
International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 12, DECEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1301

Habitual Test Packet Generation And Fault Localization
KSNM Chaitanya 1, U.Vinod Kumar 2

1PG Scholar, Pydah College of Engineering, Kakinada, AP, India, E-mail: ksnmc522@gmail.com.
2Assistant Professor, Pydah College of Engineering, Kakinada, AP, India.

Abstract—Networks are getting larger and more
complex, yet administrators rely on rudimentary tools
such as and to debug problems. We propose an
automated and systematic approach for testing and
debugging networks called “Automatic Test Packet
Generation” (ATPG). ATPG reads the router
configurations and generates a device-independent
model. The model is used to generate a minimum set of
test packets to (minimally) exercise every link in the
network or (maximally) exercise every rule in the
network. Test packets are sent periodically, and detected
failures trigger a separate mechanism to localize the
fault. ATPG can detect both functional (e.g., incorrect
firewall rule) and performance problems (e.g., congested
queue). ATPG complements but goes beyond earlier
work in static checking (which cannot detect liveness or
performance faults) or fault localization (which only
localize faults given liveness results).Test packets are
sent periodically and detected failure trigger a separate
mechanism to localize the fault. ATPG can detect both
functional testing and performance testing problems.
ATPG complements but goes beyond earlier work in
static checking or fault localization
Key words: test packet generation, Data plane analysis,
network troubleshooting,
I. Introduction
Networking is the word basically relating to computers and
their connectivity. It is very often used in the world of
computers and their use in different connections. The term
networking implies the link between two or more computers
and their devices, with the vital purpose of sharing the data
stored in the computers, with each other. The networks
between the computing devices are very common these days
due to the launch of various hardware and computer
software which aid in making the activity much more
convenient to build and use.
Our goal is to automatically detect these types of failures
The main contribution of a paper is what we call an
Automatic Test Packet Generation [ATPG] framework that
automatic generates a minimal set of packets to test liveness
that provide support for topology. The tool can also
automatically generate packets to test performance
assertions such as packet latency. In Example 1, instead of
Admin manually decide which packets to send, the tool does
the periodically on his behalf. ATPG detects and diagnoses
errors by independently and testing all forwarding entries,
firewalls rules, and any packet processing rules in network.
In ATPG, test packets are create algorithmically from the
configuration files and FIB, with minimum number of
packets required completing test. Test packets are provide
into the network so that every rule is checked directly from
the data plane. Since ATPG treats links just like normal

forwarding rules, it’s full testing of every link in the
network. It can also specialize to generate a minimal set of
packets that test every link for network liveness. At least in
this basic form, we feel that ATPG or some similar
technique is fundamental to networks: Instead of reacting to
failures.
II.Proposed System
 Automatic Test Packet Generation (ATPG)

framework that automatically generates a minimal
set of packets to test the liveness of the underlying
topology and the congruence between data plane
state and configuration specifications. The tool can
also automatically generate packets to test
performance assertions such as packet latency.

 It can also be specialized to generate a minimal set
of packets that merely test every link for network
liveness.

Fig.1: system architecture
Advantages Of Proposed System:

 A survey of network operators revealing common
failures and root causes.

 A test packet generation algorithm.
 A fault localization algorithm to isolate faulty

devices and rules.
 ATPG use cases for functional and performance

testing.
 Evaluation of a prototype ATPG system using rule

sets collected from the Stanford and Internet2
backbones.

A. Test Packet Generation
1) Algorithm:We assume a set of test terminals in the
networkcan send and receive test packets. Our goal is
togenerate aset of test packets to exerciseevery rule in every
switch function,so that any fault will be observed by at least
one test packet. Thisis analogous to software test suites that
try to test every possiblebranch in a program. The broader
goal can be limited to testingevery link or every
queue.When generating test packets, ATPG must respect
two keyconstraints: 1) Port: ATPG must only use test
terminals that areavailable; 2)Header: ATPGmust only use
headers that each testterminal is permitted to send. For
example, the network administratormay only allow using a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 12, DECEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1302

specific set of VLANs. Formally,we have the following
problem.Problem 1 (Test Packet Selection): For a network
with the switch functions, and topology function,
determinethe minimum set of test packets to exercise all
reachablerules, subject to the port and header
constraints.ATPG chooses test packets using an algorithm
we call TestPacket Selection (TPS). TPS first finds all
equivalent classesbetween each pair of available ports. An
equivalent class is aset of packets that exercises the same
combination of rules.

Fig2. Example topology with three switches
IV. Implementation
Modules:
 Test Packet Generation
 Generate All-Pairs Reachability Table
 ATPG Tool
 Fault Localization

Modules Description:
Test Packet Generation:
We assume a set of test terminals in the network can send
and receive test packets. Our goal is to generate a set of test
packets to exercise every rule in every switch function, so
that any fault will be observed by at least one test packet.
This is analogous to software test suites that try to test every
possible branch in a program. The broader goal can be
limited to testing every link or every queue. When
generating test packets, ATPG must respect two key
constraints First Port (ATPG must only use test terminals
that are available) and Header (ATPG must only use headers
that each test terminal is permitted to send).
Generate All-Pairs Reachability Table:
ATPG starts by computing the complete set of packet
headers that can be sent from each test terminal to every
other test terminal. For each such header, ATPG finds the
complete set of rules it exercises along the path. To do so,
ATPG applies the all-pairs reach ability algorithm
described. On every terminal port, an all- header (a header
that has all wild carded bits) is applied to the transfer
function of the first switch connected to each test terminal.
Header constraints are applied here.
ATPG Tool:
ATPG generates the minimal number of test packets so that
every forwarding rule in the network is exercised and
covered by at least one test packet. When an error is
detected, ATPG uses a fault localization algorithm to
determine the failing rules or links.
Fault Localization:
ATPG periodically sends a set of test packets. If test packets
fail, ATPG pinpoints the fault(s) that caused the problem. A
rule fails if its observed behaviour differs from its expected

behaviour. ATPG keeps track of where rules fail using a
result function “Success” and “failure” depend on the nature
of the rule: A forwarding rule fails if a test packet is not
delivered to the intended output port, whereas a drop rule
behaves correctly when packets are dropped. Similarly, a
link failure is a failure of a forwarding rule in the topology
function. On the other hand, if an output link is congested,
failure is captured by the latency of a test packet going
above a threshold.
Results
Screen Shots
Node 1:

V. Conclusion
Testing liveness of a network is a fundamental problem for
ISPs and large data center operators. However, doing this
requires a way of abstracting across device specific
configuration files (e.g., header space), generating headers
and the links they reach (e.g., all-pairs Reachability), and
finally determining a minimum set of test packets (Min-Set-
Cover). Even the fundamental problem of automatically
generating test packets for efficient liveness testing requires
techniques akin to ATPG. Our implementation also
augments testing with a simple fault localization scheme
also constructed using the header space framework. As in
software testing, the formal model helps maximize test

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 12, DECEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1303

coverage while minimizing test packets. Our results show
that all forwarding rules in Stanford backbone or Internet2
can be exercised by a surprisingly small number of test
packets (for Stanford, and for Internet2).
Sending probes between every pair of edge ports is neither
exhaustive nor scalable. It suffices to find a minimal set of
end-to-end packets that traverse each link. ATPG, however,
goes much further than liveness testing with the same
framework. ATPG can test for Reachability policy (by
testing all rules including drop rules) and performance
health (by associating performance measures such as latency
and loss with test packets). Other fields of engineering
indicate that these desires are not unreasonable: For
example, both the ASIC and software design industries are
buttressed by billion-dollar tool businesses that supply
techniques for both static (e.g., design rule) and dynamic
(e.g., timing) verification. In fact, many months after we
built and named our system, we discovered to our surprise
that ATPG was a well-known acronym in hardware chip
testing, where it stands for Automatic Test Pattern
Generation. We hope network ATPG will be equally useful
for automated dynamic testing of production networks.
Network managers today use primitive tools such as and.
Our survey results indicate that they are eager for more
sophisticated tools.
References
[1] Zeng ,Kazemian, Varghese,and Nick “Automatic Test
Packet Generation”,VOL. 22, NO. 2, APRIL 2014

[2] Y. Bejerano and R. Rastogi, “Robust monitoring of link
delays and faults in IP networks,” IEEE/ACM Trans Netw.,
vol. 14, no. 5, pp. 1092–1103, Oct. 2006

[3] N. Duffield, “Network tomography of binary network
performance characteristics,” IEEE Trans. Inf. Theory, vol.
52, no. 12, pp. 5373–5388, Dec. 2006.

[4] N. Duffield, F. L. Presti, V. Paxson,
andD.Towsley,“Inferringlink loss using striped unicast
probes,” in Proc. IEEE INFOCOM, 2001, vol. 2, pp. 915–
923.

[5] B. Lantz, B. Heller, and N. McKeown, “A network in a
laptop: Rapid prototyping for software-defined networks,”
in Proc. Hotnets, 2010, pp. 19:1–19:6.

[6] "OnTimeMeasure,” [Online]. Available:
http://ontime.oar.net/

[7] “Open vSwitch,” [Online]. Available:
http://openvswitch.org/

[8] H. Weatherspoon, “All-pairs ping service for PlanetLab
ceased,” 2005 [Online]. Available: http://lists.planet-
lab.org/pipermail/users/2005-July/001518.htm

[9] S. Shenker, “The future of networking, and the past of
protocols,” 2011 [Online].Available:
http://opennetsummit.org/archives/oct11/shenker-tue.pdf

[10] “ATPG code repository,” [Online]. Available:
http://eastzone.github.com/atpg/
[11] “Automatic Test Pattern Generation,” 2013 [Online].
Available:http://en.wikipedia.org/wiki/Automatic_test_patte
rn_generation

[12] P. Barford, N. Duffield, A. Ron, and J. Sommers,
“Network performanceanomaly detection and localization,”
in Proc. IEEE INFOCOM,Apr. , pp. 1377–1385.

[13]“Beacon,”[Online].Available:http://www.beaconcontrol
ler.net/

[14] Y. Bejerano and R. Rastogi, “Robust monitoring of link
delays andfaults in IP networks,” IEEE/ACM Trans. Netw.,
vol. 14, no. 5, pp.1092–1103, Oct. 2006.

