
International Journal of Science Engineering and Advance Technology,
IJSEAT , Vol.3, Issue 10

ISSN 2321-6905
October 2015

www.ijseat.com Page 634

Hop-by-Hop Adaptive linking A Novel Approach for
Finest routing

Sunkara Mounika 1, Md Amanatulla 2

1 M.Tech (CSE), Nimra Institute of Science and Technology, A.P., India.
2 Assistant Professor, Dept. of Computer Science & Engineering, Nimra Institute of Science and

Technology, A.P., India.

Abstract — Using Hop-by-Hop Adaptive linking for
achieving finest routing is an unprecedented approach. And it
is the first link-state routing solution carrying traffic through
packet-switched networks. At each node, for every other
node, the algorithm independently and iteratively updates the
fraction of traffic destined to that leaves on each of its
outgoing links. At each iteration, the updates are calculated
based on the shortest path to each destination as determined
by the marginal costs of the network’s links. The marginal
link costs used to find the shortest paths are in turn obtained
from link-state updates that are flooded through the network
after each iteration. For stationary input traffic, we prove
that our project converges to the routing assignment that
minimizes the cost of the network. Furthermore, I observe
that our technique is adaptive, automatically converging to
the new optimal routing assignment for quasi-static network
changes. I also report numerical and experimental
evaluations to confirm our theoretical predictions, explore
additional aspects of the solution, and outline a proof-of-
concept implementation of proposal.

Keywords — IP networks, load balancing, network
management, optimal routing.

I. INTRODUCTION

Ever since ARPANET [3], the predecessor of the Internet,
has been introduced, the concept of Optimal routing i.e.,
finding routing assignments that minimize the cost of
sending traffic through packet-switched networks, has been
of fundamental research and practical interest. Yet today,
we find that the different optimal routing algorithms
developed over the last 40 years are seldom implemented.
Instead, distributed link-state routing protocols like
OSPF/IS-IS that support hop-by-hop packet forwarding are
the dominant intra-domain routing solutions on the
Internet.

The driving force behind the widespread adoption of link-
state, hop-by-hop algorithms has been their simplicity—the
main idea is to centrally assign weights to links based on
input traffic statistics, flood the link weights through the
network, and then locally forward packets to destinations
along shortest paths computed from the link weights. As
our communication networks have grown rapidly in size

and complexity, this simplicity has helped OSPF eclipse
extant optimal routing techniques that are harder to
implement.

However, the obvious tradeoff has been lost performance.
For instance, due to the poor resource utilization resulting
from OSPF, network administrators are forced to
overprovision their networks to handle peak traffic. As a
result, on average, most network links run at just 30%–
40% utilization. To make matters worse, there seems to be
no way around this tradeoff. In fact, given the offered
traffic, finding the optimal link weights for OSPF, if they
exist, has been shown to be NP-hard [4]. Furthermore, it is
possible for even the best weight setting to lead to routing
that deviates significantly from the optimal routing
assignment [4].

My goal in this paper is to eliminate this tradeoff between
optimality and ease of implementation in routing. So, I
proposed this hop-by-hop routing solution, a routing
solution that retains the simplicity of link-state, hop-by-hop
protocols while iteratively converging to the optimal
routing assignment. To the best of our knowledge, this is
the first optimal link-state hop-by-hop routing solution.
Not surprisingly, there are multiple challenges to overcome
when designing such a solution. Before getting into them,
we define the following important recurring terms for ease
of exposition.

Hop-by-hop: Each router, based on the destination
address, controls only the next hop that a packet takes.

Adaptive: The algorithm does not require the traffic
demand matrix as an explicit input in order to compute link
weights. Specifically, the algorithm seamlessly recognizes
and adapts to changes in the network, both topology
changes and traffic variations, as inferred from the network
states like link flow rates.

Link-state: Each router receives the state of all the
network’s links through periodically flooded link-state
updates and makes routing decisions based on the link
states.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Science Engineering and Advance Technology,
IJSEAT , Vol.3, Issue 10

ISSN 2321-6905
October 2015

www.ijseat.com Page 635

Optimal: The routing algorithm minimizes some cost
function (e.g., minimize total delay) determined by the
network operator. The problem of guiding network traffic
through routing to minimize a given global cost function is
called traffic engineering (TE).

The first design challenge stems from coordinating routers
only using link states. This means that no router is aware of
all the individual communicating pairs in the network or
their traffic requirements. However, they still have to act
independently such that the network cost is minimized.
This is a very real restriction in any large dynamic network
like the Internet, where it is not possible to obtain
information about each communicating pair. If the link-
state requirement is set aside, optimal distance-vector
routing protocols have already been developed [2]. The
idea there is to iteratively converge to the optimal routing
assignment by sharing estimates of average distances to
destinations among neighbors. However, distance-vector
protocols have not caught on for intra-domain routing
because of scalability issues due to their slow convergence
and robustness issues like vulnerability to a single rogue
router taking down the network as in the “Internet Routing
Black Hole” incident of 1997 [5].

The hop-by-hop forwarding requirement presents the next
challenge. As a result, a router cannot determine the entire
path that traffic originating at it takes to its destination.
Without this requirement, a projected gradient approach [6]
can be used to yield optimal iterative link-state algorithms
that can be implemented with source routing, where the
path a packet takes through the network is encoded in its
entirety at the source. However, the need for source routing
means that these techniques are not practical given the size
of modern networks.

Another challenge arises because the optimal routing
assignment changes with the input traffic and the network.
There are two aspects to this problem. The first aspect is
that the algorithm needs sufficient time between network
and traffic changes to calculate and assign optimal routes.
This requirement is typically captured by the quasi-static
model of routing problems described by Gallager [2]. The
second aspect is that the algorithm should smoothly adapt
the routes to changes when they do occur. Thus, ideally,
the algorithm should avoid global inputs that require
additional computation when performing routing updates.
However, the algorithm also needs some way to track the
network state to compute efficient routes. Link rates fill
this gap because they are widely available and easily
accessible in modern networks. The first aspect is modeled
by studying a static network with static input traffic in
between changes in the network. If the second stipulation
is set aside, recently, significant progress was made in this
direction with PEFT, a link-state protocol with hop-by-hop
forwarding based on centralized weight calculations [7].

However, since the link weights are calculated in a
centralized manner with the traffic matrix as an explicit
input, PEFT is not adaptive. Nor does it always guarantee
optimality as claimed in the paper.

II. PROBLEM FORMULATION

Under the quasi-static model, the traffic engineering
problem can be cast as a Multi-Commodity Flow (MCF)
problem in between topology and input traffic
changes.Wemodel the network as a directed graph G =
(V,E) with node/router set and edge/ link set with link

capacities Cu,v, ¥(u,v) € E . The rate required for

communication from s to t is represented by D(s,t). The
commodities are defined in terms of their final destination

t. We use f
t
u,v to represent the flow on link (u,v)

corresponding to commodity t and f
t
u,v for the total flow

on link (u,v). The network cost function, , is typically
selected to be a convex function of the link rate vector
f = { fu,v },¥(u,v) € E. Using this notation, the MCF
problem can be stated as

A fact about MCF is that its optimal solution generally
results in multipath routing instead of single-path routing
[1]. However, finding the right split ratios for each router
for each commodity is a difficult task. Our starting point is
to merge the link-state feature of the source-routing
protocols with the hop-by-hop forwarding feature of the
distance-vector schemes. Another characteristic that we
borrow is the iterative nature of these algorithms. Here,
each iteration is defined by the flooding of existing link
states through the network followed by every router
updating its split ratios, which modifies the link states for
the next iteration. In what follows, we measure time in
units of iterations. With this idea in mind, in the time
between network changes when the topology and the input
traffic is static, we do the following.

Iteratively adjust each router’s split ratios and move traffic
from one outgoing link to another. This only controls the
next hop on a packet’s path leading to hop-by-hop routing.
If instead we controlled path rates, we would get source
routing.



International Journal of Science Engineering and Advance Technology,
IJSEAT , Vol.3, Issue 10

ISSN 2321-6905
October 2015

www.ijseat.com Page 636

Increase the split ratio to the link that is part of the shortest
path at each iteration even though the average price via the
next-hop router may not be the lowest. If instead we
forwarded traffic via the next-hop router with the lowest
average price, we get Gallager’s approach, which is a
distance vector solution.

Adapt split ratios dynamically and incrementally by
decreasing along links that belong to non-shortest paths
while increasing along the link that is part of the shortest
path at every router. If instead split ratios are set to be
positive instantaneously only to the links leading to
shortest paths, then we get OSPF with weights, wu,v

III. SPECIAL CASES

In order to develop an intuitive understanding of why our
solution takes the form that it does, it is helpful to consider
a few concrete special cases first. These four cases, each of
which clearly highlights the reason for including a
particular factor in our solution, progressively lead us to
the final algorithm. In each example, our algorithm design
will exploit the fact that the KKT optimality conditions
[15] of the MCF problem require that at the optimal
solution the traffic rate is positive only along paths with the
lowest price. The overall idea behind these examples is to
design an algorithm that reduces the network cost at each
iteration by moving to a routing assignment that satisfies
this condition. In Section V, we will extend these ideas and
show that the final algorithm that iteratively reduces the
network cost will also always lead to the optimal routing
assignment.

Finding the Right Split Dynamically

First, let us consider a very simple example illustrated in
Fig. 1(a). Here, there is traffic demand of rate with the
choice of two links, l and s, to go from A to B. Assuming
initially wl>ws, a simple strategy to reach optimality will
be to dynamically shift traffic at some rateδ > 0 from the
more expensive link to the cheaper link till the prices of the
two links become the same. At node A, this would be
equivalent to
αl decreasingαs and increasing at rateδ/r.

There are two ways to interpret and generalize the intuition
gained from this scenario. Both give the same solution for
this very simple example, but in general will lead to
different dynamics (see Fig. 2) and possibly different split
ratios. One interpretation, which underpins the distance-
vector algorithms, is that the router should shift traffic
away from neighbors with higher average price to the
neighbor with the lowest average price. A different
interpretation, which is the basis of our protocol, is that the
router should shift traffic from links along more expensive
paths to the link along the path with the lowest price.

Mathematically, we reach the following update rule for the
split ratios:

where (u,v) € E but is not on the shortest path from to.

Figure 1 Four illustrative examples



International Journal of Science Engineering and Advance Technology,
IJSEAT , Vol.3, Issue 10

ISSN 2321-6905
October 2015

www.ijseat.com Page 637

Figure 2 Trajectories taken by Gallager’s algorithm

IV. GENERAL SOLUTION

We begin by defining nt
u, the branch cardinality, as the

product of the number of branches encountered in
traversing the shortest path tree rooted at t from t to u. It
makes sure that routers on the tree that are farther away
from the destination shift traffic to the shortest path more
conservatively than routers that are closer to the
destination. At every iteration due to link-state flooding,
each node u has the link-state information to run Dijkstra’s
algorithm to compute the shortest path tree to destination t.
Here, additional care is required because every node has to
locally arrive at the same shortest path tree to ensure that
the algorithm proceeds as expected. Therefore, at any
stage, while running Dijkstra’s algorithm locally, if there is
ambiguity as to which node should be added next, tie-
breaking based on node index is used. In other words, if at
any iteration there are multiple shortest paths to choose
from, tie-breaking is used to ensure that all routers arrive at
the same shortest path tree. The calculation nt

u of proceeds
as shown in Algorithm1.

V. RELATED WORK

Over the years, due to its importance, traffic engineering
has attracted a lot of research attention. We provide a brief
overview of major related results from different
communities such as control, optimization, and

networking. Broadly, the existing work can be divided into
OSPF-TE, MPLS-TE, traffic demand agnostic/ oblivious
routing protocol design, and optimal routing algorithms.

The work on OSPF [4], [8], [9] has concentrated on using
good heuristics to improve the centralized link weight
calculations. Although these techniques have been shown
to improve the algorithm’s performance significantly by
finding better weight settings, the results are still far from
optimal.

Typically, these and other centralized traffic engineering
techniques also require reliable estimates or measurements
of the input traffic statistics in the form of a traffic matrix.
While excellent work has been done in traffic matrix
estimation from link loads, even the best results have errors
on the order of 20% [10], which can lead to bad traffic
engineering. Another approach is to directly measure the
traffic to every destination at every router. While it is
possible to globally aggregate the measurements into a
traffic matrix that can be fed to a traffic engineering
algorithm, it is more straightforward to use local
measurements locally. Also, usually it is smoother and
quicker to respond to changes locally when they do occur.
Thus, we are advocating a shift to relying directly on link
loads and local traffic measurements instead of computing
a traffic matrix for traffic engineering.

A good way to avoid traffic matrices and a popular way to
implement traffic engineering today is MPLS-TE [11],
[12]. The idea is to compute end-to-end tunnels for traffic
demands with the available network bandwidth being
assigned to new traffic demands using techniques like
Constrained Shortest Path First. However, here, the
performance gained over OSPF comes at the cost of
establishing multiple end-to-end virtual circuits. Moreover,
as the traffic changes, the end-to-end virtual circuits that
were established for a particular traffic pattern become less
useful, and performance degrades.

Oblivious routing has also been proposed as a way around
using traffic matrices for traffic engineering. The idea is to
come up with a routing assignment that performs well
irrespective of the traffic demand by comparing the
“oblivious performance ratio” of the routing, i.e., the
worst-case performance of the routing for a given network
over all possible demands. Breakthrough work in this area
includes papers by Applegate and Cohen [13] that
developed a linear programming method to determine the
best oblivious routing solution for the special case of
minimizing maximum channel utilization and Kodialam et
al. [14] that focused on maximizing throughput for the
special case of two-phase routing. However, oblivious
routing solutions do not adapt well to changes in the
network



International Journal of Science Engineering and Advance Technology,
IJSEAT , Vol.3, Issue 10

ISSN 2321-6905
October 2015

www.ijseat.com Page 638

VI. CONCLUSION

In this paper, I developed the first link-state, hop-by-hop
routing algorithm that optimally solves the traffic
engineering problem for intra-domain routing on the
Internet. Furthermore, we showed that based on feedback
from the link-state updates, the protocol automatically
adapts to input traffic and topology changes by adjusting
router split ratios. We also provided guidelines on
implementing my project by translating the theoretical
model to a discrete implementation for numerical
evaluations and then to a physical testbed built on
NetFPGA boards. Importantly, although they did not
satisfy the theoretical assumptions about continuous split
ratio updates and synchronization between the routers, the
numerical and experimental evaluations backed up our
theoretical predictions about the performance and
adaptively of this project. In terms of future directions,
there are still interesting areas to be explored. For instance,
the convergence rate of the algorithm needs to be analyzed.
Another direction involves developing the theory behind
the performance of algorithm in the absence of
synchronous link-state updates and executions.

REFERENCES

[1] M. Wang, C. W. Tan, W. Xu, and A. Tang, “Cost of not splitting in
routing: characterization and estimation,” IEEE/ACM Trans. Netw., vol.
19, no. 6, pp. 1849–1859, Dec. 2011.

[2] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. COM-25, no. 1, pp. 73–85,
Jan. 1977.

[3] L. Fratta,M.Gerla, and L. Kleinrock, “The flow deviation method: An
approach to store-and-forward communication network design,”
Networks,
vol. 3, no. 2, pp. 97–133, 1973.

[5] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, 5/E. New York, NY, USA: Addison-Wesley, 2010.

[6] D. Bertsekas and E. Gafni, “Projected newton methods and
optimization of multicommodity flows,” IEEE Trans. Autom. Control,
vol. AC-28, no. 12, pp. 1090–1096, Dec. 1983.

[7] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering,”
IEEE/ACMTrans.
Netw., vol. 19, no. 6, pp. 1717–1730, Dec. 2011.

[8] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Trans. Netw., vol. 13, no. 2, pp. 234–247, Apr. 2005.

[9] S. Srivastava, G. Agrawal, M. Pioro, and D. Medhi, “Determining link
weight system under various objectives for OSPF networks using a
lagrangian relaxation-based approach,” IEEE Trans. Netw. Service
Manag., vol. 2, no. 1, pp. 9–18, Nov. 2005.

[10] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast
accurate computation of large-scale IP traffic matrices from link loads,” in
Proc. ACM SIGMETRICS, New York, NY, USA, 2003, pp. 206–217.

[11] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Commun. Mag., vol. 37, no. 12, pp. 42–47, Dec. 1999.

[12] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in Proc. 20th Annu. IEEE INFOCOM, 2001, vol.

[13] C. E. Agnew, “On quadratic adaptive routing algorithms,” Commun.
ACM, vol. 19, no. 1, pp. 18–22, Jan. 1976.

[14] M. Kodialam, T. V. Lakshman, J. Orlin, and S. Sengupta, “Oblivious
routing of highly variable traffic in service overlays and IP backbones,”
IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 459–472, Apr. 2009.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. NewYork,NY,
USA: Cambridge Univ. Press, 2004.


