, Issue 1 ISSN 2321-6905
JANUARY-2018

Authors

G Kurubindu completed her
B.Tech at Sri Sivani College of
engineering chilakapalem. She is
pursuing m.tech in Sri Sivani
College of engineering
chilakapalem, Srikakulam, AP,

India.

P Lalitha kumari M.Tech
(Ph.D) is working as Associate
Professor in the Department of
CSE at Sri Sivani College Of
Engineering, Chilakapalem,
Srikakulam, A.P, India.

