
International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 11, NOVEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1004

Adaptable conveyed administration uprightness verification
for software as a service clouds

1Satuluri Om Sri Sai Krishna,2G.B.V.Padmanadh,3Dr. G Veereswara Swamy
1M.Tech(research scholar in Software engineering),2Associate Professor,3Professor

Dept. of Computer science in Kakinada Institute of Engg. & Tech.,3Dept. of Computer science
Gitam University

Abstract
SaaS gives an adaptable situation through which
application administration providers permitted to
have their applications in a conveyed domain, with
the goal that clients can get to the facilitated
administrations in a less demanding manner. As the
earth is partaking in nature there is more degree for
SaaS mists defenseless against vindictive assailants.
In this paper IntTest another trustworthiness
verification plan is presented that can utilize diagram
investigation plan to accomplish higher Pinpointing
of aggressors. Here additionally consequently
rectifying the aftereffects of malignant aggressors
with results gave by kindhearted administration
supplier's method called auto revision is presented.
Additionally we actualized IntTest and tried on a
creation cloud foundation, the exploratory results
demonstrate this plan accomplished higher precision
than past plans. IntTest does not require any
protected piece backing and equipment and it
additionally underpins for huge scale cloud
computing foundation.
Keywords: Distributed service integrity attestation,
cloud computing, secure distributed data processing.
I. Introduction
Lately the cloud computing innovation is well known
in light of the fact that it is a drawing in innovation in
the field of software engineering. Cloud computing is
web base registering that typically alluded the
common configurable assets is furnished with PCs
and different gadgets as administrations. Cloud
computing agent administrations with a client's
information, programming and calculation over a
system. The client of the cloud can get the
administrations through the system. At the end of the
day, clients are utilizing or purchasing figuring
administrations from others. Cloud can give anything
as a Service (AaaS). Numerous administration model
are given by the cloud they are IaaS, SaaS and PaaS.
Base as an administration (IaaS) offer PCs physical
or virtual machines and different assets. Base as an
administration (IaaS) mists regularly offer extra
assets, for example, a virtual-machine circle picture
library, crude square stockpiling, and record or
question stockpiling, firewalls, load balancers, IP

addresses, virtual neighborhood (VLANs), and
programming groups. Framework as an
administration (IaaS) cloud suppliers supply these
assets on interest from their substantial pools
introduced in server farms. In the Platform as an
administration (PaaS) models, cloud suppliers convey
a processing stage, commonly including working
framework, programming dialect execution
environment, database, and web server. Application
engineers can create, run their product arrangements
on a cloud stage without the expense intricacy of
purchasing and dealing with the basic equipment,
programming layers. With some Platform as an
administration (PaaS) offers like Microsoft Azure
and Google App Engine, the hidden PC and capacity
assets scale naturally to match application request so
that the cloud client does not need to distribute assets
physically. This paper focus on programming as an
administration. It is a product authorizing and
conveyance model in which programming is
authorized on a membership premise and is midway
facilitated. Once in a while alluded to as "on-interest
programming". Programming as an administration
(SaaS) is regularly gotten to by clients utilizing a
slender customer by means of a web program.
Programming as an administration (SaaS) has been
fused into the procedure of all driving undertaking
programming organizations. One of the greatest
offering focuses for these organizations is the
possibility to diminish Information Technology (IT)
bolster costs by outsourcing equipment and
programming upkeep and backing to the Software as
an administration (SaaS) supplier. Most by far of
SaaS arrangements depend on a multi-occupant
building design. To bolster versatility, the application
is introduced on various machines (called level
scaling). At times, a second form of the application is
set up to offer a select gathering of clients with
access to pre-discharge variants of the applications
(e.g., a beta adaptation) for testing purposes. What's
more, appeared differently in relation to customary
programming, where numerous physical duplicates of
the product each possibly of an alternate form, with a
conceivably distinctive arrangement, and regularly
redid are introduced crosswise over different client

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 11, NOVEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1005

destinations. While an exemption as opposed to the
standard, some Software as an administration (SaaS)
arrangements don't utilize multitenancy, or use
different systems, for example, virtualization to cost-
successfully deal with countless set up of multi-
occupancy. Whether multi-tenure is a fundamental
part for programming as-an administration is a
subject of contention.
A few constraints moderate down the
acknowledgment of Software as an administration
(SaaS) and preclude from being utilized as a part of a
few cases:
• Since information are being put away on the
merchant's servers, information security turns into an
issue.
• Software as an administration (SaaS) applications
are facilitated in the cloud, far from the application
clients. Furthermore, brings dormancy into nature;
thus, for instance, the Software as an administration
(SaaS) model is not suitable for applications that
request reaction times in the milliseconds.
• Multi-occupant architectures, which drive cost
productivity for SaaS arrangement suppliers, limit
customization of utilizations for huge customers,
hindering such applications from being utilized as a
part of situations (material generally to extensive
endeavors) for which such customization is vital.
• Some business applications oblige access to or
joining with client's present information. At the point
when such information are substantial in volume or
delicate (e.g., end clients' close to home data),
incorporating them with remotely facilitated
programming can be exorbitant or unsafe, or can
strife with information administration regulations.
• Constitutional court order laws don't ensure all
types of Software as an administration (SaaS)
powerfully put away information. The final result is
that a connection is added to the chain of security
where access to the information, and, by expansion,
abuse of these information, are restricted just by the
accepted trustworthiness of third gatherings or
government organizations ready to get to the
information all alone recognizance.
• Switching Software as an administration (SaaS)
sellers may include the moderate and troublesome
errand of exchanging extensive information records
over the Internet.
• Organizations that embrace SaaS may compel into
receiving new forms, which may bring about
unexpected preparing expenses or an increment in
likelihood that a client may make a blunder.
Depending on an Internet association implies that
information are exchanged to and from a SaaS firm at
web speeds, as opposed to the conceivably higher
paces of an association's interior system. In spite of
the fact that secrecy and security assurance issues

have been widely contemplated by past examination
the administration respectability will be talked about
in this paper.
II. Problem Formulation
For a given SaaS system, the goal of IntTest is to
pinpoint any malicious service provider that offers an
untruthful service function. IntTest treats all service
components as black-boxes, which does not require
any special hardware or secure kernel support on the
cloud platform. We now describe our attack model
and our key assumptions as follows Attack model: A
malicious attacker can pretend to be a legitimate
service provider or take control of vulnerable service
providers to provide untruthful service functions.
Malicious attackers can be stealthy, which means
they can misbehave on a selective subset of input
data or service functions while pretending to be
benign service providers on other input data or
functions.
The stealthy behavior makes detection more
challenging due to the following reasons:
1) The detection scheme needs to be hidden from the
attackers to prevent attackers from gaining
knowledge on the set of data processing results that
will be verified and therefore easily escaping
detection;
2) The detection scheme needsto be scalable while
being able to capture misbehavior that may be both
unpredictable and occasional. In a large-scale cloud
system, we need to consider colluding attack
scenarios where multiple malicious attackers collude
or multiple service sites are simultaneously
compromised and controlled by a single malicious
attacker. Attackers could sporadically collude, which
means an attacker can collude with an arbitrary
subset of its colluders at any time. We assume that
malicious nodes have no knowledge of other nodes
except those they interact with directly. However,
attackers can communicate with their colluders in an
arbitrary way. Attackers can also change their
attacking and colluding strategies arbitrarily.

Fig.. Replay-based consistency check
Assumptions:

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 11, NOVEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1006

1. We first assume that the total number of malicious
service components is less than the total number of
benign ones in the entire cloud system. Without this
assumption, it would be very hard, if not totally
impossible, for any attack detection scheme to work
when comparable ground truth processing results are
not available. However, different from RunTest,
AdapTest, or any previous majority voting schemes,
IntTest does not assume benign service components
have to be the majority for every service function,
which will greatly enhance our Pinpointing power
and limit the scope of service functions that can be
compromised by malicious attackers.
2. Second, we assume that the data processing
services are input-deterministic, that is, given the
same input, a benign service component always
produces the same or similar output (based on a user
defined similarity function). Many data stream
processing functions fall into this category. We can
also easily extend our attestation framework to
support stateful data processing services, which
however is outside the scope of this paper. Third, we
also assume that the result inconsistency caused by
hardware or software faults can be marked by fault
detection schemes and are excluded from our
malicious attack detection.
III. SaaS Cloud System Model
It develops upon the concepts of Software as a
Service (SaaS) and Service Oriented Architecture
(SOA) which allows application service providers
(ASPs) to deliver their applications via large-scale
cloud computing infrastructures. Amazon Web
Service (AWS) and Google App Engine are examples
to provide a set of application services supporting
enterprise applications and big data processing. A
distributed application service can be dynamically
composed from individual service components
provided by different ASPs. For example, a disaster
assistance claim processing application consists of
voice-over-IP (VoIP) analysis component, email
analysis component, community discovery
Component, and clustering and joins components.
Our work focuses on data processing services which
have become increasingly popular with applications
in any real world usage domains such as business
intelligence, security surveillance, and scientific
computing. Each service component, denoted by ci,
provides a specific data processing function, denoted
by fi, such as sorting, filtering, correlation, or data
mining utilities. Each service component can have
one or more input ports for receiving input data
tuples, denoted by di, and one or more output ports to
emit output tuples. In a large-scale SaaS cloud, the
same service function can be provided by different
ASPs. Those functionally equivalent service
components exist because: i) service providers may

create replicated service components for load
balancing and fault tolerance purposes; and ii)
popular services may attract different service
providers for profit. To support automatic service
composition, we can deploy a set of portal nodes that
serve as the gateway for the user to access the
composed services in the SaaS cloud. The portal node
can aggregate different service components into
composite services based on the user’s requirements.
For security protection, the portal node can perform
authentication on users to avoid malicious users from
disturbing normal service provisioning. Different
from other open distributed systems such as peer-to-
peer networks and volunteer computing
environments, SaaS cloud systems possess a set of
unique features. First, third-party ASPs typically do
not want to reveal the internal implementation details
of their software services for intellectual property
protection. Thus, it is difficult to only rely on
challenge-based attestation scheme where the verifier
is assumed to have certain knowledge about the
software implementation or have access to the
software source code. Second, both the cloud
infrastructure provider and third-party service
providers are autonomous entities. It is impractical to
impose any special hardware or secure kernel support
on individual service provisioning sites. Third, for
privacy protection, only portal nodes have global
information about which service functions are
provided by which service providers in the SaaS
cloud. Neither cloud users nor individual ASPs have
the global knowledge about the SaaS cloud such as
the number of ASPs and the identifiers of the ASPs
offering a specific service function.
IV. Cloud Security Challenges
When a company mitigates to intense cloud services,
and particularly public cloud services, abundant of
the automatic data processing system infrastructure
can currently below the management of cloud service
supplier. These management initiatives can needs
clearly delineating the possession and responsibility
roles of each the cloud supplier and therefore the
organization functioning within the role of client.
Security managers should be able to confirm what
detective and preventative controls exist to obviously
outline security posture of the organization. Though
correct security controls should be implement
supported quality, threat, and vulnerability risk
assessment matrices. Encryption: the sensitivity of
information might need that the network traffic to
and from the virtual machine be encrypted,
victimization encoding at the host OS computer code.
• Physical security: keep the virtual system and cloud
management hosts safe and secure behind carded
doors, and environmentally safe.

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 11, NOVEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1007

• Authentication and access control: the
authentication capabilities among your virtual system
ought to copy the approach your different physical
systems evidence. Only once watchword and life
science ought to all be enforced within the same
manner. Conjointly authentication needs whereas
you're causing information or message from one
cloud to different cloud. To produce message
authentication we'll use digital signatures.
• Separation of duties: as system get additional
complicated, misconfiguration occur, as a result of
lack of experience in addition to meager
communication. Take care to enforce least privileges
with access controls and responsibleness.
• Configuration, modification management, and patch
management: this is often important and typically
unnoted in smaller organizations. Configuration,
modification management, patch management, and
updated processes ought to be maintained within the
virtual world moreover as physical world.
• Intrusion detection and prevention: what’s returning
into and going out of your network must recognize. a
bunch primarily based} intrusion bar system in
addition to a hypervisor based resolution may
examine for virtual network traffic.
V. Proposed System
Software as a service and service oriented
architecture are the basic concepts of SaaSclouds and
this will allow the application service provider to
deliver their application via cloud computing
infrastructure. In our proposed method we are
introducing a new concept called IntTest. The main
goal of IntTest is, it can pinpoint all the malicious
service providers. IntTest will treat all the service
providers as black boxes and this does not need any
special hardware or secure kernel support. When we
are considering the large scale cloud system multiple
service providers may simultaneously compromised
by a single malicious attacker. In this we assume that
the malicious nodes are not having any knowledge
about the other nodes except those which they are
directly interacting. In this proposed system we are
making some assumptions. First of all we are
assuming that the total number malicious service
components are less than that of the total number of
benign service providers in the entire cloud. This
assumptions is very important because without this
assumption, it would be difficult for any attack
detecting scheme to work successfully. The second
assumption is the data processing services are
important deterministic. That is, the same input that
are giving by a benign service component will always
produce the same output. And finally we assume that
the inconsistency caused by hardware or software
faults can be excluded from malicious attacks. Fig.
shows the overall architecture of the proposed

system. In this the user give request to cloud the
serve will be deployed in the cloud the cloud will
forward the user request to the SaaS and the response
will be send to the cloud by the SaaS. And then the
IntTest process will be done. After that the result auto
correction will be done. After that the result will be
send to the user by the cloud. The architecture shows
this IntTest module in detail.

Figure: Over all architecture of the proposed method
VI. Different Form Of Malicious Attacker In
Service Provider
In a shared cloud infrastructure, malicious attacker
can pretend to be legitimate service provider to
provide fake service instance or compromised
vulnerable benign service instance by exploiting their
security roles. It consist of different form of
malicious which are described below.
1) Malicious Intermediary A malicious intermediary
may arbitrarily alter and inject protocol data. To
prevent such attacks, we can employ cryptographic
construction such as message authentication codes or
digital signatures.
2) The Data Misuse Attack It uses authenticated
protocol data in a malicious way. For instance, a
malicious intermediary can perform a data
suppression attack by effusing to forward any data.
Then the attacker can perform the replay attack by
replaying data that have been authenticated but are
outdated.
3) Malicious process and the Data Falsification
Attack In a highly adversarial environment, an
attacker may corrupt one or more process in the
system. A malicious process is capable of injection
bogus data into distributed system. We refer to this
attack as the data falsification attack.
4) Non-collusion Always Misbehave (NCAM)
Malicious component always act independently and
always give incorrect results. It correspond to bi =1
and ci =0. 5) Non-collusion Probabilistically
Misbehave (NCPM) Malicious components always
act independently and give incorrect results
probabilistically with probability less than 1.

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 11, NOVEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1008

Different malicious components may have different
misbehaving probability bi. It corresponds to 0< bi <
bi < 1 and ci =1. 8) Partial Time Partial Collusion
Malicious component sometimes collude and
sometimes act independently. It corresponds to 0<
bi< ci<1.
VII. Signature verification algorithm

For receiver to authenticate senders signature, he

must have a copy of her public-key curve point .

Receiver can verify is a valid curve point as
follows:

1. Check that is not equal to the identity
element , and its coordinates are otherwise
valid

2. Check that lies on the curve
3. Check that

VIII. Security Analysis
Although this algorithm cannot guarantee zero false
positives when there are multiple independent
colluding groups, it will be difficult for attackers to
escape our detection with multiple independent
colluding groups since attackers will have
inconsistency links not only with benign nodes but
also with other groups of malicious nodes.
Additionally, this approach limits the damage
colluding attackers can cause if they can evade
detection in two ways. First, this algorithm limits the
number of functions which can be simultaneously
attacked. Second, our approach ensures a single
attacker cannot participate in compromising an
unlimited number of service functions without being
detected.

Conclusion
This paper, discussed about various approaches and
techniques used in providing the service integrity of
SaaS cloud model. Each techniques has its own
advantages and dis-advantages. Most integrity attacks
can be effectively destroyed by the advanced
techniques and approaches. All methods are
approximate to our goal of providing the service or
search results with integrity, we need to further
perfect those approaches or develop some efficient
methods.
Future Wok
In the future, allow verifying functional properties of
cloud services, they have not yet matured. Multiple
recent works have tackled specific concerns that arise
in the context of cloud storage, and promising
techniques have emerged.
References
[1] Garay.J and Huelsbergen.L, “Software integrity
protection using timed executable agents,” in
Proceedings of ACM Symposium on Information,
Computer and Communications Security
(ASIACCS), Taiwan, Mar. 2006.

[2] Juan Du Daniel J. Dean, Yongmin Tan, Xiaohui
Gu, Senior and Ting Yu Scalable Distributed Service
Integrity Attestation for Softwareas-a-Service Clouds

[3] Du.J, Wei.W, Gu.X, and Yu.T, “Runtest:
Assuring Integrity of Dataflow Processing in Cloud
Computing Infrastructures,” Proc.ACM Symp.
Information, Computer and Comm. Security
(ASIACCS),2010.

[4] Du.J, Shah.N, and Gu.X, “Adaptive Data-Driven
Service Integrity Attestation for Multi-Tenant Cloud
Systems,” Proc. Int’l Workshop Quality of Service
(IWQoS), 2011. Virtual Computing Lab,
http://vcl.ncsu.edu/, 2013.

[5] Ho et al.T, “Byzantine Modification Detection in
Multicast Networks Using Randomized Network
Coding,” Proc. IEEE Int’l Symp. Information Theory
(ISIT), 2004.

[6] Hwang.I, “A Survey of Fault Detection, Isolation,
and Reconfiguration Methods,” IEEE Trans. Control
System Technology, vol. 18,no. 3, pp. 636-653, May
2010.

[7] Lamport.L, Shostak.R, and Pease.M, “The
Byzantine Generals Problem,” ACM Trans.
Programming Languages and Systems, vol. 4,no. 3,
pp. 382-401, 1982

After that, Bob follows these steps:

1. Verify that and are integers in . If

not, the signature is invalid.

2. Calculate , whereHASH is

the same function used in the signature generation.

3. Let be the leftmost bits of.

4. Calculate .

5. Calculate and

.
6. Calculate the curve

point .

7. The signature is valid if ,
invalid otherwise.

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 11, NOVEMBER - 2015 ISSN 2321-6905

www.ijseat.com Page 1009

[8] Shi.E, Perrig.A, and Doorn.L.V, “Bind: A fine-
grained attestation service for secure distributed
systems,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2005.

[9] Xu.W, Venkatakrishnan.V. N, Sekar.R, and
Ramakrishnan .I. V, “A framework for building
privacy-conscious composite web services,” in IEEE
International Conference on Web Services, Chicago,
IL, Sep. 2006, pp. 655–662.

[10] Zhang.H, Savoie.M,Campbell.S, Figuerola.S,
von Bochmann.G, and Arnaud.B.S, “Service-oriented
virtual private networks for grid applications,” in
IEEE International Conference on Web Services, Salt
Lake City, UT, Jul. 2007, pp. 944–951.

Authors:
Mr. Satuluri Om Sri Sai Krishna
is a student of Kakinada Institute of
Engineering and Technology,
Kakinada. Presently I am pursuing
my M.Tech [Software Engineering]
from this college.My area of interest
includes Computer networks and
Programing languages.

G.B.V.Padmanadh working as
Associate Professor,Dept. of
Computer science Kakinada
Institute of Engg. & Tech.He so
many published national and
international papers.His area of
internest inimage mining and Data

mining.

Dr. G. Veereswara swamy Received
M.Tech (C.S & S.E) in Computer
Science Engineering and Ph.D from
Andhra University during 1999 and
1993 respectively. He is working as
faculty member in GITAM University

from the last 20 years. Presently working as a Professor
in the Department of Engineering Physics. His research
interest includes Mobile computing, Operating Systems,
and Networks. He Published more than 20 papers in
various National and International Conference and
Journals

