
International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 2, February - 2015 ISSN 2321-6905

www.ijseat.com Page 32

Clustered Node Based Load Balancing In Distributed
Environment

Padmaja.T1, Suresh.N2, Lakshmi Tulasi.R3

1Student of M.Tech (CSE),2 Associate.Prof,3HOD,Professor
Department of Computer Science Engineering, Qis Institute of Technology, Ongole.

Abstract: Cloud computing having tremendous
growth on recent years but it is not segregation on
shared clouds. Distributed file systems are key
building blocks for cloud computing applications
based on the Map Reduce programming paradigm. In
such file systems, nodes simultaneously serve
computing and storage functions; a file is partitioned
into a number of chunks allocated in distinct nodes so
that Map Reduce tasks can be performed in parallel
over the nodes. Data storage and communication
which are to be done in huge amount, in such cases
clouds are most provably used. "The cloud", also
focuses on increasing the effectiveness of the public
resources. Cloud resources are usually not only
shared by multiple users but are also vigorously
reallocated per demand. This can work for
apportioning resources to users .But In the time of
apportionment these are indeed .So In this paper we
are introducing novel mechanism. We investigate to
implement security provided for cloud computing
and Evaluate the Quality of Service-QOS (Ex.
Response Time) of whole system. In cloud
computing one server controls number of sub servers,
files, it can add, delete, and append dynamically
Freight stabilization in the cloud computing
surroundings has an imperative impact on the
performance. Excellent freight stabilizing makes
cloud computing more efficient and improves user
satisfaction. In this paper we are presenting freight
stabilizing techniques for cloud segregating.
Keywords: Freight Stabilizing, Cloud Segregating,
Freight Stabilizing Models, Shared Cloud.
I Introduction:
The Distributed file systems an important issue in

DHTs is load-balance the even distribution of items
to nodes in the DHT. For load balance all DHTs
make some efforts; The DHT address associated with
each item is randomized with a “good enough” hash
function and making each DHT node responsible for
a balanced portion of the DHT address space. A
prototypical example of this approach is Chord: Each
node is responsible for only a small interval of the

ring is nothing but “random” hashing of node to a
ring while only a limited number of items land in the
(small) ring interval owned by any node is nothing
but random mapping of items. The cloud computing
Current distributed hash tables do not evenly partition
the address space into. Cloud computing (or cloud
for short) is a compelling technology. In clouds,
clients can dynamically allocate their resources on-
demand without sophisticated deployment and
management of resources. Key enabling technologies
for clouds include the Map Reduce programming
paradigm [1], distributed file systems (e.g., [3], [4]),
virtualization (e.g., [4], [5]), and so forth. These
techniques emphasize scalability, so clouds (e.g., [6])
can be large in scale, and comprising entities can
arbitrarily fail and join while maintaining system
reliability. For cloud computing applications which
are based on the Map Reduce programming
paradigm, distributed file systems are key building
blocks. In such file systems, computing and storage
functions between nodes are performed
simultaneously; Partitioning of file into number of
chunks and allocation of chunks to distinct nodes
takes place. so over the nodes Map Reduce tasks can
be performed in parallel. For example, consider a
word count application. In large file, this word count
application will count the number of distinct words
and frequency of each unique word. In such an
application, a cloud partitions the file into a large
number of disjointed and fixed-size pieces (or file
chunks) and assigns them to different cloud storage
nodes (i.e., chunk servers). Each storage node (or
node for short) then calculates the frequency of each
unique word by scanning and parsing its local file
chunks. In this paper, the load rebalancing problem in
distributed file systems specialized for dynamic,
large-scale and data-intensive clouds. (The terms
“rebalance” and “balance” is interchangeable in this
paper).There will be hundreds and thousands of
nodes in such a large-scale cloud (and may reach tens
of thousands in the future). Our objective is to
allocate the chunks of files as uniformly as possible

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 2, February - 2015 ISSN 2321-6905

www.ijseat.com Page 33

among the nodes such that no node manages an
excessive number of chunks. Additionally, we aim to
maximize the network bandwidth by reducing the
network traffic caused by rebalancing the loads of
nodes as much as possible available to normal
applications. Moreover, as failure is the norm, nodes
are newly added to sustain the overall system
performance [3], [4], resulting in the heterogeneity of
nodes.
We can add, delete and update nodes dynamically

for heterogeneity of the nodes. Heterogeneity of the
nodes will increase the scalability and system
performance. In Distributed File System the main
functionalities of nodes is to serve computing and
storage functions. In this paper, we introduced new
load rebalancing algorithm in distributed file systems,
aim to reduce network traffic (or movement cost)
caused by rebalancing the loads of nodes as much as
possible to increase the network bandwidth to cloud
applications. For security in cloud computing, we
maintained these files in encrypted format using
cryptographic algorithms. Finally, for performance
improvement, high speed, reducing time consistency,
we calculate the response time of whole system.
II. Related Work
When you submit your Load balancing in cloud

computing system [8] Ram Prasad Padhy, P Goutam
Prasad Rao discussed on basic concepts of Cloud
Computing and Load balancing and studied some
existing load balancing algorithms, which can be
applied to clouds. In addition to that, the closed-form
solutions for minimum measurement and reporting
time for single level tree networks with different load
balancing strategies were also studied. The
performance of these strategies with respect to the
timing and the effect of link and measurement speed
were studied. A Comparative Study into Distributed
Load Balancing Algorithms for Cloud Computing [9]
M. Randles, D.Lamb, and A.Taleb-Bendiab
discussed on Distributed Load Balancing Algorithms
are Honeybee Foraging Behavior, Biased Random
Sampling, and Active Clustering. Honeybee

Foraging Behavior investigated a
decentralized honeybee-based load balancing
technique that is a nature-inspired algorithm for self-
organization. Through local server actions it achieve
global load balancing. With increased system
diversity, performance of the system is enhanced but
with an increase in system size, throughput is not
increased. It is best suited for the conditions where
the diverse population of service types is required.
Biased Random Sampling investigated a distributed
and scalable load balancing approach that uses
random sampling of the system domain to achieve
self-organization thus balancing the load across all

nodes of the system. With high and similar
population of resources, the performance of the
system is improved thus by effective utilization of
increased system resources results in increased
throughput. With increased diversity, performance of
the system will be degraded. Active Clustering
investigated a self-aggregation Load Balancing
Techniques that is self aggregation algorithm to
optimize job assignments by connecting similar
services using local re-wiring. With high resources,
the performance of the system is enhanced, thereby
using these resources effectively, throughput will
increase. With increase in system diversity,
performance of the system will be degraded. Game-
theoretic static load balancing for distributed systems
[10] Penmatsa and Chronopoulos discussed on static
load balancing strategy based on game theory for
distributed systems. And this work provides us with
a new review of the load balance problem in the
cloud environment. As an implementation of
distributed system, the load balancing in the cloud
computing environment can be viewed as a game.
Load Balancing in Structured P2P Systems [11]
A.Rao, K.Lakshminarayanan, S.Surana, R.Karp and
I.Stoica based on the concept of virtual servers the
many-to-many framework is to cope with the load
imbalance in a DHT. In the many-to-many
framework, directories are some dedicated nodes
where light and heavy nodes register their loads.
Matches between heavy and light nodes are
computed by the directories and then respectively,
request the heavy and light nodes to transfer and to
receive designated virtual servers. Load Balancing in
Dynamic Structured P2P Systems [12] S.Surana,
B.Godfrey, K. Lakshmi narayanan, R. Karp and
I.Stoica discussed on the many-to-many framework
essentially reduces the load balancing problem to a
centralized algorithmic problem. The directory nodes
may thus become the performance bottleneck and
single point of failure as the entire system heavily
depends on the directory nodes. Chord: A Scalable
Peer-to-peer Lookup Service for Internet
Applications [13] Ion Stoic a, Robert Morris, David
Karger, M. Frans Kaashoek and Hari Balakrishnan
propose the notion of virtual servers as a means of
improving load balance. By allocating log N virtual
servers per physical node, Chord ensures that with
high probability the number of objects on any node
is within a constant factor of the average. However,
these schemes assume that nodes are homogeneous;
objects have the same size, and object IDS are
uniformly distributed. Simple Load Balancing for
Distributed Hash Tables [14] John Byers, Jeffrey
Considine, and Michael Mitzenmache has proposed
the use of the power of two choices paradigm to

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 2, February - 2015 ISSN 2321-6905

www.ijseat.com Page 34

achieve better load balance. However, this scheme
was not analyzed or simulated for the case of
heterogeneous object sizes and node capacities, and
in any case is not prepared to handle a dynamic
system of the kind which we have described. This is
largely complementary to the work presented in this
paper. Competitive Hill-Climbing Strategies for
Replica Placement in a Distributed File System [15]
J. R. Douceur and R. P. Watlenhofer have proposed
algorithms for replica placement in distributed file
systems which are similar in spirit with our
algorithms. However, their primary goal is to place
object replicas to maximize the availability in an un-
trusted P2P system, while we consider the load
balancing problem in a cooperative system.
III. Our Proposal
The chunk servers in our proposal are organized as a
DHT network; that is, each chunk server implements
a DHT protocol such as Chord [18] or Pastry [19]. A
file in the system is partitioned into a number of
fixed-size chunks, and “each “chunk has a unique
chunk handle (or chunk identifier) named with a
globally known hash function such as SHA1 [24].
The hash function returns a unique identifier for a
given file’s pathname string and a chunk index.
Each chunk server also has a unique ID. We
represent the IDs of the chunk servers in V by 1n, 2n,
3n, · · · , nn; for short, denote the n chunk servers as
1, 2, 3, · · · , n. Unless otherwise clearly indicated,
we denote the successor of chunk server i as chunk
server i + 1 and the successor of chunk server n as
chunk server 1. In a typical DHT, a chunk server i
hosts the file chunks whose handles are within (i−1n ,
in], except for chunks whose handles are in (nn,1n]
which are managed by chunk server n.To discover a
file chunk, the DHT lookup operation is performed.
In most DHTs, the average number of nodes visited
for a lookup is O(log n) [18], [19] if each chunk
server maintains log2 n neighbours, that is, nodes i +
2k mod n fork = 0, 1, 2, · · , log2 n − 1. Among the
log2 n neighbours, the one i+20 is the successor of i.
To look up a file with l chunks lookups are issued.
Our proposal uses DHTs for the following reasons:
A. As the arrivals, departures, and failures,
simplifying the system provisioning and
management, the chunk servers self-configure and
self-heal in our proposal.
B. Migration of locally hosted chunks to its successor
takes place if a node leaves.
C. Allocation of chunks whose IDs immediately
precede the joining node from its successor to
manage takes place if a node join.

Our proposal heavily depends on the arrival of
nodes and departure operations to file chunks
migration among nodes.

IV. Verification Framework Overview
Three different entities where system architecture
involves:
Clients who have a large amount of data to be stored
in multicloud and have the permissions to access and
manipulate stored data. Cloud Service Providers
(CSPs) who work together to provide data storage
services have enough storages and computation
resources. Trusted Third Party (TTP) is trusted to
store verification parameters for integrity checking
and offer public query services for these parameters.
This architecture Fig.1 has considered the existence
of multiple CSPs to cooperatively store and maintain
the data outsourced by client. To verify the integrity
and availability of stored data in all CSPs,a
cooperative PDP is used. For security of outsourced
data, we use trusted third party as CSPs are not fully
trusted by the Data Owner. Backup servers are also
used by the system. The verification method is
described as follows: Firstly, a client (data owner)
uses the secret key to pre-process a file which
consists of a group of blocks, produces a set of public
verification information that is stored in TTP, CSPs
will be transferred with the file and some verification
tags, local copy may also deleted. Then client can
issue a challenge for one CSP by using verification
protocol to check the integrity and availability of
outsourced data with respect to public information
stored in TTP.
V Implementation Experimental Setup
I have implemented the proposal in Hadoop HDFS
0.21.0, and assessed our implementation against the
load balancer in HDFS. The implementation is
demonstrated through a small-scale cluster
environment consisting of a single, dedicated name
node and 25 data nodes, each with Ubuntu10.10].
Specifically, the name node is equipped with Intel
Core 2 Duo E7400 processor and 3 Gbytes RAM. As
the number of file chunks in our experimental
environment is small, the RAM size of the name
node is sufficient to cache the entire name node
process and the metadata information, including the
directories and the locations of file chunks.
In the experimental environment, a number of clients
are established to issue requests to the name node.
The requests include commands to create directories
with randomly designated names, to remove
directories arbitrarily chosen, etc.
Particularly, the size of a file chunk in the
experiments is set to 16 Mbytes. Compared to each
experimental run requiring 20 to 60 minutes,
transferring these chunks takes no more than 328
seconds ≈ 5.5 minutes in case the network bandwidth
is fully utilized. The initial placement of the 256 files
chunks

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 2, February - 2015 ISSN 2321-6905

www.ijseat.com Page 35

VI Performance Evalution
We run a varying number of players. The players
move through the world according to a random
waypoint model, with a motion time chosen
uniformly at random from seconds, a destination
chosen uniformly at random, and a speed chosen
uniformly at random from (0, 360) pixels per second.
The size of the game world is scaled according to the
number of players. The dimensions are 640n _ 480n,
where n is the number of players. All results are
based on the average of 3 Experiments, with each
experiment lasting 60 seconds. The experiments
include the bent of log n sized LRU cache long
pointers. The HDFS load balancer and our proposal.
Our proposal clearly outperforms the HDFS load
balancer. When the name node is heavily loaded (i.e.,
small M’s), our proposal remarkably performs better
than the

HDFS load balancer. For example, if M = 1%, the
HDFS load balancer takes approximately 60 minutes
to balance the loads of data nodes. By contrast, our
proposal takes nearly 20 minutes in the case of M=
1%. Specifically, unlike the HDFS load balancer, our
proposal is independent of the load of the name node.
In particular, approximating the unlimited scenario is
expensive, and the use of blog2 nc virtual peers as
proposed in introduces a large amount of topology
maintenance track but does not provide a very close
approximation. Finally, we observe that while we are
illustrating the most powerful instantiation of virtual
peers, we are comparing it to the weakest choice
model further improvements are available to us just
by increasing d to 4.

VII. Conclusion
By using proposed idea where it consider physical
network locality and heterogeneity of node, balancing
the loads of nodes and demanded cost of movement
can be reduced as much as possible. Competing
algorithms through synthesized probabilistic
distributions of file chunks are compared with
proposed idea. Emerging distributed file systems in
production systems strongly depend on a central node
for chunk reallocation. Because of workload on
central load balancer which is linearly scaled with the
system size, leads to performance bottleneck and

single point of failure. This dependence is deficient in
large-scale, failure-prone environment. Centralized
approach in a production system and a competing
distributed method are compared with proposed
algorithm. Load imbalance factor, movement cost,
and algorithmic overhead are handled by developed
algorithm efficiently. To securing the data,
implemented the RSA algorithm. Examine the
Performance measures of whole system.
VIII. Future Work
Use any other balancing algorithm strategy in cloud
computing environment. In this paper only file
sharing (file download & upload). In future sharing
multimedia files (audio & video).This algorithm used
between two various cloud computing environments.
Use various cryptographic algorithms for security
purposes.
References:
[1] Heiser J. What you need to know about cloud
computing security and compliance, Gartner,
Research, ID Number: G00168345, 2009.
[2] Seccombe A.., Hutton A, Meisel A, Windel A,
Mohammed A, Licciardi A, (2009). Security
guidance for critical areas of focus in cloud
computing, v2.1. Cloud Security Alliance, 25 p.
[3] Mell P, Grance T (2011) The NIST definition of
Cloud Computing. NIST, Special Publication 800–
145, Gaithersburg, MD.
[4] J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters,” in
Proc. 6th Symp,Operating System Design and
Implementation (OSDI‟04), Dec. 2004, pp. 137–150
[5] J. Byers, J. Considine, and M. Mitzenmacher,
Simple load balancing for distributed hash tables, in
Proceedings of IPTPS, Berkeley, CA, Feb. 2003.
[6] Hadoop Distributed File System,
http://hadoop.apache.org/hdfs/.
[7] Hadoop Distributed File System “Rebalancing
Blocks,”
,”http://developer.yahoo.com/hadoop/tutorial/module
2.html#r ebalancing, 2012.
[8] Ram Prasad Padhy (107CS046), PGoutam Prasad
Rao (107CS039).”Load balancing in cloud
computing system” Department of Computer Science
and Engineering National Institute of Technology,
Rourkela Rourkela-769 008, Orissa, India May,
2011.
[9] M. Randles, D. Lamb, and A. Taleb-Bendiab,
―A Comparative Study into Distributed Load
Balancing Algorithms for Cloud Computing‖,
Proceedings of 24th IEEE International Conference
on Advanced Information Networking and
Applications Workshops, Perth, Australia, April
2010, pages 551-556.

International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 3, Issue 2, February - 2015 ISSN 2321-6905

www.ijseat.com Page 36

[10] S.Penmatsa and T.Chronopoulos, Game-
theoretic static load balancing for distributed systems,
Journal of Parallel and Distributed Computing,
vol.71, no.4, pp.537-555, Apr. 2011.
[11] A.Rao, K.Lakshmi narayanan, S.Surana, R.Karp
and I.Stoica, Load Balancing in Structured P2P
Systems‖, Proc. Second Int„l Workshop Peer-to-Peer
Systems (IPTPS „02), pp. 68-79, Feb. 2003.
[12] S.Surana, B.Godfrey, K.Lakshminarayanan,
R.Karp and I.Stoica,―Load Balancing in Dynamic
Structured P2P Systems,‖ Performance
Evaluation,vol.63, no. 6, pp. 217-240, Mar. 2006.
[13] Ion Stoica, Robert Morris, David Karger, M.
Frans Kaashoek and Hari Balakrishnan. ―Chord: A
Scalable Peer-to-peer Lookup Service for Internet
Applications.‖ in Pmc. ACM SIGCOMM. San Diego,
2001, pp. 149-160.
[14] John Byers, Jeffrey Considine, and Michael
Mituenmacher, ―Simple Load Balancing for
Distributed Hash Tables.in Pmc.IPTfS, Feb. 2003.
[15] J. R. Douceur and R. P. Watlenhofer,
“Competitive Hill-Climbing Strategies for Replica
Placement in a Distributed File System,‖ in Pmc.
DISC,2001.
[16] R.L. Rivest, A. Shamir, and L. Adleman. “A
Method for Obtaining Digital Signatures and Public
key Cryptosystems”, Communications of the ACM,
21(2), 120-126, February 1978.
[17] RSA Laboratories, High Speed RSA
Implementation, RSA Data Security, November
1994.

Authors:
Padmaja.T is a student of Computer
Science Engineering from QIS
Institute of Technology,Presently
pursuing M.Tech (CSE) from this
college. She received B.Tech from
JNTUK in the year of 2012.

Suresh.N is a Associate Professor of
QIS Institute of Technology,Ongole.
He received M.Tech in Computer
Science Engineering from JNTU
Kakinada
University.He gained 12years
Experience on Teaching . He is a
good Researcher in Image

Processing, Algorithms, Computer Networks. He
attended Various National and International
Workshops and Conferences.

Lakshmi Tulasi.R is a Professor,
H.O.D of QIS Institute of
Technology, Ongole. She received
M.Tech from JNTUCEA. she is
pursuing Ph.D at JNTUH.She is a
good Researcher in semantic web,
Computer Networks. She attended
Various National and International

Workshops and Conferences.

