
International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 2, Issue 12, December - 2014 ISSN 2321-6905

www.ijseat.com Page 989

A Study To Support First-N Queries And Incremental Updates
To Answer Multi Keyword Queries

1Ala Rajitha, 2Mr. Fasi Ahmed Parvez
1arajitha222@gmail.com

1,2 Balaji Institute of Technology & Science Narsampet warangal

Abstract:
Most search engines and online search forms
maintain auto completion which demonstrates
suggested queries or even answers on the fly as a
user types in a keyword query character by
character. As many search systems accumulate
their information in a backend relational DBMS.
Some databases such as Oracle and SQL server
already support prefix search and we could use this
feature to do search-as-you-type. Still not all
databases provide this feature. For this reason we
study new methods that can be used in all
databases. One approach is to expand a separate
application layer on the database to construct
indexes and execute algorithms for answering
queries. While this approach has the benefit of
achieving a high performance its main drawback is
duplicating data and indexes resulting in additional
hardware costs. Another approach is to use
database extenders such as DB2 Extenders,
Informix Data Blades, Microsoft SQL Server
Common Language Runtime (CLR) integration and
Oracle Cartridges which permit developers to
implement new functionalities to a DBMS. This
approach is not possible for databases that do not
provide such an extender interface such as MySQL.
Because it needs to utilize proprietary interfaces
provided by database vendors a solution for one
database may not be portable to others. In addition
an extender-based solution particularly those
implemented in C/C++ could cause severe
dependability and security problems to database
engines.
Keywords: Search-as-you-type, databases, SQL,
fuzzy search.

Introduction:
A search-as-you-type system work out answers on-
the-fly as a user types in a keyword query character
by character. We study how to support search-as-
you-type on data exist in a relational DBMS. We
focus on how to support this type of search using
the native database language SQL. A main confront
is how to leverage existing database functionalities
to meet the high presentation requirement to attain
an interactive speed. We study how to use auxiliary

indexes stored as tables to increase search
performance. We present solutions for both single-
keyword queries and multi keyword queries and
develops novel methods for fuzzy search using
SQL by allowing mismatches between query
keywords and answers. We present techniques to
answer first-N queries and discuss how to support
updates resourcefully. Experiments on huge real
data sets show that our techniques enable DBMS
systems on a product computer to support search-
as-you-type on tables with millions of records.
Many information systems these days get better
user search experiences by providing immediate
feedback as users formulate search queries. The
instant feedback helps the user not only in
formulating the query but also in understanding the
underlying data. This type of search is usually
called search-as-you-type or type-ahead search.

Related Work:
There have been recent studies to support well-
organized estimated string search which given a set
of strings and a query string all strings in the set
that are comparable to the query string. Many
studies used gram-based index structures to support
approximate string search. The experiments
showed that these approaches are not as competent
as trie-based methods for fuzzy search. An auto
completion system can forecast a word or phrase
that a user may type in next based on the partial
string the user has already typed. Nandi and
Jagadish studied phrase prediction which took the
query string as a single keyword and computed all
sentences with a phrase of the query string. Bast et
al. proposed HYB indexes to support search-as-
you-type. Ji et al. extended auto completion to
support fuzzy full-text instant search. Chaudhuri
and Kaushik studied how to find comparable
strings interactively as users’ type in a query string
and they did not study how to support multi
keyword queries.

Existing System:
The existing system data provider a member would
not suppose free or complete sharing with others
because its data is lawfully private or commercially

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 2, Issue 12, December - 2014 ISSN 2321-6905

www.ijseat.com Page 990

proprietary or both. As a substitute it is required to
hold full control over the data and access to the
data. In the meantime as a consumer a health
provider requesting data from other providers wait
for to protect private information e.g. requestor’s
identity, interests in the querying process.
Disadvantages:
The database with the tuple data does not be
maintained confidentially. The existing systems
another person to easily access database.
Proposed System:
Co-Ordinator and broker carry out the main vital
role and pass the data between the two users. The
data which give in from one user will be viewed by
another user in the privacy and secured manner. All
the data will be saved in the xml type travels in the
XPATH. In proposed system we don’t have a
communication between the two end users.
Advantages:
High security and data privacy between users. In
the System all the data will be saved in the xml
document with high security.
Inverted-Index Table And Prefix Table:

To respond the SQL query resourcefully we
produce built-in indexes on attributes prefix, kid
and rid. The SQL could first utilize the index on

prefix to find the keyword range and then calculate
the answers using the indexes on kid and rid. For
illustration assuming a user types in a partial query
“sig” on table dblp we first get the keyword range
of “sig” using the index on prefix and then find
records r3, r6, and r9 using the index on kid.

Co-Ordinator Module:
The co-coordinator executes the global service
between the two end users. To begin with the data
owner needs to submit the details of the patient in
the server. Data Users needs to look for the data
which is stored in the servers and they give request
for the data and the co-Ordinator sends the key to
the Data users and the Data will be passed by the
broker Way.
Broker Module:
The broker acts upon the role who can act between
the Co-coordinator and the data Users. The request
which is all submitted from the data user will be
established and thus it will be passed to the co-
coordinator. The data will be passed from the co-
coordinator and thus it will be submitted to the End
Users (Data Users).
User Module:
The Users are classified into two types they are
Data Users and Data Owner depends on the
constraint the data will be passed to the Co-
coordinator. The co-coordinator pass the details via
broker and the data will be ensured with the secret
key and thus it will display for the users.
Admin Module:
To organize the database based on the patient and
doctor details and records. The admin needs to
register and register the Organization and Users
Forms.
Experiment Results:

We see that both the UDF-based method and the
LIKE based method had a low search performance
as they needed to scrutinize records. IP Tables
accomplish a high performance by using indexes.
As the keyword length increased the presentation
of the first two methods decreased since the
keyword became more selective and the two
methods needed to examine more records in order
to find the same number (N) of answers. As the
keyword length increased IP Tables had a higher



International Journal of Science Engineering and Advance Technology,IJSEAT, Vol 2, Issue 12, December - 2014 ISSN 2321-6905

www.ijseat.com Page 991

performance since there were fewer complete
keywords for the query and the query needed fewer
join operations.

Conclusion:
To maintain prefix matching we proposed solutions
that use supplementary tables as index structures
and SQL queries to support search-as-you-type. We
comprehensive the techniques to the case of fuzzy
queries and proposed various techniques to
improve query performance. We proposed
incremental-computation techniques to answer
multi keyword queries, and studied how to support
first-N queries and incremental updates. Our
experimental results on large real data sets showed
that the proposed techniques can enable DBMS
systems to support search-as-you-type on large
tables. There are several open problems to support
search-as you- type using SQL. One is how to
support ranking queries resourcefully. Another one
is how to support multiple tables. We studied the
difficulty of using SQL to support search-as-you-
type in data bases. We focused on the challenge of
how to leverage existing DBMS functionalities to
meet the high-performance requirement to achieve
an interactive speed.

References:
[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and
V. Ganti, “Scalable Ad-Hoc Entity Extraction from
Text Collections,” Proc. VLDB Endowment, vol. 1,
no. 1, pp. 945-957, 2008.
[2] S. Agrawal, S. Chaudhuri, and G. Das,
“DBXplorer: A System for Keyword-Based Search
over Relational Data Bases,” Proc. 18th Int’l Conf.
Data Eng. (ICDE ’02), pp. 5-16, 2002.
[3] A. Arasu, V. Ganti, and R. Kaushik, “Efficient
Exact Set-Similarity Joins,” Proc. 32nd Int’l Conf.
Very Large Data Bases (VLDB ’06), pp. 918-929,
2006.
[4] H. Bast, A. Chitea, F.M. Suchanek, and I.
Weber, “ESTER: Efficient Search on Text,
Entities, and Relations,” Proc. 30th Ann. Int’l
ACM SIGIR Conf. Research and Development in
Information  Retrieval (SIGIR ’07), pp. 671-678,
2007.
[5] H. Bast and I. Weber, “Type Less, Find More:
Fast Autocompletion Search with a Succinct
Index,” Proc. 29th Ann. Int’l ACM SIGIR Conf.
Research and Development in Information
Retrieval
(SIGIR ’06), pp. 364-371, 2006.
[6] H. Bast and I. Weber, “The Complete Search
Engine: Interactive, Efficient, and Towards IR &
DB Integration,” Proc. Conf. Innovative Data
Systems Research (CIDR), pp. 88-95, 2007.

[7] R.J. Bayardo, Y. Ma, and R. Srikant, “Scaling
up all Pairs Similarity Search,” Proc. 16th Int’l
Conf. World Wide Web (WWW ’07), pp. 131- 140,
2007.
[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S.
Chakrabarti, and S. Sudarshan, “Keyword
Searching and Browsing in Data Bases Using
Banks,” Proc. 18th Int’l Conf. Data Eng. (ICDE
’02), pp. 431- 440, 2002.
[9] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D.
Xin, “An Efficient Filter for Approximate
Membership Checking,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’08),
pp. 805- 818, 2008.
[10] S. Chaudhuri, K. Ganjam, V. Ganti, R.
Kapoor, V. Narasayya, and T. Vassilakis, “Data
Cleaning in Microsoft SQL Server 2005,” Proc.
ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’05), pp. 918-920, 2005.
[11] S. Chaudhuri, K. Ganjam, V. Ganti, and R.
Motwani, “Robust and Efficient Fuzzy Match for
Online Data Cleaning,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’03), pp.
313- 324, 2003.
[12] S. Chaudhuri, V. Ganti, and R. Kaushik, “A
Primitive Operator for Similarity Joins in Data
Cleaning,” Proc. 22nd Int’l Conf. Data Eng. (ICDE
’06), pp. 5-16, 2006.
[13] S. Chaudhuri, V. Ganti, and R. Motwani,
“Robust Identification of Fuzzy Duplicates,” Proc.
21st Int’l Conf. Data Eng. (ICDE), pp. 865- 876,
2005.
[14] S. Chaudhuri and R. Kaushik, “Extending
Autocompletion to Tolerate Errors,” Proc. 35th
ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’09), pp. 433-439, 2009.
[15] B.B. Dalvi, M. Kshirsagar, and S. Sudarshan,
“Keyword Search on External Memory Data
Graphs,” Proc. VLDB Endowment, vol. 1, no. 1,
pp. 1189-1204, 2008.
[16] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang,
and X. Lin, “Finding Top-K Min-Cost Connected
Trees in Data Bases,” Proc. IEEE 23rd Int’l Conf.
Data Eng. (ICDE ’07), pp. 836-845, 2007.
[17] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N.
Koudas, S. Muthukrishnan, and D. Srivastava,
“Approximate String Joins in a Data Base (Almost)
for Free,” Proc. 27th Int’l Conf. Very Large Data
Bases (VLDB ’01), pp. 491-500, 2001.
[18] M. Hadjieleftheriou, A. Chandel, N. Koudas,
and D. Srivastava, “Fast Indexes and Algorithms
for Set Similarity Selection Queries,” Proc. IEEE
24th Int’l Conf. Data Eng. (ICDE ’08), pp. 267-
276, 2008.


