
International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 861

Disk Resident Taxonomy Mining for Large Temporal Datasets

P.Lakshmi Bhanu1, Mrs. N.Leelavathy2,, Mrs.G.Satya Suneetha2
M.Tech Student1, Professor & HOD2, Associate Professor3

Department of Computer Science & Engineering, Pragati Engineering College [1,2,3]

East Godavari (dt), A.P,India

Abstract

Mining patterns under constraints in large data
is a significant task to advantage from the multiple uses
of the patterns embedded in these data sets. It is
obviously a difficult task because of the exponential
growth of the search space. Extracting the patterns under
various kinds of constraints in such type of data is a
challenging research. First, a memory-based, efficient
pattern-growth algorithm, Forest Mine, is proposed for
mining frequent patterns for the data sets and then
consolidating global frequent patterns. For dense data
sets, Forest-mine is integrated with FP-Tree dynamically
by detecting the swapping condition and constructing FP-
trees for efficient mining. Such efforts ensure that forest
mine is scalable in both large and medium sized
databases and in both sparse and dense data sets.

Index Terms: Frequent Generalized Item Set, FP-
Tree,Forest Mine, Disk Resident Data structure

Introduction
Mining frequent data sets is a common

problem for mining association rules. It also plays an
important role in many data mining tasks like sequential
patterns, episodes, multi-dimensional patterns and so on.
The description of the problem is as follows. Let I ={i1,
i2, . . . , in}, be a set of items. Items will sometimes also
be denoted by a, b, c, An I-transaction τ is a subset
of I. An I-transactional database D is a finite bag of I-
transactions. The support of an itemset S ⊆ I is the
proportion of transactions in D that contain S. The task of
mining frequent itemsets is to find all S such that the
support of S is greater than some given minimum
support ξ, where ξ either is a fraction , or an absolute
count. Most of the algorithms, such as Apriori,
DepthProject, and dEclat work well when the main
memory is big enough to fit the whole database or/and
the data structures (candidate sets, FP-trees, etc) [1].
When a database is very large or when the minimum
support is very low, either the data structures used by the
algorithms may not be accommodated in main memory,

or the algorithms spend too much time on multiple passes
over the database. In the First IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, FIMI ’03,
many well known algorithms were implemented and
independently tested. The results show that “none of the
algorithms is able to gracefully scale-up to very large
datasets, with millions of transactions”[1].

At the same time very large databases
do exist in real life. In a medium sized business or in a
company big as Walmart, it’s very easy to collect a few
gigabytes of data. Terabytes of raw data are ubiquitously
being recorded in commerce, science and government.
The question of how to handle these databases is still one
of the most difficult problems in data mining[2].

In the paper [1] authors considered the
problem of mining frequent itemsets from very large
databases. They adopt a divide-and-conquer approach.
First they presented three algorithms, the general divide-
and-conquer algorithm, then an algorithm using basic
projection (division), and an algorithm using aggressive
projection. They also analyzed the disk I/O’s required by
those algorithms. In a detailed divide-and-conquer
algorithm, called Diskmine, they use the highly efficient
FPgrowth* method to mine frequent itemsets from an
FP-tree for the main memory part of data mining. We
describe several novel techniques useful in mining
frequent itemsets from disks, such as the FP-array
technique, and the item-grouping technique.
Existing System

There have been many algorithms developed for
fast mining of frequent patterns, which can be classified
into two categories. The first category, candidate
generation and test approach, such as Apriori as well as
many subsequent studies, are directly based on an anti-
monotone Apriori property if a pattern with k items is
not frequent, any of its super-pattern with (k+1) or more
items can never be frequent[3].
Limitations of Existing Systems

1. First, huge space is required to serve the mining.
An Apriori-like algorithm generates a huge
number of candidates for long or dense patterns

2. Second, real databases contain all the cases.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 862

Real data sets can be sparse and/or dense in
different applications

3. Third, large applications need more scalability.
Many existing methods are efficient when the
data set is not very large. Otherwise, their core
data structures (such as FP-tree) or the
intermediate results (e.g., the set of candidates
in Apriori or the recursively generated
conditional databases in FP-growth) may not fit
in main memory and easily cause thrashing

Problem Statement
The problem of frequent pattern mining is to

find the complete set of frequent patterns in a given
transaction database with respect to a given support
threshold

Proposed Work
This study is proposing a forest data structure,

and a mining algorithm, Forest-mine, which takes
advantage of this data structure and dynamically adjusts
links in the mining process. A divergent feature of
proposed method is that it has very restricted and
precisely banal space overhead and runs truly rapid in
memory-based setting. Moreover, it can be extended up
to very large databases by database segregation, and
when the data set becomes impenetrable, FP-trees can be
built dynamically in the mining.Tackle the problems of
mining in dynamic large data base. This is a challenging
task that requires extending disc resident FP-Tree into a
dynamic structure that could smoothly absorb
modifications to the database.
Mining from disk:

How should one go about when mining frequent
item-sets from very large databases residing in a
secondary memory storage, such as disks? Here “very
large” means that the data structures constructed from the
database for mining frequent item-sets can not fit in the
available main memory. One approach is sampling..
Unfortunately, the results of sampling are probabilistic;
some critical frequent item-sets could be missing.
Besides the sampling, there are basically two strategies
for mining frequent item-sets, the data structures
approach, and the divide-and-conquer approach. The
data structures approach consists of reading the database
buffer by buffer, and generates data structures (i.e.
Candidate sets or FP-trees). Since the data structure do
not fit into primary memory, supplementary disk I/O’s
are required. The number of passes and disk I/O’s
required by the approach depends on the algorithm and
its data structures.

For examples, if the algorithm is Apriori using a
hash-tree for candidate itemsets, disk based hash-trees
have to be used. If the algorithm is FP-growth method, as
suggested, FP-trees have to be written to the disk. Then

the number of disk I/O’s for the trees depends on the size
of the trees on disk. Note that the size of the trees could
be the same as or even bigger than the size of the
database. The basic strategy for the divide-and-conquer
approach is shown in the procedure diskmine. In the
approach, |D| denotes the size of the data structures used
by the mining algorithm, and M is the size of available
main memory. After all small databases are processed, all
candidate frequent itemsets are combined in some way
(obviously depending on the way the decomposition was
done) to get all frequent itemsets for the original
database.
Procedure diskmine(D,M) if |D| ≤ M then return
mainmine(D) else decompose D into D1, . . .Dk. return
combine diskmine(D1,M),.... , diskmine(Dk,M). The
efficiency of diskmine depends on the method used for
mining frequent itemsets in main memory and on the
number of disk I/O’s needed in the decomposition and
combination phases. Sometimes the disk I/O is the main
factor. Since the decomposition step involves I/O, ideally
the number of recursive calls should be kept small. The
faster we can obtain small decomposed databases, the
fewer recursive call we will need. On the other hand, if a
decomposition cuts down the size of the projected
databases drastically, the trade-off might be that the
combination step becomes more complicated and might
involve heavy disk I/O. In the following we discuss two
decomposition strategies, namely decomposition by
partition, and decomposition by projection. Partitioning
is an approach in which a large database is decomposed
into cells of small non-overlapping databases. The cell-
size is chosen so that all frequent itemsets in a cell can be
mined without having to store any data structures in
secondary memory. However, since a cell only contains
partial frequency information of the original database, all
frequent itemsets from the cell are local to that cell of the
partition, and could only be candidate frequent itemsets,
for the intact dataset. Thus the contestant frequent
itemsets mined from a unit have to be demonstrated later
to filter out false hits. Consequently, those candidate sets
have to be written to disk in order to leave space for
processing the next cell of the partition.

After generating candidate frequent
itemsets from all cells, another database scan is needed to
filter out all infrequent itemsets. The segregation
approach therefore needs only two passes over the
dataset, but inscription and interpretation candidate
frequent itemsets will involve a momentous number of
disk I/O’s, depending on the range of the set of contestant
frequent itemsets. To get an easier amalgamation
segment, this paper espouses another putrefaction
stratagem, which we call bulge. This approach projects
the imaginative dataset on several databases, each
resolute by one or more frequent item(s). One advantage

International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 863

of this approach is that any frequent item set mined from
a anticipated database is a frequent itemset in the
imaginative database. To get all frequent item sets, only
need to take the unification of the frequent item sets
discovered in the small anticipated databases. The
biggest problem of the bulge approach is that the total
size of the projected dataset could be excessively large,
and there could be excessively many disk I/O’s for the
projected datasets. Thus, there is a tradeoff between the
easier amalgamation segment and possible excessive
many disk I/O’s. To analyze the recurrence and required
disk I/O’s of the general divide-and-conquer algorithm
when the putrefaction stratagem is projection.
Definition 1 Let I be a set of items. By I∗ we will enote
strings over I, such that each symbol occurs at most once
in the string. If α, β are strings, then α.β denotes the
concatenation of the string α with the string β. Let D be
an I-database. Then FI(D) is the string over I, such that
each frequent item in D occurs in it precisely once, and
the items are in non-increasing order of frequency in D.
As an example, consider the {a, b, c, d, e}-database D =
{{a, c, d}, {b, c, d, e}, {a, b}, {a, c}}. If the minimum
support is 50%, then freqstring(D) = acbd.
Definition 2 Let D be an I-database, and let FI(D) = i1i2

・・・ ik. For j∈ {1, . . . , k} we define Dij = {τ ∩ {i1, .
. . , ij} : ij ∈ τ, τ ∈ D}. Let α ∈ I∗. We define Dα
inductively: D’ = D, and let FI(Dα) = i1i2 ・ ・ ・ ik.
Then, for j∈ {1, . . . , k}, Dα.ij = {τ ∩ {i1, . . . , ij} : ij∈
τ, τ ∈ Dα}. Obviously, Dα.ij is an {i1, . . . , ij} -database.
The putrefaction of Dα into Dα.i1, . . . , Dα.ik is called the
basic estimate. To illustrate the basic estimate, from
earlier example, starting from the least frequent item in
the FI, one can obtain Dd = {{a, c, d}, {b, c, d}}, Db =
{{c, b}, {a, b}}, Dc = {{a, c}, {c}, {a, c}}, and Da = {{a},
{a}, {a}}.
Definition 3 Let α ∈ I∗, ij ∈ I, and let Dα.ij be an I
database. Then FS(ξ,Dα. ij) denotes the subsets of I that
contain ij and are frequent in Dα. ij when the minimum
support is ξ. Usually, we shall abstract ξ away, and write
just FS(Dα. ij).

In the previous example, for Dd, FS(Dd)={{d},
{c, d}}. Note though {c} is also frequent in Dd, it is not
listed since it does not contain d. It will be listed in
FS(Dc). Similarly, FS(Db)={{b}}, FS(Dc)={{c}, {a, c}}
and FS(Da)={{a}}. We also can notice that Dd and Dc are
not that much smaller than the original database. The
upside is though that the set of all frequent itemsets in D
now simply is the union of FS(Dd), FS(Db), FS(Dc) and
FS(Dd). This means that the combination phase is a
simple union. The following procedure BDM gives a
divide-and-conquer algorithm that uses basic projection.
A transaction τ in Dα will be partly inserted into Dα. ij if
and only if τ contains ij . The parallel projection
algorithm introduced an algorithm of this kind.
Procedure BDM(Dα,M)
if |Dα| ≤ M then return mainmine(Dα)
else let FI(Dα) = i1i2・・・ in,
return DISKMINE(Dα. i1,M)∪ . . .∪ BDM(Dα. in,M).

Let’s analyze the disk I/O’s of the algorithm
BDM. As before, we assume that there are two passes,
that the data structure is an FP-tree, and that the main
memory mining method is FP-growth. If in D’, each
transaction contains on the average n frequent items, each
transaction will be written to n projected databases. Thus
the total length of the associated transactions in the
projected databases is n+(n−1)+・ ・ ・+1 = n(n+1)/2,
the total size of all projected databases is (n+1)/2・D ≈
n/2・D. Still there are two full database scans and a
incomplete database scan for D’, as explained for
formula (1). The number of total disk I/O’s is 5/2・ D/B.
The projected databases have to be written to the disks
first, then later scanned twice each for building an FP-
tree. This step needs at least 3 ・ n/2 × D/B. Thus, the
total disk I/O’s for the divide-and-conquer algorithm with
basic projection is 5/2・ D/B + n・ 3/2・ D/B (2) The
recurrence structure of BDM is shown in Figure 1. The
reader should ignore nodes in the shaded area at this
point, they represent processing in main memory.

Figure 1 Recurrence of Basic Projection

International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 864

In a typical application n, the average number of
frequent items could be hundreds, or thousands. It
therefore makes sense to devise a smarter projection
strategy. Before we go further, we introduce some
definitions and a lemma.
Generalized Itemset Discovery: The rules that are
generated by support and confidence are difficult to
analyse which is called Association rule extraction, even
if their buried data might be relevant. To analyse
similarities between data’s are done by powerful and
effective tools where even some buried information are
extracted by previous approaches. The objective is to
monitor tactic that balance the data immoderation load
and better utilize a multi-core cluster system for data
mining application. The main issue in this paper is low
performance. It won’t mine all frequent generalizations
of an atypical pattern, but slightly generates only the one
characterized by low redundancy
2) Change Detection in Datasets: This paper presents a
sketch out to detect changes inside a data set at imaginary
level very deeply. The main idea is to obtain a rule-based
illustration of the data set at different time period and to
rarely analyze how these regulations change. Discovering
changes and acting upon to or them or before any other
item-set others has become a tenaciously issue for many
organization. Prevailing data analysis practices shows
that task under contemplation is steady over number of
times due to conjecture. Here exposure and mutable are
made at imaginary level only it may not be real or true.
The main shortcoming is conferred previously. Pretend
may sometimes workout but not all the time. The
detection, based on real dataset should be made to get
accurate result
3) Frequent Generalized Item Sets: FGIS takes input as
pecking order. Then classify it and harvests generalized
item-set by using association rules which happens same
in generalized item-set. The results generated by using
association rules are strongly recommended by users not
automatically generated. The FGIS algorithm amends
and conglomerates result produced by two algorithms.
The result encloses unordered item-sets. These
algorithms extract item-set by processing transactional
database. FGIS+ The shortcoming in FGIS is recovered
by FGIS+. It is proficient and solves numerous problems
of pattern extraction, such as the expensive creation of
Training date set sets and the over-generalization of
rules. Item set parallelism in multiprocessing and multi-
computing state is analyzed in this paper. Another
important drawback isload balancing, this is also
recovered. But the drawback in FGIS + is dynamic load
balancing where both candidate set and computation task
are handled.
Load Items

The Load items will load the items from the database
for the mining task is to discover a set of attributes
shared among a large number of objects in a given
database.
Load Transaction

This transactional database, first scan the database
once to collect the count of the items present in the
database. Then, sort the items according to their
frequencies in descending order to build the frequent
item list. Only items those come across the minimum
support threshold are deliberated for building the FP-tree.
All items are carried out with their support counts.
Load next window

It performs a second scan of the transactional
database to build the FP-tree. Begin with an empty root
and add the transactions one-by-one as prefix subtrees of
the root. After reading each transaction, sort its items in
descendant order by the support.
Build Tree

This subunit builds in memory the initial FP-tree
from the raw data files. The transactions are read from
the file one-by-one; and they are added to the tree which
is realized in the FP-nodes-list. Management of the FP-
nodes-list is done by MMU which keeps track of the free
and already occupied nodes of the list. While
constructing the FP-tree in M.B, this subunit may consult
the tree translation unit of MMU in order to translate part
of the current tree into secondary storage system S; this
will make room for the new FP-nodes corresponding to
the transactions to be added next. After the translation
process, the tree construction will resume to use FP-
nodes by assuming that no part of the tree is present in
main memory. Here, it is worth mentioning that the effect
of this tree translation process will lead to the situation as
if the initial tree has been constructed as separate chunks
of trees. Consequently, the complete set of truncated
transactions of the database will be represented by these
chunks of trees and the mining result will not be affected.
However, the database will not be as compressed as the
original FP-tree because multiple paths sharing same
prefix
SaveTree

The ‘Build Tree from the Database’ subunit, it
may find that there is not enough space available in ‘FP-
Nodes list’ to continue the tree building process and may
consequently decide to save the current base tree or one
of the conditional FP-trees in the secondary storage
system. If the current base tree is rendered onto disc, the
afresh added I/O- cognizant prefix-tree blocks are
marked and the item for which the last conditional FP-
tree has been built is saved into the lastTree variable. As
the current base tree is no longer in memory in this case,
the algorithm ceases processing the memory-based

International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 865

portion of the tree by breaking out of the loop. We
require the lastTree variable because this memorizes the
point at which we break out from the loop. For items
with ids > lastTree, we still need to traverse that portion
of the base tree which was just saved in the secondary
storage
DTLT Structure

Disc Tree Location Table (DTLT) is an R-tree
based structure that stores the knowledge of Prefix-
Treediscnode-Id ranges associated with each prefix-tree
in order to facilitate easy lookups of the blocks that
constitute a particular Prefix-Treedisc as a disc file. The
DTLT structure gets affected when the tree translation

unit translates some of the FP-trees from memory to I/O-
conscious prefix-trees, which are all represented in a
single file-based structure. At any stage of the mining
process, multiple FP-trees might be available in memory.
The mining model may need to make room in the
available memory
space M.B by translating some of the FP-trees into disc-
based I/O-conscious prefix-trees; this is realized in
multiple blocks, where each block size is less that the
size of FB in order to be accommodated in FB at a later
stage. Subsequently, the mining model also inserts block
location data for a particular prefix-tree into DTLT
structure

Results

Figure 2 After Transaction Loading

International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 866

Figure 3 Tree Structure

Figure 4 HiGen Disk Resident Tree Model

International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 867

Figure 5 Auxiliary HiGen Miner

Figure 6 Temporal Query

International Journal of Science Engineering and Advance
Technology, IJSEAT, Vol 2, Issue 11

ISSN 2321-6905
November-2014

www.ijseat.com Page 868

Figure 7 Time Complexity

References

[1] Mining Frequent Itemsets from Secondary Memory,
G¨osta Grahne and Jianfei Zhu, Concordia
University,Montreal, Canada
[2] “Mining Frequent δ-Free Patterns in Large
Databases”, Céline Hébert, Bruno Crémilleux, Discovery
Science,Lecture Notes in Computer Science Volume
3735, 2005, pp 124-136
[3] “H-Mine: Hyper-Structure Mining of Frequent
Patterns in Large Databases”, Jian Pei, Jiawei Han,
Hongjun Lu✄ , Shojiro Nishio, Shiwei Tang, Dongqing
Yang

