
International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 280

Maintaining Integrity for Shared Data In Cloud With Ring
Signatures

N.Nagamani 1, Dr.Syed Sadat Ali 2

1 M.Tech (CSE), Nimra Women’s College Of Engineering, A.P., India.
2Associate Professor, Dept. of Computer Science & Engineering, Nimra College of Engineering and

Technology(NCET), A.P., India.

Abstract- The wild success of cloud data services bring the
cloud commonplace for data to be not only stored in the
cloud, but also shared across multiple users. Unfortunately,
the integrity of cloud data is subject to skepticism due to the
existence of hardware/software failures and human errors.
Several mechanisms have been designed to allow both data
owners and public verifiers to efficiently audit cloud data
integrity without retrieving the entire data from the cloud
server. However, public auditing on the integrity of shared
data with these existing mechanisms will inevitably reveal
confidential information—identity privacy—to public
verifiers. In this paper, we propose a novel privacy-
preserving mechanism that supports public auditing on
shared data stored in the cloud. In particular, we exploit ring
signatures to compute verification metadata needed to audit
the correctness of shared data. With our mechanism, the
identity of the signer on each block in shared data is kept
private from public verifiers, who are able to efficiently
verify shared data integrity without retrieving the entire file.
In addition, our mechanism is able to perform multiple
auditing tasks simultaneously instead of verifying them one
by one. Our experimental results demonstrate the
effectiveness and efficiency of our mechanism when auditing
shared data integrity.

Keywords — Public auditing, privacy-preserving, shared
data, cloud computing

I. INTRODUCTION

Now a days Cloud service providers offer users efficient
and scalable data storage services with a much lower
marginal cost than traditional approaches [1]. It is routine
for users to leverage cloud storage services to share data
with others in a group, as data sharing becomes a standard
feature in most cloud storage offerings, including
Dropbox, iCloud and Google Drive.

The integrity of data in cloud storage, however, is subject
to skepticism and scrutiny, as data stored in the cloud can
easily be lost or corrupted due to the inevitable hardware/
software failures and human errors [3]. To make this
matter even worse, cloud service providers may be
reluctant to inform users about these data errors in order to

maintain the reputation of their services and avoid losing
profits [3]. Therefore, the integrity of cloud data should be
verified before any data utilization, such as search or
computation over cloud data [4].

The traditional approach for checking data correctness is
to retrieve the entire data from the cloud, and then verify
data integrity by checking the correctness of signatures
(e.g., RSA [5]) or hash values (e.g., MD5 [6]) of the entire
data. Certainly, this conventional approach is able to
successfully check the correctness of cloud data. However
the efficiency of using this traditional approach on cloud
data is in doubt.

The main reason is that the size of cloud data is large in
general. Downloading the entire cloud data to verify data
integrity will cost or even waste user’s amounts of
computation and communication resources, especially
when data have been corrupted in the cloud. Besides,
many uses of cloud data (e.g., data mining and machine
learning) do not necessarily need users to download the
entire cloud data to local devices [2]. It is because cloud
providers, such as Amazon, can offer users computation
services directly on large-scale data that already existed in
the cloud.

Recently, many mechanisms [7] have been proposed to
allow not only a data owner itself but also a public verifier
to efficiently perform integrity checking without
downloading the entire data from the cloud, which is
referred to as public auditing [5]. In these mechanisms,
data is divided into many small blocks, where each block
is independently signed by the owner; and a random
combination of all the blocks instead of the whole data is
retrieved during integrity checking [9]. A public verifier
could be a data user (e.g., researcher) who would like to
utilize the owner’s data via the cloud or a third-party
auditor (TPA) who can provide expert integrity checking
services. Moving a step forward, Wang et al. designed an
advanced auditing mechanism [5] (named as WWRL in
this paper), so that during public auditing on cloud data,
the content of private data belonging to a personal user is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 281

not disclosed to any public verifiers. Unfortunately,
current public auditing solutions mentioned above only
focus on personal data in the cloud.

We believe that sharing data among multiple users is
perhaps one of the most engaging features that motivate
cloud storage. Therefore, it is also necessary to ensure the
integrity of shared data in the cloud is correct. Existing
public auditing mechanisms can actually be extended to
verify shared data integrity. However, a new significant
privacy issue introduced in the case of shared data with the
use of existing mechanisms is the leakage of identity
privacy to public verifiers.

For instance, Alice and Bob work together as a group and
share a file in the cloud (as presented in Fig. 1). The
shared file is divided into a number of small blocks, where
each block is independently signed by one of the two users
with existing public auditing solutions (e.g., [5]). Once a
block in this shared file is modified by a user, this user
needs to sign the new block using his/her private key.
Eventually, different blocks are signed by different users
due to the modification introduced by these two different
users. Then, in order to correctly audit the integrity of the
entire data, a public verifier needs to choose the
appropriate public key for each block (e.g., a block signed
by Alice can only be correctly verified by Alice’s public
key). As a result, this public verifier will inevitably learn
the identity of the signer on each block due to the unique
binding between an identity and a public key via digital
certificates under public key infrastructure (PKI).

Failing to preserve identity privacy on shared data during
public auditing will reveal significant confidential
information
(e.g., which particular user in the group or special block in
shared data is a more valuable target) to public verifiers.
Specifically, as shown in Fig. 1, after performing several

auditing tasks, this public verifier can first learn that Alice
may be a more important role in the group because most
of the blocks in the shared file are always signed by Alice;
on the other hand, this public verifier can also easily
deduce that the eighth block may contain data of a higher
value (e.g., a final bid in an auction), because this block is
frequently modified by the two different users. In order to
protect this confidential information, it is essential and
critical to preserve identity privacy from public verifiers
during public auditing.

In this paper, to solve the above privacy issue on shared
data, we propose Oruta,1 a novel privacy-preserving
public auditing mechanism. More specifically, we utilize
ring signatures to construct homomorphic authenticators in
Oruta, so that a public verifier is able to verify the
integrity of shared data without retrieving the entire data—
while the identity of the signer on each block in shared
data is kept private from the public verifier. In addition,
we further extend our mechanism to support batch
auditing, which can perform multiple auditing tasks
simultaneously and improve the efficiency of verification
for multiple auditing tasks. Meanwhile, Oruta is
compatible with random masking [5], which has been
utilized in WWRL and can preserve data privacy from
public verifiers.
Moreover, we also leverage index hash tables from a
previous public auditing solution [15] to support dynamic
data.

II. PROBLEM STATEMENT

System Model
As illustrated in Fig. 2, the system model in this

paper involves three parties: the cloud server, a group of
users and a public verifier. There are two types of users in
a group: the original user and a number of group users.
The original user initially creates shared data in the cloud,
and shares it with group users. Both the original user and
group users are members of the group. Every member of
the group is allowed to access and modify shared data.
Shared data and its verification metadata (i.e., signatures)
are both stored in the cloud server. A public verifier, such
as a third party auditor providing expert data auditing
services or a data user outside the group intending to
utilize shared data, is able to publicly verify the integrity
of shared data stored in the cloud server.

Figure 1 Alice and Bob share a data file in the cloud, and a
public verifier audits shared data integrity with existing
mechanisms.

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 282

Figure 2 System Model

When a public verifier wishes to check the integrity of
shared data, it first sends an auditing challenge to the
cloud server. After receiving the auditing challenge, the
cloud server responds to the public verifier with an
auditing proof of the possession of shared data. Then, this
public verifier checks the correctness of the entire data by
verifying the correctness of the auditing proof. Essentially,
the process of public auditing is a challenge and response
protocol between a public verifier and the cloud server.
Threat Model

Integrity Threats. Two kinds of threats related to the
integrity of shared data are possible. First, an adversary
may try to corrupt the integrity of shared data. Second, the
cloud service provider may inadvertently corrupt (or even
remove) data in its storage due to hardware failures and
human errors. Making matters worse, the cloud service
provider is economically motivated, which means it may
be reluctant to inform users about such corruption of data
in order to save its reputation and avoid losing profits of
its services.

Privacy Threats. The identity of the signer on each
block in shared data is private and confidential to the
group. During the process of auditing, a public verifier,
who is only allowed to verify the correctness of shared
data integrity, may try to reveal the identity of the signer
on each block in shared data based on verification
metadata. Once the public verifier reveals the identity of
the signer on each block, it can easily distinguish a high-
value target (a particular user in the group or a special
block in shared data) from others.

Design Objectives
Our mechanism, Oruta, should be designed to

achieve following properties: (1) Public Auditing: A
public verifier is able to publicly verify the integrity of
shared data without retrieving the entire data from the
cloud. (2) Correctness: A public verifier is able to
correctly verify shared data integrity. (3) Unforgeability:
Only a user in the group can generate valid verification
metadata (i.e., signatures) on shared data. (4) Identity

Privacy: A public verifier cannot distinguish the identity
of the signer on each block in shared data during the
process of auditing.

Possible Alternative Approaches
To preserve the identity of the signer on each

block during public auditing, one possible alternative
approach is to ask all the users of the group to share a
global private key. Then, every user is able to sign blocks
with this global private key. However, once one user of
the group is compromised or leaving the group, a new
global private key must be generated and securely shared
among the rest of the group, which clearly introduces huge
overhead to users in terms of key management and key
distribution. While in our solution, each user in the rest of
the group can still utilize its own private key for
computing verification metadata without generating or
sharing any new secret keys.

Trusted Computing offers another possible alternative
approach to achieve the design objectives of our
mechanism. Specifically, by utilizing direct anonymous
attestation, which is adopted by the Trusted Computing
Group as the anonymous method for remote authentication
in trusted platform module, users are able to preserve their
identity privacy on shared data from a public verifier. The
main problem with this approach is that it requires all the
users using designed hardware, and needs the cloud
provider to move all the existing cloud services to the
trusted computing environment, which would be costly
and impractical.

Ring Signatures
The concept of ring signatures was first proposed by
Rivest et al. [8] in 2001. With ring signatures, a verifier is
convinced that a signature is computed using one of group
members’ private keys, but the verifier is not able to
determine which one. More concretely, given a ring
signature and a group of d users, a verifier cannot
distinguish the signer’s identity with a probability more
than 1=d. This property can be used to preserve the
identity of the signer from a verifier.

The ring signature scheme introduced by Boneh
et al. [9] (referred to as BGLS in this paper) is constructed
on bilinear maps. We will extend this ring signature
scheme to construct our public auditing mechanism.

Homomorphic Authenticators
Homomorphic authenticators (also called

homomorphic verifiable tags) are basic tools to construct
public auditing mechanisms [10]. Besides unforgeability
(i.e., only a user with a private key can generate valid
signatures), a homomorphic authenticable signature

Public verifier

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 283

scheme, which denotes a homomorphic authenticator
based on signatures.

III. PUBLIC AUDITING MECHANISM

Overview
Using HARS and its properties we established in

the previous section, we now construct Oruta, a privacy-
preserving public auditing mechanism for shared data in
the cloud. With Oruta, the public verifier can verify the
integrity of shared data without retrieving the entire data.
Meanwhile, the identity of the signer on each block in
shared data is kept private from the public verifier during
the auditing.

Reduce Signature Storage
Another important issue we should consider in

the construction of Oruta is the size of storage used for
ring signatures. According to the generation of ring
signatures in HARS, a block m is an element of Zp and its
ring signature contains d elements of G1, where G1 is a
cyclic group with order p. It means a |p|-bit block requires
a d x |p|-bit ring signature, which forces users to spend a
huge amount of space on storing ring signatures. It will be
very frustrating for users, because cloud service providers,
such as Amazon, will charge users based on the storage
space they use.

Support Dynamic Operations
To enable each user in the group to easily modify data

in the cloud, Oruta should also support dynamic
operations on shared data. A dynamic operation includes
an insert, delete or update operation on a single block.
However, since the computation of a ring signature
includes an identifier of a block (as presented in HARS),
traditional methods, which only use the index of a block as
its identifier (i.e., the index of block mj is j), are not
suitable for supporting dynamic operations on shared data
efficiently.

IV. RELATED WORK

Provable data possession (PDP), proposed by Ateniese et
al.
[11], allows a verifier to check the correctness of a client’s
data stored at an untrusted server. By utilizing RSA-based
homomorphic authenticators and sampling strategies, the
verifier is able to publicly audit the integrity of data
without retrieving the entire data, which is referred to as
public auditing. Unfortunately, their mechanism is only
suitable for auditing the integrity of personal data. Juels
and Kaliski defined another similar model called Proofs of
Retrievability (POR), which is also able to check the
correctness of data on an untrusted server. The original file
is added with a set of randomly-valued check blocks
called sentinels. The verifier challenges the untrusted

server by specifying the positions of a collection of
sentinels and asking the untrusted server to return the
associated sentinel values. Shacham and Waters [10]
designed two improved schemes. The first scheme is built
from BLS signatures, and the second one is based on
pseudo-random functions.

To support dynamic data, Ateniese et al. [12] presented
an efficient PDP mechanism based on symmetric keys.
This mechanism can support update and delete operations
on data, however, insert operations are not available in this
mechanism. Because it exploits symmetric keys to verify
the integrity of data, it is not public verifiable and only
provides a user with a limited number of verification
requests. Wang et al. [12] utilized Merkle Hash Tree and
BLS signatures to support dynamic data in a public
auditing mechanism. Erway et al. [11] introduced dynamic
provable data possession (DPDP) by using authenticated
dictionaries, which are based on rank information. Zhu et
al. [15] exploited the fragment structure to reduce the
storage of signatures in their public auditing mechanism.
In addition, they also used index hash tables to provide
dynamic operations on data. The public mechanism
proposed by Wang et al. [5] and its journal version [18]
are able to preserve users’ confidential data from a public
verifier by using random maskings. In addition, to operate
multiple auditing tasks from different users efficiently,
they extended their mechanism to enable batch auditing by
leveraging aggregate signatures.

V. CONCLUSION

In this paper, we propose Oruta, a privacy-preserving
public auditing mechanism for shared data in the cloud.
We utilize ring signatures to construct homomorphic
authenticators, so that a public verifier is able to audit
shared data integrity without retrieving the entire data, yet
it cannot distinguish who is the signer on each block. To
improve the efficiency of verifying multiple auditing
tasks, we further extend our mechanism to support batch
auditing.

There are two interesting problems we will continue to
study for our future work. One of them is traceability,
which means the ability for the group manager (i.e., the
original user) to reveal the identity of the signer based on
verification metadata in some special situations. Since
Oruta is based on ring signatures, where the identity of the
signer is unconditionally protected [21], the current design
of ours does not support traceability. To the best of our
knowledge, designing an efficient public auditing
mechanism with the capabilities of preserving identity
privacy and supporting traceability is still open. Another
problem for our future work is how to prove data freshness
(prove the cloud possesses the latest version of shared
data) while still preserving identity privacy.

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 7 ISSN 2321-6905
July -2015

www.ijseat.com Page 284

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A View of Cloud Computing,” Comm. ACM, vol. 53, no. 4, pp. 50-58,
Apr. 2010.

[2] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the Public
Cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69-73, 2012.

[3] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public
Auditing for Data Storage Security in Cloud Computing,” Proc. IEEE
INFOCOM, pp. 525-533, 2010.

[4] B. Wang, M. Li, S.S. Chow, and H. Li, “Computing Encrypted Cloud
Data Efficiently under Multiple Keys,” Proc. IEEE Conf. Comm. and
Network Security (CNS ’13), pp. 90-99, 2013.

[5] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public Key Cryptosystems,” Comm. ACM, vol.
21, no. 2, pp. 120-126, 1978.

[6] The MD5 Message-Digest Algorithm (RFC1321). https://tools.
ietf.org/html/rfc1321, 2014.

[7] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc.
14th Int’l Conf. Theory and Application of Cryptology and Information
Security: Advances in Cryptology (ASIACRYPT ’08), pp. 90- 107,
2008.

[8] R.L. Rivest, A. Shamir, and Y. Tauman, “How to Leak a Secret,”
Proc. Seventh Int’l Conf. Theory and Application of Cryptology and
Information Security: Advances in Cryptology (ASIACRYPT’01), pp.
552-565, 2001.

[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps,” Proc. 22nd Int’l
Conf. Theory and Applications of Cryptographic Techniques: Advances
in Cryptology (EUROCRYPT’03), pp. 416-432, 2003.

[10] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S.S Yau, “Dynamic
Audit Services for Integrity Verification of Outsourced Storages in
Clouds,” Proc. ACM Symp. Applied Computing (SAC’11), pp. 1550-
1557, 2011.

[11] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted Stores,”
Proc. 14th ACM Conf. Computer and Comm. Security (CCS ’07), pp.
598-610, 2007.

[12] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession,” Proc. Fourth Int’l Conf.
Security and Privacy in Comm. Networks (SecureComm’08), 2008.

