
International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 609

Discovering Closely Related Peers of a Person in Social
Networks

Veepuri VS Prasad Raju 1 , D.Suneetha 2

1M.tech, Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam
2Assistant Professor, Department of Computer Science and Engineering, GITAM University, Visakhapatnam

Email: prasadraju.veepuri@gmail.com , suneethadwarapu@yahoo.com

Abstract:
In social networks, finding a group of similar people
of a specified person is meaningful task in many
areas like substitution/alternate recommendation
system. For a given person, considering hobbies,
interests etc., as base forming a group of peers from
social networks. Here we propose mutual unique
identification group(MUID) algorithm for identifying
closely related peers.
Keywords: social networks, node discovering, social
query.
Introduction:
Day by day the volume of data in the social networks
is increasing rapidly. According to Pew Research
Center on Internet Science and technology new
bulletin dated 8th Oct’2015, 65% adults are using
Social Networking sites which is a tenfold increase in
the last decade. Since lot of data is getting
accumulated in social networks, they provide a rich
source for data mining researchers to extract hidden
patterns and knowledge useful to various domains. In
heterogeneous social networks, identifying similar
peers is meaningful task. Consider ‘ego’ as a query
node to find uniqueness of that node from its peers.
each node/ entity is associated a type/label to
describe its category. Consider an expertise bipartite
network that relates/connects two types of nodes
represents experts and their topic of expertise as
depicted in figure 1.

In the above bipartite graph. Alice is the only one
with expertise in Python, Pascal and Java. So Alice
can be uniquely identified by the set {Python, Pascal,
Java}. In some cases we can’t distinguish one from
other like Candy and Damn are expertise in both
Pascal and PHP. So in such case we can define as
besides Damn, Candy is a person who is expert in
Pascal and PHP. In general we can represent Damn’s
UID as {Candy, Pascal, PHP}. If any projects comes
on PHP and Pascal then we can assign Damn or
Candy to accomplish that project. Consider a sub-
graph Candy, Damn ,Elloy, Pascal, PHP. For any
node belonging to the set, the UID of that node is
available in that set. In other words, with respect to
the expertise in Pascal and PHP, Candy, Damn and
Elloy are indiscernible. Hence the set {candy, damn,
Elloy, Pascal, PHP } is called as Mutual
identification group(MUID).
Related works:

Our paper is partly inspired by data-mining
work on finding unique identification sets and mutual
identification groups of a ego node. Our work is
related to the existing studies on social networks in
three aspects namely community search queries,
social network search/extraction, and social network
anonymization. Some of the papers on community
search queries is mainly emphasizes on selecting a
set of nodes and searching a specific community
depending upon the given query nodes or other
constraints.

Some papers on social entity
search/extraction focuses on extracting social
relationship from a specific set of people from
available resources on Web, authors Zhu J, Nie Z,
Liu X, Zhang B, Wen J-R [13] designed an entity
relationship search framework on Web data, authors
Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z [9]
designed Arnetminer which is an academic search
system that mainly aims to automatically extract the
researcher’s profile including the co-authorship
relation graph from the Web. These studies focus on
extracting some data from social networks. For a set
of nodes in a graph, authors Sozio M, Gionis A [8]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 610

proposed an algorithm for finding a densely
connected sub-graph in social network constituting
communities. Rather than the above works, we
mainly emphasize on finding the Mutually Unique
Identification Groups for a given query vertex from
given social network.
Preliminaries:
we provide some formal definitions which are taken
from reference paper [1] .
Problem Definition:
Consider undirected labeled graph G(V, E) and a
query node v ∈ V whose first and second order
neighbor set is denoted by N(v) and N2(v),

respectively. Every vertex in graph G is labeled with
a type (ex: color, award_type, place etc.) denoted by
type(v).
Definition 1: Consider a graph G(V, E), given a
query vertex v ∈ V and a set of nodes M ⊆ N(v), a
node u ∈ V is said to be structure equivalent (SE) to v
given M, denoted by u ∈ SE(v, M), if type(u) =
type(v) and M ∈ N(v). SE(v, M) is the set of nodes
structure equivalent to v given M. if SE(v, M) =ϕ
then, there does not exist any node structure
equivalent to v given M

Consider above example, In Fig.(a), let M = {m1},
then SE(v, M)= {u1, u2}. here u4 is not inculcated in
the SE(v, M) because u4 is different type from v.
Figure (b), another vertex m2 is added into M (note
that the nodes in M do not need to be of the same
type), here we observed that the set SE(v, M)
becomes smaller since u2 ∉ N(m2) and has to be
removed from SE(v, M). from the two example we
can depicts that adding nodes into M ,the number of
nodes in SE(v, M) gradually decreasing. In Fig. (c),
when we add another node i.e, M = {m1,m2,m3}, no
vertex is connected to every element in M. Therefore,
SE(v, M) = ϕ.
Definition 2 consider a graph G(V,E), query vertex v
and a non-empty set M ∈ N(v), we define that
uniqueness of node ‘v’ can be identified by the 2-
tuples set [M, SE(v, M)], which set is called a UID of
v.
In some cases SE(v,M) may be empty. In such case
we can say that “v is unique since there is no other
vertices in M commonly connected one vertex as v
does”.
When SE(v, M) is non-empty, then the uniqueness of
v can be interpreted as “v should be unique because,
besides the vertices in SE(v, M), the only vertex that
connects to M is v”. Next we introduce an interesting
and useful property of UIDs.

Property 1: UIDs of a given query vertex v can be
always be found within two-hops v.

By Definition 2, For the given query vertex v, there
exists many possible UIDs. From those we have to
choose optimal UIDs. So we use comparison function
to test the quality of UIDs.

Definition 3 for the given two UIDs of v, D1 = [M1,
SE(v, M1)] and D2 = [M2, SE(v, M2)], we define a
comparison function Q(v, M1, M2) as follows.

(a) Q(v, D1, D2) = 1, i.e., the quality of D1 is better
than that of D2, if (i) |SE(v, M1)| < |SE(v, M2)| or (ii)
|SE(v, M1)| = |SE(v, M2)| and |M1| < |M2|.

(b) Q(v, D1, D2) = 0, i.e., the quality of D1 equals to
that of D2, if |SE(v, M1)| = |SE(v, M2)| and |M1| =
|M2|.

Finding UIDs:
Here we would compute UIDs using one Hop+ and
Multiple neighbor algorithms and tabulate the results.
In one Hop+ method we have to add all the vertices
to M which are connected to query vertex v. Consider
the below example.

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 611

Consider the above graph, ‘v’ is query vertex,N(v) is
first neighbors of v and N2(v) is second neighbors of
v.now by considering one Hop+ method we can find
UID as follows.
Query vertex ‘v’ consists of four neighbors those are
added into base set M. for these vertices, commonly
connected nodes are u1 only which is structure
equalent to node ‘v’. Here advantage is size of
structure equalent(SE) is less but produces largest M
set.

Second method to find UIDs is multiple Neighbour
method. In this method we have to dynamically add
vertices to M to produce minimal SE.for this we
defined a formula as follows,
Definition 5 Given UID of a query vertex v as D =
[M, SE(v, M)], and for M' = M ∪ {n}, where n ∈
N(v) − M, then SEgain(v, n, M) = SE(v, M) − SE(v,
M').

In the below Theorem we prove that the set size of
SEgain(v, n, M) is monotonic with the size of M. In
this property, ∀u ∈ SE(v, N(v)), u cannot be in
SEgain(v, n, M) for any v, n, M since there is no
larger subset M ⊆ N(v) than N(v) itself.

Theorem : Given SE(v, M), SE(v, M'), n ∈ N(v), n ∉
M and n ∉ M' , if M' ⊇M then SEgain(v, n, M') ⊆
SEgain(v, n, M).

we have the following derivation.
(a) ∵M' ⊇M, ∴ SE(v, M') ⊆ SE(v, M), and

(b) ∵ M' ∪ {n} ⊇ M ∪ {n}, ∴ SE(v, M' ∪ {n}) ⊆
SE(v, M ∪ {n}).

From (a) and (b), we have

SEgain(v, n, M') = SE(v, M') − SE(v, M' ∪ {n})⊆ SE(v, M) − SE(v, M' ∪ {n})⊆SE(v, M) − SE(v, M ∪ {n})

= SEgain(v, n, M).

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 612

In figure (a), calculated the SEgain for every vertex.
From those we chosen max SEgain that is assigned to
M. In figure (b),we calculated the SEgain for
m2,m3,m4 and again chosen max SEgain that is added

to the M. This process continues until SEgain gets
null. Consider the below pseudo code to illustrate the
above example.

Input: provide Graph G=(V,E) and a query vertex v
Output: UID D of query vertex v
__

1 Initialize SE with N2(v)
2 Initialize M with null(ϕ)
3 while | SE | > 0 do // roll the loop till all nodes in SE >0
4 Mmax ← argmaxM’ SEgain(v,m,M) |, m ∈ {N(v)-M} //find max of
5 if Mmax = ϕ and | M | >=1 then //SEgain of M and assign to Mmax

6 break;
7 end
8 Assign M with { M ∪ mmax }
9 Assign SE with { SE – SEgain (v, mmax, M) }
10 end
11 D← [M,SE]
12 Output D;

__

Finding MUIDs:
In this section we have to discuss about MUID
briefly. Consider the MUID definition below.
Definition 4 consider graph G(V, E), query vertex v∈ V, a set of vertices X ⊆ V is a MUID of v if the
following two conditions satisfied.

(a) v ∈ X.
(b) ∀u ∈ X, ∃D ⊆ X, D is a UID of v

In the above graph initially we find the UID of v and
later we find UIDs of every member in that set. At
the end we performed union of all UID sets which is
nothing but MUID. The main drawback here is for a
given query node we have to include all neighbors to
MUID set and we also find the every node UID is
exists in that set. Here indirectly size

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 613

In previous section we discussed about two methods
to find UIDs for a given query vertex v. now we
extend those two algorithms to find MUID of a given
vertex v. Let us illustrate the first algorithm one
Hop+ method. In MUID ,we have to find the unique
identification set(UID) of query node and every
node’s UID in that set has subset of itself. Consider

the below graph. violates definition:4 rule. In order
to minimize SE size we have to go for other
algorithm multiple neighbor MUID algorithm. In
multiple neighbor MUID, we just extend UID by
finding every member’s Unique ID set and union to
MUID.Consider the below example,

In the above example, We have proposed to use a
heuristic formula SEgain(v, n, M) = SE(v, M) − N(n)
as a metric to select the next neighbor to be added in
the Multiple-Neighbor method. This criterion
determines how many number of nodes should be
removed from the UID if n ∈ N(v) is added.

In Multiple-Neighbor–MUID, all the newly
inculcated nodes in M and SE(v, M) also uniquely
identified. Similar to the Multiple-Neighbor method
for the UID problem, here we define a heuristic
function to estimate the quality of neighbors as
candidates to be added into M. The idea is to execute
the UID Multiple-Neighbor method for one pass on
all nodes and record the M and SE(v, M) sets of each
node v as UIDSE(v) and UIDM(v). When choosing
the neighbors of v into M in Multiple-Neighbor
MUID, we give higher priority for neighbor n with
smaller |SE(v, M)| in UID, or |UIDSE(n)|. Given
equal-sized |UIDSE(n)|, we then define the secondary
criteria as minimizing |UIDM(n) − M'| . This is
because that exploiting neighbors already in M could
potentially introduce fewer new vertices. Given
equal-sized |UIDSE(n)| and |UIDM(n) − M'| the
tertiary criteria is larger SEgain(v,m, M). Note that
for n to be chosen into M, |SEgain(v, n, M)| must be
larger than 0. Algorithm provided to illustrate MUID
as follows

__
input: graph G=(V,E), a query vertex v, pre computed SE(v , M) and M in UID
output: MUID set X of v
__

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 614

1 Take first neighbors N(v)={m1,m2,m3,....md}
2 Assign Mx with ϕ
3 Assign SEx with ϕ
4 Initialize UIDSE(v) with SE(v,m) of v’s UID
5 Initialize UIDm(v) with M of v’s UID
6 W is the stack and initially empty
7 // stack W stores not yet uniquely identified vertices in it
8 push vertex v into W
9 while | W | > 0 do
10 assign W with the stack top element popped from W
11 Initialize SEw with SE(w,Mx) , and Mw with ϕ
12 Nx ← N(v) - X //here X is final output set initially its empty.
13 while | SEw | > 0 do
14 for n ∈ Nx do
15 if | SEgain(w,n,Mw) | =0 then
16 Nx ← Nx –{n}
17 end // if end
18 end // for end
19 if Nx = ϕ then
20 break;
21 end // if end
22 minUIDSE ← max integer
23 minUIDM ← max integer
24 maxSEG← min integer
25 nopt ← null
26 for n ∈ Nx do
27 if (UIDSE(n) < minUIDSE) or
28 (UIDSE(n) = minUIDSE and UIDM(n) < minUIDM) or
29 (UIDSE(n) < minUIDSE and UIDM(n) = minUIDM and
30 (SEgain(w, n, Mw) > maxSEG) then
31 minUIDSE ← UIDSE (n)
32 minUIDM ← UIDM(n)
33 maxSEG ← SEgain(w, n, Mw)
34 nopt ← n
35 end //if end
36 end // for end
37 Mw ←Mw ∪ { nopt }
38 SEw ← SEw - N (nopt)
39 push nopt into W
40 end // inner while end
41 for u ∈ SEw do
42 if N(u) ⊃ N(w) then
43 push u into W // ƎMu that w ∉ SE(u,Mu)
44 end // if end
45 end // for end
46 Mx ← Mx ∪Mw

47 SEx ← SEx ∪ SEw

48 end // outer while
49 Output X= [Mx , SEx]

__

The quality measure of MUIDs is conceptually
similar to UIDs. For each MUID, the primary goal is
to minimize |SE(v, M)| and secondary goal is to

minimize |M | of the UIDs. we can formally define
the metric for MUID: Given an MUID X, for all v ∈
X, the UID Dv = [Mv, SE(v, Mv)]. For the metric of

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 615

union size, we define size of union of SE set (USE)
and size union of M set
(UM):
U S E = |⋃ (,)∈ |, and
U M = |⋃ ∈ |.
We are now able to compare the quality of
two MUIDs by replacing |SE(v, M)| and |M | in
Definition 3 with USE and UM. Similarly, for the
metric of sum of size, we define total size of SE set
(TSE) and total size of M set (TM):
T S E = ∑ | (,)|∈ , and
T M = ∑ | |∈ .

Experimental Results :
We performed experiments on three datasets
which include KDD movie dataset includes 35311
vertices, and edges 168868 and 20 different types of
nodes(means categories).Taiwan academic network
consists of 63122 number of vertices, 770155 number
of edges and 6 types of nodes.finally HepTh citation
network has 41840 number of vertices having 4
different types of nodes and 933149 number of
edges.

Algorithms applied on above datasets and results are tabulated below.

UID Experimental results:
Dataset MN OH

KDD movie 1.20 1.36
TW academic 1.71 1.92
HepTh 1.00 2.69

MUID Experimental results:
Dataset MN OH

KDD movie 1.60 1.43
TW academic 1.87 2.04
HepTh 1.91 2.32

Conclusion:
This paper shows that the uniqueness of a

node can be captured by using Multiple neighbor
method and One Hop+ method and which are
extended to find mutual identification groups. In this
work we have done nodes of similar types. The

future work relay on some other metrics like diversity
of types, coverage, etc, and can provide effective
methods to identify such sets and compare and
contrast with each other

References:
1. Yi-Chen Lo, Jhao-Yin Li, Mi-Yen Yeh, Shou-De
Lin, Jian Pei (2013) What distinguish one from its
peers in social networks. In Springer.
2. Albert R, Barabási A-L (2002) Statistical
mechanics of complex networks. Rev Modern Phys
74:47–97
3. Erd˝os P, Rényi A (1961) On the evolution of
random graphs. Bull Inst Int Stat 38:343 Fortunato S
(2010) Community detection in graphs. Phys Rep
486(3–5):75–174
4. Lappas T, Liu K, Terzi E (2009) Finding a team
of experts in social networks. In Proceedings of ACM
SIGKDD international conference on knowledge
discovery and data mining

5. Li C-T, Lin S-D (2009) Egocentric information
abstraction for heterogeneous social networks.
InASONAM,2009
6. Li C-T, Shan M-K (2010) Team formation for
generalized tasks in expertise social networks. In
IEEE SocialCom
7. Newman M (2004) Detecting community
structure in networks. Eur Phys J B Condens Matter
Complex Syst 38(2):321–330
8. Sozio M, Gionis A (2010) The community-search
problem and how to plan a successful cocktail party.
In Proceedings of ACM SIGKDD international
conference on knowledge discovery and data mining
9. Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z
(2008) ArnetMiner: extraction and mining of

Name |V| |E| Number of types

KDD movie data set 35311 168868 20

TW academic network 63122 770155 6

HepTh citation network 41840 933149 4

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 10, OCTOBER - 2015 ISSN 2321-6905

www.ijseat.com Page 616

academic social networks. In Proceedings of ACM
SIGKDD international conference on knowledge
discovery and data mining
10. Watts D, Strogatz S (1998) Collective dynamics
of small-world networks. Nature 363:202–204
11. Yang D-N, Chen Y-L, Lee W-C, Chen M-S
(2011) Social-temporal group query with
acquaintance constraint. In Proceeding of
international conference on very large data, bases

12. Zhou B, Pei J (2008) Preserving privacy in
social networks against neighborhood attacks. In
Proceedings of IEEE international conference on
data, engineering
14. Zhu J, Nie Z, Liu X, Zhang B, Wen J-R (2009)
StatSnowball: a statistical approach to extracting
entity relationships. In Proceedings of international
world wide web conference.

