
International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 285

Verification Of Scalable Distributed Service Integrity For Software-
As-A-Service Clouds

M.Nagalakshmi 1, Dr.Syed Sadat Ali 2

1 M.Tech (Cse), Nimra Women’s College Of Engineering, A.P., India.
2associate Professor, Dept. Of Computer Science & Engineering, Nimra College Of Engineering And

Technology(Ncet), A.P., India.

Abstract — Cloud is providing 3 types of services IaaS, PaaS
and SaaS. Software as a Service (SaaS) is a software
distribution model in which applications are hosted by a
vendor or service provider and made available to customers
over a network, typically the Interne. However, due to their
sharing nature, SaaS clouds are vulnerable to malicious
attacks SaaS cloud systems enable application service
providers to deliver their applications via massive cloud
computing infrastructures.. In this paper, we present IntTest,
a scalable and effective service integrity attestation
framework for SaaS clouds. IntTest provides a novel
integrated attestation graph analysis scheme that can provide
stronger attacker pinpointing power than previous schemes.
Moreover, IntTest can automatically enhance result quality
by replacing bad results produced by malicious attackers with
good results produced by benign service providers. We have
implemented a prototype of the IntTest system and tested it on
a production cloud computing infrastructure using IBM
System S stream processing applications. Our experimental
results show that IntTest can achieve higher attacker
pinpointing accuracy than existing approaches. IntTest does
not require any special hardware or secure kernel support
and imposes little performance impact to the application,
which makes it practical for large-scale cloud systems.

Keywords — Distributed service integrity attestation, cloud
computing, secure distributed data processing

I. INTRODUCTION
The cloud computing concept is simple: it enables you to run
computer applications over the Internet, removing the need to
buy, install or manage your own servers. You can simply run
your company's IT operations with just a browser and an
Internet connection .Cloud computing has emerged as a cost-
effective resource leasing paradigm, which obviates the need
for users maintain complex physical computing infrastructures
by themselves. Software-as-a-service (SaaS) clouds (e.g.,
Amazon Web Service (AWS) [1] and Google AppEngine [2])
build upon the concepts of software as a service [3] and
service-oriented architecture (SOA) [4], [5], which enable
application service providers (ASPs) to deliver their
applications via the massive cloud computing infrastructure. In
particular, our work focuses on data stream processing services
[6], [7], [8] that are considered to be one class of killer
applications for clouds with many real-world applications in
security surveillance, scientific computing, and business

intelligence. However, cloud computing infrastructures are
often shared by ASPs from different security domains, which
make them vulnerable to malicious attacks [9], [10]. For
example, attackers can pretend to be legitimate service
providers to provide fake service components, and the service
components provided by benign service providers may include
security holes that can be exploited by attackers. Our work
focuses on service integrity attacks that cause the user to
receive untruthful data processing results, illustrated by Fig. 1.
Although confidentiality and privacy protection problems have
been extensively studied by previous research [11], [12], [13],
[14], [15], [16], the service integrity attestation problem has not
been properly addressed. Moreover, service integrity is the
most prevalent problem, which needs to be addressed no matter
whether public or private data are processed by the cloud
system.

Although previous work has provided various software
integrity attestation solutions [9], [10], [11],[12], those
techniques often require special trusted hardware or secure
kernel support, which makes them difficult to be deployed on
large-scale cloud computing infrastructures. Traditional
Byzantine fault tolerance (BFT) techniques [14], [15] can
detect arbitrary misbehaviors using full-time majority voting
(FTMV) over all replicas, which however incur high overhead
to the cloud system.

In this paper, we present IntTest, a new integrated service
integrity attestation framework for multitenant cloud systems.
IntTest provides a practical service integrity attestation scheme
that does not assume trusted entities on third-party service
provisioning sites or require application modifications. IntTest
builds upon our previous work RunTest [16] and AdapTest [7]
but can provide stronger malicious attacker pinpointing power
than RunTest and AdapTest. Specifically, RunText and
AdapTest as well as traditional majority voting schemes need to
assume that benign service providers take majority in every
service function. However, in large-scale multitenant cloud
systems, multiple malicious attackers may launch colluding
attacks on certain targeted service functions to invalidate the
assumption. To address the challenge, IntTest takes aholistic
approach by systematically examining both consistency and
inconsistency relationships among different service providers
within the entire cloud system.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 286

Fig. 1. Service integrity attack in cloud-based data
processing. Si
denotes different service component and VM denotes
virtual machines

IntTest examines both per-function consistency graphs and the
global inconsistency graph. The per-function consistency raph
analysis can limit the scope of damage caused by colluding
attackers, while the global inconsistency graph analysis can
effectively expose those attackers that try to compromise many
service functions. Hence, IntTest can still pinpoint malicious
attackers even if they become majority for some service
functions. By taking an integrated approach, IntTest can not
only pinpoint attackers more efficiently but also can suppress
aggressive attackers and limit the scope of the damage caused
by colluding attacks. Moreover, IntTest provides result auto
correction that can automatically replace corrupted data
processing results produced by malicious attackers with good
results produced by benign service providers. Specifically, this
paper makes the following contributions:

 We provide a scalable and efficient distributed service
integrity attestation framework for large scale cloud
computing infrastructures.

 We present a novel integrated service integrity attestation
scheme that can achieve higher pinpointing accuracy than
previous techniques.

 We describe a result auto correction technique that can
automatically correct the corrupted results produced by
malicious attackers.

 We conduct both analytical study and experimental
evaluation to quantify the accuracy and overhead of the
integrated service integrity attestation scheme.

We have implemented a prototype of the IntTest system and
tested it on NCSU’s virtual computing lab (VCL) [8], a
production cloud computing infrastructure that operates in a
similar way as the Amazon elastic compute cloud (EC2) [9].
The benchmark applications we use to evaluate IntTest are
distributed data stream processing services provided by the
IBM System S stream processing platform [8], [3], an industry
strength data stream processing system. Experimental results
show that IntTest can achieve more accurate pinpointing than
existing schemes (e.g., RunTest, AdapTest, and full-time

majority voting) under strategically colluding attacks. IntTest is
scalable and can reduce the attestation overhead by more than
one order of magnitude compared to thetraditional full-time
majority voting scheme.

II. PROBLEM STATEMENT

Given a SaaS cloud system, the goal of IntTest is to pinpoint
any malicious service provider that offers an untruthful service
function. IntTest treats all service components as black boxes,
which does not require any special hardware or secure kernel
support on the cloud platform. We now describe our attack
model and our key assumptions as follows:

Attack model. A malicious attacker can pretend to be a
legitimate service provider or take control of vulnerable service
providers to provide untruthful service functions. Malicious
attackers can be stealthy, which means they can misbehave on a
selective subset of input data or service functions while
pretending to be benign service providers on other input data or
functions. The stealthy behavior makes detection more
challenging due to the following reasons:

 The detection scheme needs to be hidden from the
attackers to prevent attackers from gaining knowledge on
the set of data processing results that will be verified and
therefore easily escaping detection; and

 The detection scheme needs to be scalable while being
able to capture misbehavior that may be both
unpredictable and occasional.

In a large-scale cloud system, we need to consider colluding
attack scenarios where multiple malicious attackers collude or
multiple service sites are simultaneously compromised and
controlled by a single malicious attacker. Attackers could
sporadically collude, which means an attacker can collude with
an arbitrary subset of its colluders at any time. We assume that
malicious nodes have no knowledge of other nodes except
those they interact with directly. However, attackers can
communicate with their colluders in an arbitrary way. Attackers

can also change their attacking and colluding strategies
arbitrarily. Assumptions we first assume that the total number
of malicious service components is less than the total number
of benign ones in the entire cloud system. Without this
assumption, it would be very hard, if not totally impossible, for
any attack detection scheme to work when comparable ground
truth processing results are not available.



International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 287

Fig.2. Replay-based consistency check.

However, different from RunTest, AdapTest, or any previous
majority voting schemes, IntTest does not assume benign
service components have to be the majority for every service
function, which will greatly enhance our pinpointing power and
limit the scope of service functions that can be compromised by
malicious attackers. Second, we assume that the data
processing services are input-deterministic, that is, given the
same input, a benign service component always produces the
same or similar output (based on a user-defined similarity
function). Many data stream processing functions fall into this
category [8]. We can also easily extend our attestation
framework to support stateful data processing services [8],
which however is outside the scope of this paper. Third, we
also assume that the result inconsistency caused by hardware or
software faults can be marked by fault detection schemes [3]
and are excluded from our malicious attack detection.

III. RELATED WORK

To detect service integrity attack and pinpoint malicious service
providers, our algorithm relies on replay-based consistency
check to derive the consistency/inconsistency relationships
between service providers. For example, Fig. 2 shows the
consistency check scheme for attesting three service provider’s
p1, p 2, and p 3 that offer the same service function f. The
portal sends the original input data d1 to p1 and gets back the
result f(d1). Next, the portal sends d0, a duplicate of d1 to p3
and gets back the result f(d0).

The portal then compares f(d1) and f(d0) to see whether p1 and
p3 are consistent. The intuition behind our approach is that if
two service providers disagree with each other on the
processing result of the same input, at least one of them should
be malicious. Note that we do not send an input data item and
its duplicates (i.e., attestation data) concurrently. Instead, we
replay the attestation data on different service providers after
receiving the processing result of the original data. Thus, the
malicious attackers cannot avoid the risk of being detected
when they produce false results on the original data. Although
the replay scheme may cause delay in a single tuple processing,
we can overlap the attestation and normal processing of
consecutive tuples in the data stream to hide the attestation
delay from the user. If two service providers always give
consistent output results on all input data, there exists
consistency relationship between them. Otherwise, if they give
different outputs on at least one input data, there is
inconsistency relationship between them. We do not limit the
consistency relationship to equality function since two benign
service providers may produce similar but not exactly the same
results. For example, the credit scores for the same person may
vary by a small difference when obtained from different credit
bureaus. We allow the user to define a distance function to
quantify the biggest tolerable result difference.

Definition 1. For two output results, r1 and r2, which come
from two functionally equivalent service providers,
respectively, result consistency is defined as either r1 = r2, or

the distance between r1 and r2 according to user-defined
distance function D(r1,r2) falls within a threshold ɗ.

For scalability, we propose randomized probabilistic
attestation, an attestation technique that randomly replays a
subset of input data for attestation. For composite data-flow
processing services consisting of multiple service hops, each
service hop is composed of a set of unction ally equivalent
service providers. Specifically, for an upcoming tuple di, the
portal may decide to perform integrity attestation with
probability pu. If the portal decides to perform attestation on di,
the portal first sends di to a pre-defined service path p1 ‒–›p2 • •
• • –––› pl providing functions f1 ‒–› f2• • • •––› fl. After receiving
the processing result for di, the portal replays the duplicates of
di, on alternative service path(s) such as ṕ1‒–› ṕ2• • • • • ––› ṕj
providing functions fj as ṕj. The portal may perform data
replay on multiple service providers to perform concurrent
attestation.

Fig. 3. Attestation graphs.

With replay-based consistency check, we can test functionally
equivalent service providers and obtain their consistency and
inconsistency relationships. Fig.3. Attestation graphs both the
we employ consistency graph and inconsistency graph to
aggregate pairwise attestation results for further analysis. The
graphs reflect the consistency/inconsistency relationships
across multiple service providers over a period of time. Before
introducing the attestation graphs, we first define consistency
links and inconsistency links.

Definition 2. A consistency link exists between two service
providers who always give consistent output for the same input
data during attestation. An inconsistency link exists between



International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 288

two service providers who give at least one inconsistent output
for the same input data during attestation.
We then construct consistency graphs for each function to
capture consistency relationships among the service providers
provisioning the same function. Fig 3 (a) shows the consistency
graphs for two functions. Note that two service providers that
are consistent for one function are not necessarily consistent for
another function. This is the reason why we confine
consistency graphs within individual functions.

Definition 3. A per-function consistency graph is an undirected
graph, with all the attested service providers that provide the
same service function as the vertices and consistency links as
the edges.
We use a global inconsistency graph to capture inconsistency
relationships among all service providers. Two service
providers are said to be inconsistent as long as they disagree in
any function. Thus, we can derive more comprehensive
inconsistency relationships by integrating inconsistency links
across functions. Fig. 3(b) shows an example of the global
inconsistency graph. Note that service provider p5 provides
both functions f1 and f2. In the inconsistency graph, there is a
single node p5 with its links reflecting inconsistency
relationships in both functions f1 and f2.

Definition 4. The global inconsistency graph is an undirected
graph, with all the attested service providers in the system as
the vertex set and inconsistency links as the edges. The portal
node is responsible for constructing and maintaining both per-
function consistency graphs and the global inconsistency graph.
To generate these graphs, the portal maintains counters for the
number of consistency results and counters for the total number
of attestation data between each pair of service providers.

IV. RESULTS AND ANALYSIS

We first investigate the accuracy of our scheme in pinpointing
malicious service providers. Fig. 4(a) compares our scheme
with the other alternative schemes (i.e., FTMV, PTMV, and
RunTest) when malicious service providers aggressively attack
different number of service functions. Inthis set of experiments,
we have 10 service functions and 30 service providers. The
number of service providers in each service function
randomly ranges in [1, 8].

Fig 4.Malicious attackers pinpointing accuracy comparison with
20 percent service providers being malicious.

Each benign service provider provides two randomly
selected service functions. The data rate of the input stream
is 300 tuples per second. We set 20 percent of service
providers as malicious. After the portal receives the
processing result of a new data tuple, it randomly decides
whether to perform data attestation. Each tuple has 0.2
probability of getting attested (i.e., attestation probability Pu

¼ 0:2), and two attestation data replicas are used (i.e.,
number of total data copies including the original data r ¼
3). Each experiment is repeated three times. We report the
average detection rate and false alarm rate achieved by
different schemes. Note that RunTest can achieve the same
detection accuracy results as the majority voting based
schemes after the randomized probabilistic attestation
covers all attested service providers and discovers the
majority clique [6]. In contrast, IntTest comprehensively
examines both perfection consistency graphs and the global
inconsistency graph to make the final pinpointing decision.
We observe that IntTest can achieve much higher detection
rate and lower false alarm rate than other alternatives.
Moreover, IntTest can achieve better detection accuracy
when malicious service providers attack more functions. We
also observe that when malicious service providers attack
aggressively, our scheme can detect them even though they
attack a low percentage of service functions Fig. 4(b) shows
the malicious service provider detection accuracy results under
the conservative attack scenarios. All the other experiment
parameters are kept the same as the previous experiments. The
results show that IntTest can consistently achieve higher
detection rate and lower false alarm rate than the other
alternatives. In the conservative attack scenario, as shown by
fig. 4(b), the false alarm rate of IntTest first increases when a
small percentage of service functions are attacked and then
drops to zero quickly with more service functions are attacked.
This is because when attackers only attack a few service
functions where they can take majority; they can hide
themselves from our detection scheme while tricking our
algorithm into labeling benign service providers as malicious.
However, if they attack more service functions, they can be
detected since they incur more inconsistency links with benign
service providers in the global inconsistency graph. Note that
majority voting-based schemes can also detect malicious
attackers if attackers fail to take majority in the attacked service
function. However, majority voting-based schemes have high
false alarms since attacks can always trick the schemes to label
benign service providers as malicious as long as attackers can
take majority in each individual service function

V. CONCLUSION
In this paper, we have presented the design and implementation
of IntTest, a novel integrated service integrity attestation
framework for multitenant software-as-a-service cloud systems.
IntTest employs randomized replay-based consistency check to
verify the integrity of distributed service components without
imposing high overhead to the cloud infrastructure. IntTest
performs integrated analysis over both consistency and
inconsistency attestation graphs to pinpoint colluding attackers



International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 289

more efficiently than existing techniques. Furthermore, IntTest
provides result autocorrect ion to automatically correct
compromised results to improve the result quality. We have
implemented IntTest and tested it on a commercial data stream
processing platform running inside a production virtualized
cloud computing infrastructure. Our experimental results show
that IntTest can achieve higher pinpointing accuracy than
existing alternative schemes. IntTest is lightweight, which
imposes low-performance impact to the data processing
services running inside the cloud computing infrastructure.

REFERENCES
[1] Amazon Web Services, http://aws.amazon.com/, 2013.

[2] Google App Engine, http://code.google.com/appengine/,
2013.

[3] Software as a Service, http://en.wikipedia.org/wiki/Software
as a Service, 2013.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web
Services Concepts, Architectures and Applications (Data-
Centric Systems and Applications). Addison-Wesley
Professional, 2002.

[5] T. Erl, Service-Oriented Architecture (SOA): Concepts,
Technology, and Design. Prentice Hall, 2005.

[6] T.S. Group, “STREAM: The Stanford Stream Data
Manager,” IEEE Data Eng. Bull., vol. 26, no. 1, pp. 19-26,
Mar. 2003.

[7] D.J. Abadi et al., “The Design of the Borealis Stream
Processing Engine,” Proc. Second Biennial Conf. Innovative
Data Systems Research (CIDR ’05), 2005.

[8] B. Gedik et al., “SPADE: The System S Declarative Stream
Processing Engine,” Proc. ACM SIGMOD Int’l Conf.
Management Of Data (SIGMOD ’08), Apr. 2008.

[9] S. Berger et al., “TVDc: Managing Security in the Trusted
Virtual Datacenter,” ACM SIGOPS Operating Systems Rev.,
vol. 42, no. 1, pp. 40-47, 2008.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, You Get Off My Cloud! Exploring Information Leakage
in Third-Party Compute Clouds,” Proc. 16th ACM Conf.
Computer and Communications Security (CCS), 2009.

[11] W. Xu, V.N. Venkatakrishnan, R. Sekar, and I.V.
Ramakrishnan,“A Framework for Building Privacy-Conscious
Composite Web Services,” Proc. IEEE Int’l Conf. Web
Services, pp. 655-662, Sept. 2006.

[12] P.C.K. Hung, E. Ferrari, and B. Carminati, “Towards
Standardized Web Services Privacy Technologies,” IEEE Int’l
Conf. Web Services, pp. 174-183, June 2004.

[13] L. Alchaal, V. Roca, and M. Habert, “Managing and
Securing Web Services with VPNs,” Proc. IEEE Int’l Conf.
Web Services, pp. 236- 243, June 2004.

[14] H. Zhang, M. Savoie, S. Campbell, S. Figuerola, G. von
Bochmann, and B.S. Arnaud, “Service-Oriented Virtual Private
Networks for Grid Applications,” Proc. IEEE Int’l Conf. Web
Services, pp. 944-951, July 2007.

[15] M. Burnside and A.D. Keromytis, “F3ildCrypt: End-to-
End Protection of Sensitive Information in Web Services,”
Proc. 12th Int’l Conf. Information Security (ISC), pp. 491-506,
2009.

[16] I. Roy et al., “Airavat: Security and Privacy for
MapReduce,” Proc. Seventh USENIX Conf. Networked
Systems Design and Implementation (NSDI), Apr. 2010.


