
www.ijseat.com Page 815

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 5, Issue 7 ISSN 2321-6905
JULY-2017

The Enriched Object Oriented Software processes for Software
Fault Prediction

T. Ravi Kumar1, Dr. T. Srinivasa Rao2

#1. Sr.Asst professor, Department of CSE, AITAM Engineering College, Tekkali, (AP), India,
#2. Associate professor, Department of CSE, GIT, GITAM University, Visakhapatnam, (AP), India.

Abstract

A software fault prediction is a demonstrated strategy
in accomplishing high software unwavering quality.
Prediction of fault-inclined modules gives one
approach to help software quality designing through
enhanced booking and venture control. Quality of
software is progressively imperative and testing
related issues are getting to be noticeably pivotal for
software. This requires the need to build up a
constant evaluation procedure that groups these
progressively created frameworks as being
faulty/sans fault. An assortment of software fault
predictions procedures have been proposed, In fact
different methodologies created by the numerous
researchers, they may not be optimal while
predication of faults. In this approach we are
presenting the fault prediction approach with OO
metrics alongside cyclomatic complexity and nested
block depth, in acceptance testing, each capacity
determined in the plan report can be freely tried, that
is, an arrangement of experiments is produced for
each capacity, not for every work process module or
other module/segment. Our test results demonstrate
the productive fault prediction with our algorithm
parameters. Our approach predominantly focuses on
the tally of faults before testing, expected number of
faults, our classification which includes algorithmic
and handling, control, rationale and succession,
typographical Syntax blunders i.e. off base spelling
of a variable name, customary cycle of articulations,
off base instatement proclamations per module, this
proposed classification approach demonstrates
optimal results while analyzing the metrics with
preparing tests after estimation.

Keywords: Metrics, Cyclomatic complexity, OO
metrics, Fault prediction

I. Introduction

Software fault prediction is one of the vital angles to
be considered while building up a software. It makes

the framework more dependable. Among the other
software predictions, for example, cost prediction,
security prediction and others, fault prediction is the
most critical and the reason it has been looked into
the greatest through every one of these years. Having
a fault prediction demonstrate helps in cost
productivity and all the more imperatively time
effectiveness and furthermore adds to the quality
affirmation of the software. The measures to handle
the faulty modules can be arranged already in the
situation of any issue. It is extremely useful in the
improvement of a bigger software where the
likelihood and the recurrence of faults can be more.
Fault prediction helps in the practicality of the
software. Software fault resistance then again,
becomes possibly the most important factor after the
fault has happened. It guarantees the constant
working of the software after the fault, adding to the
unwavering quality and expanding the steadfastness
of the framework. It adds to the capacity of working
legitimately notwithstanding when a portion of the
inside part goes to a disappointment state. Fault can
occur because of any outline issue, usefulness
blunder or code mistake. The resilience of the
mistakes occurring at the runtime is more than the
incorporate time blunders. Fault tolerant framework
are getting more significance today as they
guarantees the no-stop benefit system. In the event
that the faults are not managed for long, at that point
the results can be major and may exasperate the real
result of the software. Software quality dependably
relies upon different variables like complexity,
quality and size and it is not an end stamp at
consumer loyalty, despite the fact that consumer
loyalty is a definitive objective, quality of item is
constantly fundamental element of software
improvement. Fundamental creating software items,
reusability is the essential vital component to utilize
the current code, it diminishes the repetition and
complexity while execution of customer ask for.
Customary testing process is tedious and costly while

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.ijseat.com Page 816

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 5, Issue 7 ISSN 2321-6905
JULY-2017

treatment of vast undertakings [2]. The conventional
methodologies are fault prediction works with the
fundamental metrics like Lines of
code(LOC),Number of blunders discovered, Number
of mistakes found concerning the module, These
parameters are not adequate to gauge the fault
prediction and cost viability. Software faults might be
configuration faults which are deterministic in nature
and are recognized effortlessly and other sort of
software faults is delegated being brief inward faults
that are transient and are hard to be distinguished
through testing [3]. It is hard to dissect the fault
prediction by essentially measuring the software
metrics of the project. We require a classification
instrument for the examination of the anticipated
results [4].The utilization of software in high-
affirmation and mission-basic frameworks builds the
need to create and evaluate measures of software
quality. In this manner, software metrics are valuable
in the opportune prediction of high risk segments
amid the software advancement process such a
prediction empowers software directors to target
quality change endeavors to the required territories.
For instance, preceding the framework test,
recognizing the segments that are probably going to
be faulty amid operations can enhance the adequacy
of testing endeavors. Different software quality
displaying strategies have been produced and utilized
as a part of genuine software quality predictions.
Classification-based demonstrating for software
quality estimation is a demonstrated system in
accomplishing better software quality.

II. Related Work

The objective association is a software purchaser side
organization that gives different sorts of media
transmission administrations utilizing gained
software frameworks. In the software obtaining
forms, the organization is in charge of prerequisites
examination, structural outline, and acknowledgment
testing, while designer side organizations are
responsible for point by point configuration,
programming unit/reconciliation/framework testing,
and investigating. [1, 8]As the administrations
develop in the quantity of varieties with shorter
reestablishment cycles than at any other time, the
principle inspiration here is improvement of
acknowledgment testing to give brilliant
administrations to clients. From this viewpoint, the
essential objective of this paper is diminishment of
acknowledgment test exertion utilizing procedures
for anticipating faultprone modules [7]. Our

examination incorporates metrics accumulation,
building indicator models, and surveying the
lessening of test exertion.

C4.5 Algorithm

The C4.5 algorithm is an inductive directed learning
framework which utilizes choice trees to speak to a
quality model. C4.5 is a descendent of another
enlistment program, ID3, and it comprises of four
primary projects: choice tree generator, creation
administer generator, choice tree mediator, and
generation manage translator. The algorithm utilizes
these four projects while building and assessing
classification tree models. Diverse tree models were
worked by fluctuating parameters: least hub measure
before part and pruning rate.

The C4.5 algorithm orders certain preprocessing of
information with the goal for it to construct choice
tree models. Some of these incorporate property
estimation portrayal sort, predefined discrete classes,
and adequate number of perceptions for regulated
learning. The classification tree is at first unfilled and
the algorithm starts including choice and leaf hubs,
beginning with the root hub.

Tree disc Algorithm

The Tree disc algorithm is a SAS full scale execution
of the changed Chi-square Automatic Interaction
Detection algorithm. It builds a regression tree from
an info informational collection that predicts a
predetermined all out reaction variable in light of at
least one indicators. The indicator variable is chosen
to be the variable that is most fundamentally
connected with the needy variable as per a chi
squared trial of freedom in the possibility table. [3, 5]

Regression tree-based models are worked by
fluctuating model parameters keeping in mind the
end goal to accomplish the favored harmony between
the misclassification mistake rates, and to stay away
from over fitting of classification trees. A summed up
classification run is utilized to name each leaf hub
after the regression tree is constructed. This
classification lead is fundamentally the same as the
approach took after, when utilizing S-PLUS
regression trees as classification trees[8].

Sprint Sliq algorithm

Sprint Sliq is a condensed variant of Scalable
parallelizable enlistment of choice Trees-Supervised
Learning In Quest, the algorithm can be utilized to

www.ijseat.com Page 817

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 5, Issue 7 ISSN 2321-6905
JULY-2017

manufacture classification tree models that can break
down both numeric and all out traits. It is an altered
rendition of the classification tree algorithm of
CART, and uses an alternate pruning strategy in view
of the base depiction length guideline. The algorithm
has phenomenal versatility and investigation speed.
Classification tree displaying utilizing Sprint-Sliq is
refined in two stages: a tree building stage and a tree
pruning stage. The building stage recursively
allotments the preparation information until the point
when each segment is either ""unadulterated"" or
meets the quit part governs set by the client. The IBM
Intelligent Data Miner apparatus, which actualizes
the Sprint-Sliq algorithm, was utilized by our
exploration gathering to construct classification trees.
Sprint Sliq utilizes the Gini Index to assess the
decency of split of all the conceivable parts. A class
task lead is expected to group modules as fp and
nfp.[9].

Logistic Regression

Logistic regression is a measurable demonstrating
method that offers great model elucidation. Free
factors in logistic regression might be straight out,
discrete or ceaseless. In any case, the all-out factors
should be encoded (e.g., 0, 1) to encourage
classification displaying. Our exploration amass has
utilized strategic regression to construct software
quality classification models. [9]

Give xj a chance to be the jth free factor, and let xi be
the vector of the ith module's autonomous variable
esteems. A module being fp is assigned as an
''occasion''. Give q a chance to be the likelihood of an
occasion, and consequently q=q/1-q is the chances of
an occasion. The logistic regression show has the
shape [10],

Log(q/1-q)=β0+β1x1+β1x2… … .βjxj+βmxm
Where, log implies the common logarithm, bj is the
regression coefficient related with autonomous
variable xj, and m is the quantity of free factors.
Logistic regression suits software quality
demonstrating in light of the fact that most software
designing measures do have a monotonic association
with faults that is inalienable in the fundamental
procedures. Given a rundown of applicant
autonomous factors and a noteworthiness level, an, a
portion of the assessed coefficients may not be
essentially contrast.

III. Defect Prediction Metrics

The number of researcher has been studied many
metrics and proposed different model based on
different metrics. Each researcher was proposing new
metrics to create the defect prediction model. The
mostly used metrics are line of code, source code and
process metrics. Source code- provides the
information about the complexity of the software and
stated that if source code is big then it would be
complex and cause a no. of defects. The process
metrics- stated the information about the
development process, like interrelation or correlation,
right of source code and modification in source code.
Code metrics are directly related to the source code
available where process metric is related with
historical information archived. Code metric is also
told as product metrics which is used to measure the
complexity of source code. The different metric used
are size metric which measure length, volume,
quantity of software product. It is already told in
previous section that most studied base on the
machine learning approach or statically approach.
The machine based model provides the information
about the defect prone in source code known as
classification or number of defects in source code
known as regression. Kim et al. proposed a model
based on bug cach algorithm. It is different than
machine learning approaches. The main working
theme of bug cache algorithm, it stored the list of
locality information for previous most bug prone
source code, methods or files [9]. The researcher also
studied the preprocessing techniques used before the
creating the model. The preprocessing technique is
the important part of defect prediction model. To
improve the assurance and quality, the preprocessing
techniques used for feature extraction, normalization
and noise minimization [8] [6]. The other most
important studied perform by the researcher was
cross project defect prediction which was not feasible
for the new arrival software module, only few model
had been achieved very less feasibility. But it was too
low to accept. Various researchers further studied
about the feasibility of cross project defect prediction
and stated that to achieve feasibility is hard [30].

IV. Application of Defect Prediction

There are many application of software defect
prediction. Its main goal is to allocate resources
effectively for testing the software products. The case
study based software defect prediction model very
less used in the industry [5] [4]. Lewis et al. [4]
conducted a case study in Google. Rehman et al. also
conducted many case study but by these study

www.ijseat.com Page 818

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 5, Issue 7 ISSN 2321-6905
JULY-2017

developer did not get acceptable defect prediction
model [4]. Defect prediction could be benefits to
prioritize warning by find bug. These study
conducted by Rehman et al. [8]. Another application
is to prioritize or extract test case. Regression test is
costly for all test suits than many prioritizations and
selection for test case. Defect prediction model
produce the defect prone software and its ranks.

V. Research Background

In this, summary of metrics selected for this paper,
machine learning methods used, research hypothesis
and measures used for the model are presented.

A. Metrics and Fault Proneness

Fault proneness is defined as probability of presence
of fault in the module. In our research fault proneness
is binary dependent variable while other metrics form
the independent variables. We aim at exploring the
effect of metrics on the fault proneness of a class
using machine learning methods

B. Research Hypothesis

We tested the hypothesis given below to test the
machine learning methods used. Ho: There is no
difference in accuracy of six machine learning
classifiers. HA: At least one of the classifiers is more
accurate than other.

C. Data Collection

This paper uses the datasets provided by Marco et al.
[30]. The dataset is a collection of models and
metrics of five software systems and their histories.
These datasets are collection of models and metrics
of five software systems and their histories.

D. Machine Learning and Model Prediction

Machine Learning is a branch of Artificial
Intelligence which is concerned with design and
development of algorithms that describes behaviors
based on empirical data [6]. Researchers have started
using machine learning as it provides better results
than regression and can incorporate complex nature
of data.

E. Measures for Model Validation

Specificity and Sensitivity validate the model’s
correctness. While specificity means proportion of
classes predicted to be fault prone, sensitivity states
the classes correctly predicted to be fault prone.

Precision is the proportion of classes predicted
correctly and F- measure is the harmonic mean on
recall (sensitivity) and precision. Receiver operating
characteristic (ROC) is plot of sensitivity on Y-
coordinate and its specificity on x-coordinate. ROC is
used effectively to evaluate the performance of
prediction models. Area under ROC Curve (AUC) is
combined measure of sensitivity and specificity. To
compute the accuracy of model being predicted,
AUC is used [1].

VI. Proposed Methodology

We are proposing a dynamic fault prediction with
effective parameters or metrics optimal results. The
paper is worried about faults because of Object
arranged issues and measures with the coordinated
essential metrics of software designing. Our proposed
approach measures the metrics on the source code
and dissects the Testing tests which are measured
Algorithmic and handling, Control, rationale and
arrangement, Typographical Syntax blunder and so
on, at that point advances these metric measures to
the classification lead for examination of testing test,
the underneath chart indicates proposed design, at
first complexity, cyclomatic and protest situated
metrics connected over source code squares and
measures separate parameters and regard them as
testing tests and forward those testing tests to
preparing tests to register back likelihood of testing
test.

Fig. Proposed Architecture

Essential Complexity metrics

Essential element for measuring the software quality
or cost are the metrics we at first processing the
complexity metrics as Hallstead's metric, which
incorporates program length, program vocabulary
which prompts the calculation of Estimated length
lastly registers the immaculateness proportion, at that

www.ijseat.com Page 819

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 5, Issue 7 ISSN 2321-6905
JULY-2017

point figures the program exertion as far as volume
and thickness.

n1 = the quantity of particular administrators n2 = the
quantity of unmistakable operands N1 = the
aggregate number of administrators

N2 = the aggregate number of operands

From these numbers, a few measures can be figured:

• Program vocabulary: n=n1+n2

• Program length: N=N1+N2

• Calculated program length: N'= 1 log2 1 + 2 log2 2

• Volume: V=N+ log2

• Difficulty: D=

• Effort: E=D V

Cyclomatic complexity

It is a quantitative measure of intelligent quality of
the program. It specifically measures the quantity of
straightly autonomous ways through a program's
source code, these ways can be spoken to in different
organizations as succession, while for cycle, if then
else for basic leadership, until for emphasis and
afterward figures the multifaceted nature as far as
vertices or hubs and edges and as far as number of
predicate hubs. Scientifically, the cyclomatic
unpredictability of an organized program is
characterized with reference to the control stream
diagram of the program, a coordinated chart
containing the fundamental pieces of the program,
with an edge between two essential squares if control
may go from the first to the second. The complexity
M is then characterized as

M = E − N + 2P,

Where

E = the quantity of edges of the chart.

N = the quantity of hubs of the chart.

P = the quantity of associated parts.

Protest situated metrics

Protested situated metrics are likewise one kind of
metrics for measure the quality and cost of the
venture as far as

• Weighted techniques per class

• Depth of the legacy tree

• Coupling between classes

• Response for a class

• Class measure lastly figures the polymorphism
factor which incorporates the variables of number of
abrogating strategies, number of techniques and
number of sub classes

Classification

After the calculation of the considerable number of
metrics, testing test information can be sent to the
preparation tests to gauge and group the metric
results with existing results as far as restrictive
likelihood by utilizing Naive Bayesian classifier,
which prompts the fault prediction examination.

Naive Bayesian Classification

Evaluating probabilities

P(X), P(X|Ci),and P(Ci)may be evaluated from given
information Bayes Theorem:

P(Ci | X)=

Steps Involved:

1. Each information test is of the sort X=(xi) i =1(1)n,
where xi is the estimations of X for characteristic Ai

2. Suppose there are m classes Ci, i=1(1)m.

P(Ci|X) > P(Cj|X)

i.e BC doles out X to class Ci having most elevated
back likelihood molded on X

The class for which P(Ci|X) is boosted is known as
the most extreme back theory.

From Bayes Theorem

3. P(X) is consistent. Just P(X|Ci), P(Ci) require be
boosted.

• If class earlier probabilities not known, at that point
expect all classes to be similarly likely

• Otherwise augment P(Ci) = Si/S Problem:
processing P(X|Ci) is unfeasible!

4. Naïve suspicion: property autonomy

P(X|Ci) = P(x1,… ,xn|Ci) =P(xk|Ci)

www.ijseat.com Page 820

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 5, Issue 7 ISSN 2321-6905
JULY-2017

5. In request to characterize an obscure example X,
assess for each class Ci. Test X is doled out to the
class CiffP

P(X|Ci)P(Ci) > P(X|Cj) P(Cj).

Exploratory Analysis

We tentatively broke down the results by registering
the all measures over code scraps independently and
after that figured parameters sent towards preparing
dataset.

Let us consider an example for computing
Halstead metrics for small code snippet as follows
main() { inta,b,c,avg;

scanf(“%d %d%d”, &a,&b,&c); avg=(a+b+c)/3;
printf(“avg=%d”,avg);

}

The unique operators are
main,(),(),int,scanf,&,=,*,/,printf

The unique operation are a,b,cavg,”%d %d

%d”,3,”avg=%d”

• 1=10, 2=7, =17

• N1=16,N2=15,N=31

• Calculated Program Length

N’=10 log2 10 + 7 log2 7=52.9

• Volume V=31 log217=126.7

• Difficulty D=10/2
15/7=10.7

• Effort E=10.7 126.7=1,355.7

• Time required to program
T=1,355.7/3000=0.004 For the measure of
object oriented metrics, we considered
weighted methods per class, Depth of the
inheritance tree, Coupling between classes
and overridden methods and for the measure
of cyclomatic complexity we considering an

subroutine. Alternatively one may calculate the
cyclomatic complexity using the decision points rule.
Since there are two decision points, the cyclomatic
complexity is 2 + 1 = 3. Now these measures can
be forwarded to training dataset for classification of
this testing sample, the following experimental
results shows efficient acceptance results than the
traditional approaches as follows

Fig 2: Comparative Analysis

VII. Conclusion

We are concluding our research work with efficient
metrics computation with Complexity, cyclomatic,
object oriented metrics over blocks of source code
followed by naïve Bayesian classification to compute
whether the testing sample is cost effective or not by
analyzing fault prediction.

References

1. A. Bacchelli, M. D’Ambros, and M. Lanza. Are
popular classes more defect prone? In Proceedings of
the 13th International Conference on Fundamental
Approaches to Software Engineering, FASE’10,
pages 59– 73, Berlin, Heidelberg, 2010. Springer-
Verlag.

2. A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. In

example like
if A = 354
then if B > C
then A = B
else A = C
endif
endif
print A
Thus using the formal formula the cyclomatic complexity
is 8-7 + 2 = 3. In this case there is no graph called or

0

1

2

3

4

5

Metrics Classification

Traditional

Proposed

www.ijseat.com Page 821

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol. 5, Issue 7 ISSN 2321-6905
JULY-2017

Proceedings of the International Conference on
Software Maintenance, 2000.

3. C. Bird, N. Nagappan, B. Murphy, H. Gall, and P.
Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 4–14,
New York, NY, USA, 2011. ACM.

4. C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and
E. J. W. Jr. Does bug prediction support human
developers? Findings from a google case study. In
International Conference on Software Engineering
(ICSE), 2013.

5. E. Engstrom, P. Runeson, and G. Wikstrand. An
empirical evaluation of regression testing based on
fixcache ¨ recommendations. In Software Testing,
Verification and Validation (ICST), 2010 Third
International Conference on, pages 75–78, April
2010.

6. F. Akiyama. An Example of Software System
Debugging. In Proceedings of the International
Federation of Information Processing Societies
Congress, pages 353–359, 1971.

7. F. Peters and T. Menzies. Privacy and utility for
defect prediction: Experiments with morph. In
Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 189–199,
Piscataway, NJ, USA, 2012. IEEE Press.

8. F. Rahman and P. Devanbu. Comparing static bug
finders and statistical prediction. In Proceedings of
the 2014 International Conference on Software
Engineering, ICSE ’14, 2014.

9. F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou.
Towards building a universal defect prediction
model. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR
2014, pages 182– 191, New York, NY, USA, 2014.
ACM. 34

10. J. Nam, S. J. Pan, and S. Kim. Transfer defect
learning. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13,
pages 382–391, Piscataway, NJ, USA, 2013. IEEE
Press.

Authors

T. Ravi Kumar received M.Tech
degree in Computer Science and
Engineering from Jawaharlal
Nehru technological University
Hyderabad, A.P., India. And
B.tech in computer Science and
Information Technology from
Jawaharlal Nehru Technological

University Hyderabad, A.P., India. He is having 10
years of experience in teaching and presently
working as Sr Assistant Professor in the Department
of Computer Science and Engineering at Aditya
Institute of Technology and Management, Tekkali
[AITAM], A.P., India. His area of research includes
Software Engineering, Fuzzy logic and Software
Testing Methodologies.

Dr T. Srinivas Rao received
B.Tech degree from GITAM,
Andhra University,
Visakhapatnam A.P., India.
Received M.Tech degree from
Andhra University,
Visakhapatnam, A.P., India.
Received Ph.D. degree from

Andhra University, Visakhapatnam, A.P., India.
Presently he is working as Associate professor,
department of CSE, Gitam Institute of Technology,
GITAM University, Visakhapatnam. He is having 17
years of Teaching Experience. His research interest
includes wireless communication (WiFi, WiMax),
Mobile Ad hoc Networks, Sensor Networks, Neural
Networks and fuzzy logic, Communication networks,
Data mining, software engineering, Machine
Learning.

