
International Journal of Science Engineering and AdvanceTechnology,IJSEAT, Vol 3, Issue 4,APRIL - 2015 ISSN 2321-6905

www.ijseat.com Page 143

An Improved Cost Estimation in Software Project
Development Using Neural Networks and COCOMOII model

Archana. R 1, Ravikumar.T 2,
1Student of M.Tech (CSE) and 2Asst.Prof in Department of Computer Science Engineering,

AITAM, Tekkali, Srikakulam

Abstract:
An sympathetic of quality aspects is relevant for
the software association to deliver high software
dependability. An empirical consideration of
metrics to prophesy the quality attributes is basic in
order to acquire insight about the value of software
in the primitive phases of software development
and to certify corrective actions. Herein paper, we
forecast a model to assess fault proneness via
Object Oriented CK metrics and QMOOD metrics.
We pertain one statistical method and six machine
learning technique to predict the models. The
proposed reproduction are validated using dataset
unruffled from Open Source software. The
consequences are analyzed using Area Under the
Curve (AUC) achieve from Receiver Operating
Characteristics (ROC) testing. The results show
that the replica predicted using the random forest
and bagging methods outperformed all the other
mould. Hence, support on these results it is
equitable to claim that quality models have a
considerable relevance with Object Oriented
metrics and that machine learning organizations
have a equivalent performance with numerical
methods. It is experimental that the CBR routine
using the Mahalanobis detachment similarity
occupation moreover the inverse distance weighted
solution algorithm yielded the best fault prediction.
In addition, the CBR models have superior
performance than models basis on multiple linear
regression.
Keywords: Software quality , Case-based
reasoning , Software fault prediction.
I. Introduction:
Experimental detection of fault-prone software
mechanism enables verification professional to
concentrate their time and resources on the
obstruction areas of the system beneath
development.
The facility of software quality forms to accurately
identify essential components allows for the
relevance of focused verification activities c from
manual inspection to testing, dynamic analysis and
static, automated formal analysis scheme. Software
quality models, thus, help ensure the reliability of
the delivered products. It has become imperative to
develop and apply good software quality models
early in the software development life cycle,
especially in large-scale development efforts.
Model performance comparison received attention

in the software engineering literature (El-Emam et
al. 2001). Nevertheless, empirical studies continue
to apply different performance measures.
Consequently, such studies do not encourage cross
comparison with the results of work performed
elsewhere. Many studies use inadequate
performance metrics, those that do not reveal
sufficient level of details for future comparison.
For these reasons, the objectives of this paper
include:
1) A survey of frequently used model occurrence
metrics and a discussion of their merits,
2) An foreword of cost curves, a new model
estimate technique in software engineering, and 3)
A comparison of model assessment techniques and
a guide to their selection. We suppose that our
findings and suggestion have a potential to enhance
statistical legitimacy of future experiments and,
ultimately, further the state of procedure in fault
prediction modelling.
II.Related Work:
The target organization is a software purchaserside
company that provides various types of
telecommunication services using acquired
software systems. In the software acquisition
processes, the company is responsible for
requirements analysis, architectural design, and
acceptance testing, while developer-side companies
are in charge of detailed design, programming
unit/integration/ system testing, and debugging. As
the services grow in the number of variations with
shorter renewal cycles than ever before, the main
motivation here is optimization of acceptance
testing to provide high quality services to
customers. From this perspective, the primary goal
of this paper is reduction of acceptance test effort
using techniques for predicting faultprone modules
[7]. Our study includes metrics collection, building
predictor models, and assessing the reduction of
test effort.
C4.5 Algorithm:
The C4.5 algorithm is an inductive supervised
learning system which employs decision trees to
represent a quality model. C4.5 is a descendent of
another induction program, ID3, and it consists of
four principal programs: decision tree generator,
production rule generator, decision tree interpreter,
and production rule interpreter. The algorithm uses
these four programs when constructing and
evaluating classification tree models. Different tree

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Science Engineering and AdvanceTechnology,IJSEAT, Vol 3, Issue 4,APRIL - 2015 ISSN 2321-6905

www.ijseat.com Page 144

models were built by varying parameters: minimum
node size before splitting and pruning percentage.
The C4.5 algorithm commands certain
preprocessing of data in order for it to build
decision tree models. Some of these include
attribute value description type, predefined discrete
classes, and sufficient number of observations for
supervised learning. The classification tree is
initially empty and the algorithm begins adding
decision and leaf nodes, starting with the root node.
Tree disc Algorithm:
The Tree disc algorithm is a SAS macro
implementation of the modified CHi- square
Automatic Interaction Detection algorithm. It
constructs a regression tree from an input data set
that predicts a specified categorical response
variable based on one or more predictors. The
predictor variable is selected to be the variable that
is most significantly associated with the dependent
variable according to a chisquared test of
independence in the contingency table. Regression
tree-based models are built by varying model
parameters in order to achieve the preferred balance
between the misclassification error rates, and to
avoid over fitting of classification trees. A
generalized classification rule is used to label each
leaf node after the regression tree is built. This
classification rule is very similar to the approach
followed, when using S-PLUS regression trees as
classification trees[8].
Sprint-Sliq algorithm:
Sprint-Sliq is an abbreviated version of Scalable
parallelizable induction of decision Trees-
Supervised Learning In Quest, the algorithm can be
used to build classification tree models that can
analyze both numeric and categorical attributes. It
is a modified version of the classification tree
algorithm of CART, and uses a different pruning
technique based on the minimum description length
principle. The algorithm has excellent scalability
and analysis speed. Classification tree modeling
using Sprint-Sliq is accomplished in two phases: a
tree building phase and a tree pruning phase. The
building phase recursively partitions the training
data until each partition is either ‘‘pure’’ or meets
the stop-splitting rules set by the user. The IBM
Intelligent Data Miner tool, which implements the
Sprint-Sliq algorithm, was used by our research
group to build classification trees. Sprint-Sliq uses
the Gini Index to evaluate the goodness of split of
all the possible splits. A class assignment rule is
needed to classify modules as fp and nfp.[9].
Logistic Regression:
Logistic regression is a statistical modeling
technique that offers good model interpretation.
Independent variables in logistic regression may be
categorical, discrete or continuous. However, the
categorical variables need to be encoded(e.g., 0, 1)
to facilitate classification modeling. Our research
group has used logistic regression to build software

quality classification models. Let xj be the jth
independent variable, and let xi be the vector of the
ith module’s independent variable values. A
module being fp is designated as an ‘‘event’’. Let q
be the probability of an event, and thus q=q/1-q is
the odds of an event. The logistic regression model
has the form [10], Log(q/1-
q)=β0+β1x1+β1x2……….βjxj+βmxm Where, log
means the natural logarithm, bj is the regression
coefficient associated with independent variable xj,
and m is the number of independent variables.
Logistic regression suits software quality modeling

because most software engineering measures do
have a monotonic relationship with faults that is
inherent in the underlying processes. Given a list of
candidate independent variables and a significance
level, a, some of the estimated coefficients may not
be significantly different from zero. Such variables
should not be included in the final model.
III. Empirical Data Collection:
This study makes use of an Open Source dataset
"Apache POI" [15]. Apache POI is a pure
Java library for manipulating Microsoft documents.
It is used to create and maintain Java API
for manipulating file formats based upon the office
open XML standards (OOXML) and Microsoft
OLE2 compound document format (OLE2). In
short, we can read and write MS Excel files using
Java. In addition, we can also read and write MS
word and MS PowerPoint files using Java. The
important use of the Apache POI is for text
extraction applications such as web spiders, index
builders, and content management systems. This
system consists of 422 classes. Out of 422 classes,
there are 281 faulty classes containing 500 numbers
of faults. It can be seen from Fig. 1 that 71.53% of
classes contain 1 fault, 15.3 % of classes contain 2
faults and so on. As shown in the pie chart, the
majority of classes consist of 1 fault. Table 2
summarizes the distribution of faults and faulty
classes in the dataset.

Fig. 1. Distribution of Faults

No. of faulty classes 281

% of faulty classes 63.57

No. of faults 500

Language used Java



International Journal of Science Engineering and AdvanceTechnology,IJSEAT, Vol 3, Issue 4,APRIL - 2015 ISSN 2321-6905

www.ijseat.com Page 145

IV. Software Fault Proneness:
Software Fault Proneness is a key factor for
monitoring and controlling the quality of software.
The effectiveness of analysis and testing can be
easily judged by comparing the predicted
distribution of fault (Fault Proneness) and amount
of fault found with testing (Software faultiness).
Fault Proneness of a class predicts the probability
of the presence of faults in that class. Software
analysis and testing are complex and expensive
activities. Estimating and preventing the faults.
Early and accurately is better approach for reducing
the testing efforts. If fault prone modules are
known in advance, review, analysis and testing
efforts can be concentrated on those modules.
V. Varying field defect occurrence patterns:
The field defect occurrence patterns vary greatly
between different releases. Figures 4-7 provides a
sample of four releases and their best post-facto
fits.There are two implications. First, the diverse
patterns mean that the Weibull model is best suited
to model the field defect occurrence patterns since
the Weibull is flexible enough to describe a wide
range of patterns. This conjecture is supported by
the fact that top two prediction methods use the
Weibull model. However, the model parameters of
the Weibull are harder to predict. The errors in
predictions are exaggerated by the Weibull model
form (in section 4.1 table 2); therefore, forecasts
are not accurate. This is the same conclusion
reached by Li et al. in [15]. Secondly, since the
field defect patterns vary greatly between releases,
more data are needed to distinguish between
releases; however, we have limited data (at most 6
training data points) in our study.

Fig. Actual field defects and fitted models for
OS Release 3

Fig. Actual field defects and fitted models for
OS Release 4

Fig. Actual field defects and fitted models for
OS Release 5

Fig. Actual field defects and fitted models for
OS Release 6

Fig. Legend for Figures 4-7

VI. Conclusion:
This paper reviewed software fault prediction
papers published in conference proceedings and
journals to evaluate the progress and direct future
research on software fault prediction. We evaluated
papers with a specific focus on types of metrics,
methods, and datasets and did not describe all the
prediction models in detail. The aim was to classify
studies with respect to metrics, methods, and
datasets that have been used in fault prediction



International Journal of Science Engineering and AdvanceTechnology,IJSEAT, Vol 3, Issue 4,APRIL - 2015 ISSN 2321-6905

www.ijseat.com Page 146

papers. We evaluated papers published before and
after 2005 with respect to metrics, methods, and
datasets. We suggest the following changes in
software fault prediction research:

*Conduct more studies on fault prediction models
using class-level metrics. Even though object-
oriented paradigm is widely used in industry, the
usage percentage of class-level metrics are still
beyond acceptable levels. We need prediction
models using class-level metrics to predict faults
during design phase and this type of prediction is
called early prediction. In addition to classlevel
metrics, the usage percentages of component-level
and
process-level metrics are very low. It is an open
research area to investigate component-level or
process-level metrics for fault prediction problem.

*Increase the usage of public datasets for fault
prediction problem. It is very significant to use
public datasets for fault prediction because
repeatable, refutable and verifiable models of
software engineering can only be built with public
datasets. However, he usage percentage of public
datasets is 31% for this review and it is 52% for
papers published after year 2005. Therefore, we
need to increase the percentage of papers using
public datasets and 80% can be an ideal level.

* Increase the models based on machine learning
techniques. As specified in this review, machine
learning models have better features than statistical
methods or expert opinion based
approaches. Therefore, we should increase the
percentage usage of the models based on machine
learning techniques.

VII. REFERENCES:
[1] Assessing the Cost Effectiveness of
FaultPrediction in Acceptance
Testing AkitoMonden, akuma Hayashi, Shoji
Shinoda, KumikoShirai,
Junichi Yoshida, Mike Barker
[2] Predicting Defect Densities in Source Code
Files with Decision Tree
Learners Patrick Knab, Martin Pinzger, Abraham
Bernstein
[3] Comparative Assessment of Software Quality
Classification
Techniques: An Empirical Case Study TAGHI M.
KHOSHGOFTAAR,
NAEEM SELIYA
[4] A.S. Foulkes, Applied Statistical Genetics with
R. Springer, 2009.
[5] A.L. Goel and K. Okumoto, “Time-Dependent
Error-Detection Rate
Model for Software Reliability and Other
Performance Measures,” IEEE

Trans. Reliability, vol. 28, no. 3, pp. 206-211,Aug.
1979.
[6] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy,
“Predicting Fault
Incidence Using Software Change History,” IEEE
Trans. Software Eng.,
vol. 26, no. 7, pp. 653-661, July 2000.
[7] “Information-Technology Promotion Agency,
Japan (IPA) Software
Engineering Center (SEC) ed.,” White Papers on
Software Development
[8].CUCIS. Center for Ultra-scale Computing and
Information Security, Northwestern University,
http://cucis.ece.northwestern.edu/projects/DMS/Mi
neBenchDownloa
d.html
[9]. Yao, H., Hamilton, H.J., Geng, L.: A Unified
Framework for Utility Based Measures for
Mining Itemsets. In: ACM SIGKDD 2nd
Workshop on Utility-Based Data Mining (2006)
[10]. Pei, J.: Pattern Growth Methods for Frequent
Pattern Mining. Simon Fraser University
(2002)
[11]. Sucahyo, Y.G., Gopalan, R.P.: CT-PRO: A
Bottom-Up Non Recursive Frequent Itemset
Mining Algorithm Using Compressed FP-Tree
Data Structure. In: IEEE ICDM Workshop
on Frequent Itemset Mining Implementation
(FIMI). Brighton UK (2004)
[12]. FIMI, Frequent Itemset Mining
Implementations Repository,
[13]. http://fimi.cs.helsinki.fi/
[14.] IBM Synthetic Data Generator,
http://www.almaden.ibm.com/software/
quest/resources/index.shtml

Author:
Raghupatruni Archana is a student
of Computer Science Engineering
from Aditya Institute of Technology
And Management, Tekkali, Presently
pursuing M.Tech (CSE) from this
college


